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Abstract

In an anonymous ring of n processors, all processors are totally indistinguishable except for their input values. These values are

not necessarily distinct, i.e., they form a multiset, and this makes many problems particularly difficult. We consider the problem of

distributively sorting such a multiset on the ring, and we give a complete characterization of the relationship with the problems of

leader election for vertices and edges. For Boolean input values and prime n; we also establish a lower bound, and a reasonably close
upper bound on the message complexity valid for sorting and leader election.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A large body of research has been dedicated to the
study and analysis of computing in an asynchronous

anonymous ring: a ring network where all processors (or
vertices) are totally indistinguishable except for their
input values, and communication delays (which include
transmission, queuing, and processing delays) are finite
but unpredictable. This is due to the fact that
asynchrony and anonymity render the network compu-
tationally weak, and, at the same time, the symmetry of
the ring structure renders the resolution of most
problems computationally non-trivial. Hence it is an
ideal setting to study the complexity of problems and the
relationship among them.
Let R ¼ r0;y; rn�1 be an anonymous asynchronous

ring with n processors (or vertices). Initially, each
vertex ri of the ring is assigned a value si from a totally
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ordered set V: The input values are not necessarily
distinct, and thus form a multiset S ¼ fs0; s1;y; sn�1g:
Let dðSÞ denote the cardinality of the corresponding set
(i.e., the number of distinct elements of V in S); clearly,
dðSÞpn:
The case dðSÞ ¼ n corresponds to the case when S is

actually a set, i.e., each vertex has a distinct input value.
In this case, the network is non-anonymous since the
distinct values allow to distinguish among the vertices.
Computations in non-anonymous rings have been
extensively studied in the literature and problems such
as: leader election, edge election, minimum and max-
imum finding, topology recognition have been solved
and analysed.
The case dðSÞon; i.e., when S is not a set,

corresponds to anonymous networks; most of the
existing results focus on Boolean multisets (i.e.,
dðSÞp2) and study the problem of computing Boolean
functions [3–6,9,12,15]. The non-Boolean case has been
explicitly studied in [1,16]. In particular, in [16] the
authors address the leader election problem in general
anonymous networks, continuing the very general
investigation on anonymity and computability started
in [15]. Unlike their work, our investigation focuses on
ring networks and on complexity as well as comput-
ability.
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(a) Unsorted string (b) Sorted string
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Fig. 1. (a) unsorted and (b) sorted string. Here V ¼ Z3 ¼ f0; 1; 2g; d0 ¼ d2 ¼ 3; d1 ¼ 2; dðSÞ ¼ 3 and n ¼ 8:

1Here and in the following, all operations on the indices are

modulo n:
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In this paper we consider the problem of sorting the
input values, and other related problems in anonymous
asynchronous rings with dðSÞon: Distributed sorting
has been extensively studied in rings and other networks
(e.g., see [8,10,13]) but only in the non-anonymous case.
Solving the multiset sorting problem (MSP) means

that, at the end of the computation, the input values are
placed on the ring so that starting from some vertex and
proceeding in only one direction, the values are
encountered in order (see Fig. 1); the choice of the
direction and of the vertex is not pre-determined. We
study the multiset sorting problem and investigate its
relationship with three election problems.
The vertex election problem (VEP) consists in starting

from a situation where the network is anonymous and
ending in a situation where a vertex is distinguished
from the others, i.e., is a leader. Analogously, in the edge

election problem (EEP), an edge must become distin-
guished from all others, and identified as the leader. The
general election problem (GEP) is the problem of
electing, if possible a vertex, otherwise if possible an
edge.
In all of these problems, the existence and cost of a

solution depends on many factors including the input
values, the ring size n; the (lack of) agreement on the
orientation of the ring, etc. In particular, like any non-
trivial problem in anonymous rings [4], they are
unsolvable if n is unknown to the processors; hence we
assume that n is known.
In this paper we focus on the interrelationship,

computability, and complexity of all these problems.
We first provide a characterization of their relation-

ship between sorting and election. Interestingly, we
prove that the solvability relationship among these
problems depends on the value of dðSÞ: As we show, the
characterization is rather simple for the cases dðSÞa2;
the situation dðSÞ ¼ 2 is more complex as it depends on
several factors including the ring orientation and the
value of n:
We then focus on the complexity of solving these

problems for Boolean multisets (i.e., dðSÞp2). We
establish an Oð
Pl

j¼1ððzjÞ2 þ ðtjÞ2ÞÞ lower bound on the
number of messages for solving the sorting and election
problems, where zj and tj are the lengths of the
consecutive blocks of 0’s and 1’s in S; respectively,
and l is the number of such blocks. We then construct an
upper bound of Oð

Pl
j¼1ððzjÞ2 þ ðtjÞ2Þ þ n log nÞ for prime

n: We do so by presenting an algorithm for oriented
rings of prime size, which solves the sorting and election
problems using a number of messages bounded as
above. These results are easily extended to the unor-
iented case.
The paper is organized as follows. In Section 2, we

describe the framework, define the problems and
establish some simple properties of cyclic strings. In
Section 3, we examine the relationship between the
multiset sorting and election problems. In Section 4, we
study the Boolean case, and we establish upper and
lower bounds. The appendix contains a detailed
description of the algorithm for oriented rings of prime
size.
2. The framework

2.1. Definitions and Properties

Let R ¼ r0yrn�1 be an asynchronous ring of n

anonymous processors (or vertices). That is, each vertex
ri is connected to ri�1 and riþ1;

1 all vertices are identical,
and communication delays (which include, transmission,
queuing and processing delays) are finite but unpredict-
able. We say that R is oriented if all processors agree on
the same direction (e.g., clockwise), otherwise R is
unoriented.
To each vertex ri we associate an input value si from a

totally ordered set V of v elements; for simplicity, we
assume V ¼ Zv ¼ f0;y; v � 1g; but all results hold for
an arbitrary totally ordered set. The right (respectively,
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left) d-neighbourhood of ri is the sequence
/siþj: 0pjodS (respectively, /si�j: 0pjodS).
The values associated with R form the multiset S ¼

fs0;y; sn�1g of size n: We denote by duðSÞ the multi-
plicity of uAZv in S; by dðSÞ the number of distinct
values u with duðSÞ40:
We shall denote by RðSÞ the ring R that has as input

the multiset S: We will consider such a multiset as a
(circular) v-valued string (or simply string) S ¼ s0ysn�1
of length n (see Fig. 1).
The string S is periodic with period k if S ¼

s0ysn�1 ¼ ðs0ysk�1Þ
n
k and 1pkon; otherwise, S is

aperiodic. We denote by %S the reverse string of S; i.e.,
%S ¼ sn�1ys0:
Given iAf0;y; n � 1g we denote by siðSÞ the ith

cyclic shift (or simply shift) of S; i.e., siðSÞ ¼
sisiþ1ysi�1:
The string S is canonic if s0asn�1: Obviously, every S

with dðSÞ41 has a shift that is canonic; therefore,
w.l.o.g., we only consider canonic strings where dðSÞ41:
We denote by sðSÞ the multiset sðSÞ ¼

fs jðSÞj0pjpn � 1g and by mðs jðSÞÞ the multiplicity

of s jðSÞ in sðSÞ: If (i; 0pipn � 1; such that mðsiðSÞÞ ¼
1 then we say that S is unique.

Property 1. A string S is unique iff it is aperiodic.

Proof. The property follows from the fact that periodic
strings are invariant under a cyclic shift of the size of the
period; hence, their multiplicity in sðSÞ is greater than
one. On the other hand, any aperiodic string is trivially
unique. &

A shift siðSÞ of S is lexicographical minimal if
8j; 0pjpn � 1; siðSÞ$s jðSÞ; where $ is the compar-
ison operator between numbers in base v:

Property 2. In every aperiodic string S the lexicographi-

cal minimal shift is unique.

Proof. Assume by contradiction that there exist at least
two lexicographical minimal shifts of S; siðSÞ and
s jðSÞ; with siðSÞ ¼ siysi�1 ¼ s jðSÞ ¼ sjysj�1: By
overlapping siðSÞ and s jðSÞ it trivially follows that S

is periodic, therefore, by Property 1, we have a contra-
diction. &

Property 3. If n is prime then every string

S\f0n; 1n;y; ðv � 1Þng; is aperiodic.

Proof. Observe that if a string has period 1okon; i.e.,
S ¼ ðxkÞn=k then both k and n=k divide n; therefore n is
not prime. &

A v-valued string S ¼ s0ysn�1 is sorted iff
(siðSÞ; 0pipn � 1; such that siðSÞ ¼
0d0ðSÞ1d1ðSÞyuduðSÞyðv � 1Þdv�1ðSÞ; with djðSÞX0;
0pjpv � 1; and u0 is the empty string. Note that for
dðSÞp2; if S is sorted, so is %S:

2.2. Problems

We consider several inter-related problems.

Problem 1 (Multiset sorting problem (MSP)). Given an

(un)oriented ring R and a v-valued string S; move from

RðSÞ to a final configuration RðS0Þ where:
(1)
 8uAZv; duðSÞ ¼ duðS0Þ;

(2)
 RðS0Þ is sorted.
An example for v ¼ 3 is shown in Fig. 1. Distributed
sorting has been extensively studied in rings and other
networks (e.g., see [8,10,13]) but only in the non-
anonymous case.
We will study MSP in relation to the classical

problems of vertex election and edge election. Following
[15] (with a slight adaptation to our case) we define the
following:

Problem 2 (Vertex election problem (VEP)). Given an

(un)oriented ring R with input configuration S; if possible

elect a vertex (processor) x as a unique leader, i.e., x

knows it has been elected and all the other vertices know

they have not been elected.

Problem 3 (Edge election problem (EEP)). Given an

(un)oriented ring R with input configuration S; if possible

elect an edge e ¼ ðx; yÞ as a unique leader, i.e., x and y

know which one is e among their incident edges, and all

the other vertices know that e is not incident to them.

Note that, when an edge is elected, both its incident
vertices know it, and enter a special state.
Vertex election is one of the most basic problems in

distributed computing (see [11]). The edge election
problem for anonymous networks has been studied in
detail in [15].
In addition, we will focus on the more general

formulation of the problem which integrates both VEP

and EEP.

Problem 4 (General election problem (GEP)). Given an

(un)oriented ring R with input configuration S; elect a

vertex if possible. If a vertex cannot be elected, then elect

an edge if possible.

Given a problem P we shall denote by PðSÞ the
instance of P where the input string is S: Given two
problems P and Q; we denote by PXQ the fact that if a
solution s for P exists, then a solution for Q can be
derived from s: (A similar definition was given in [14].)
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We denote by P � Q the fact that both PXQ and QXP

hold.
In the following, when considering upper bounds on

the message complexity, we will omit the fact that
messages contain at most Oðlog nÞ bits.
3. Basic results and characterization

In this section we discuss general properties on the
solvability of the election and sorting problems, as well
as on their relationship.
A well-known result from [4] states that no non-

constant function can be computed on an asynchronous
ring if n is not known. Hence in the following we will
always assume that n is known.

3.1. Basic results

By definition, we have that

Lemma 5. VEPXEEP:

Moreover,

Lemma 6. GEP � EEP:

Proof. From Lemma 5 VEPXEEP; therefore
GEPXEEP: To prove that EEPXGEP note that once
an edge has been elected, a unique spanning tree of the
network can been created; input collection can be
performed on the tree at the two vertices of the elected
edge; if an asymmetry exists, i.e., VEP can be solved,
both vertices find out and elect the same vertex. &

A necessary and sufficient condition for solvability of
EEP (and, thus, GEP) in the Boolean case was
established in [15].

Lemma 7 (Yamashita and Kameda). Let dp2: Let S be

a string given as input to an anonymous ring. EEPðSÞ is

solvable iff S is aperiodic.

This result can be generalized to any d; e.g., by
modifying the proofs of Theorems 3, 5 and 11 of [15] so
to extend them to the non-Boolean case. Following is a
direct proof.

Theorem 8. Let S be a string given as input to an

anonymous ring. GEPðSÞ is solvable iff S is aperiodic.

Proof. First consider the case where GEPðSÞ is solvable,
and assume by contradiction that the string is periodic,
i.e., S ¼ ðxkÞn=k for some x and k:Note that, in this case,
vertices at distance k are in the same initial state.
W.l.o.g., consider the case of the oriented ring. (If no
solution exists for this case, none will exist for the
unoriented case.) For any deterministic GEP solution
algorithm, consider a synchronous execution on S; in
any such execution, at each step, vertices at distance k

receive the same values, execute the same operations
and, thus, move to the same state. This implies that, in
the case of vertex election, if GEP is solvable then n

k

vertices will be elected; similarly in the case of edge
election, solvability of GEP implies election of n

k
edges, a

contradiction.
Let us assume S is an aperiodic string and let us show

how to solve GEP: The oriented case is trivial, since
every aperiodic string S in an oriented ring R has a
unique minimal lexicographical shift (Property 2): the
vertex which has the first value of such a string can be
elected. This string can be determined at each vertex by
performing an input collection algorithm, i.e., by
sending all values around the ring, allowing all
processors to collect all values.
If the ring is unoriented, this process cannot be

applied. Every processor can however perform input
collection in both directions and determine the lexico-
graphical minimal shift in each direction. If these two
strings are different, the processor that has as input the
first value in the smallest of the two becomes the leader.
If these strings are not different and the same processor
has the first value of both, it becomes the leader. Finally,
consider the case when the strings are the same but two
distinct processors, x and y; have the first values.
Consider the two paths connecting x and y in R: We
shall distinguish several cases depending on whether the
two paths are even or odd (i.e., they contain an even or
odd number of processors, respectively). Let only one be
odd; then a leader can be elected (e.g., the middle
vertex). A leader can be elected also if both are odd: if
the paths have different lengths, the vertex in the middle
of the shorter path is elected; otherwise, the substrings
associated to the two paths are compared and the vertex
in the middle of the lexicographical minimal substring is
chosen (the substrings have trivially to be different
because the string S is aperiodic).
If they are both even, an edge can be elected (e.g., the

one in the middle of the shorter path or with the
lexicographical minimal value as before). In this case
however, to complete the proof, we have to show that a
vertex cannot be elected. Let x ¼ si and y ¼ sj; since
they both have the first value of the same string (in
opposite direction, otherwise trivially S is periodic), we
have siþk ¼ sj�k for all k: Hence, for all k; siþkðSÞ ¼
siþksiþkþ1ysiþk�1 ¼ sj�ksj�k�1ysj�kþ1 ¼ s j�kð %SÞ: This
implies that any deterministic algorithm has a synchro-
nous execution in which the pairs siþk and sj�k start in
the same initial state, and at each step receive the same
values, execute the same operations and thus move to
the same state. Hence no single vertex can be
elected. &
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Another simple lemma is the following:

Lemma 9. VEPXMSP:

Proof. The leader chooses an arbitrary direction,
computes duðSÞ (e.g., by sending counters around the
ring) for each uAZv; and communicates to every other
vertex both its distance from it and the ordered sequence
of duðSÞ: Based on this information, every vertex
can then unambiguously determine its value in the
sorted sequence starting from x; and change its value
accordingly. &

The nature of the relationship between the election
and sorting problems depends directly on the value of
dðSÞ: We will examine this nature next.

3.2. Characterization: dðSÞa2

Consider first the case dðSÞ ¼ 1:

Theorem 10. If dðSÞ ¼ 1; then GEP is unsolvable and

MSP is already solved.

Proof. If dðSÞ ¼ 1 then the system is anonymous and
neither a vertex nor an edge can be elected as a leader
[2]; thus, GEP is unsolvable. On the other hand the
string is by definition sorted, since it consists of a single
value. &

It is interesting to observe that to recognize
whether dðSÞ ¼ 1 is an expensive process. It is
in fact equivalent to the problem of computing the
AND of a Boolean string (i.e., the function that is 1 if
and only if all inputs are 1) which requires Oðn2Þ
messages [4].
Another simple case is dðSÞ42:

Theorem 11. If dðSÞ42 then MSPðSÞ � VEPðSÞ:

Proof. By Lemma 9, VEPðSÞXMSPðSÞ: We now show
that MSPðSÞXVEPðSÞ: Let S be sorted; since dðSÞ42;
there are at least three distinct values; each vertex can
run an input collection algorithm, thus finding out that
S is sorted in a given direction. The unique vertex
holding the smallest value in S; and having a neighbour
with the biggest value, elects itself a leader. &

3.3. Characterization: dðSÞ ¼ 2

The only case left is when dðSÞ ¼ 2: Unlike the
others, this case is rather complex; we will be using
several technical lemmas. In the following, w.l.o.g.,
we will assume that the two values in the sequence are
0 and 1.
Lemma 12. If dðSÞ ¼ 2; then EEPXMSP:

Proof. Assume an edge has been elected. Let e be the
elected edge, and let x and y be the incident vertices. In
the absence of an orientation, d0ðSÞ is computed
(redundantly) in both directions; two cases arise
depending on whether d0ðSÞ is even or odd. If d0ðSÞ is
even, the first d0ðSÞ=2 vertices on both sides of e

(including x and y) become 0, all others become 1. The
case d0ðSÞ odd is more complex. If n is even, the strings
starting with x and then y in one direction and with y

and x in the other direction, and ending with edge e are
distinct (and can be computed by x and y by doing input
collection in both directions), hence a leader can be
uniquely chosen. If n is odd, a leader is uniquely
determined (e.g., the only vertex at distance ðn � 1Þ=2
from both x and y). In both cases the chosen leader
computes d0ðSÞ (e.g., by sending a counter around the
ring) and tells the closest d0ðSÞ vertices in an arbitrary
direction to assume value 0, and the remaining vertices
to assume value 1. In the oriented case, one of the two
extremes of e becomes the leader, then computes d0ðSÞ
and sorts as above. &

The characterization is simple if the ring is oriented.

Theorem 13. In oriented rings with dðSÞ ¼ 2; VEP �
MSP:

Proof. By Lemmas 5 and 12, VEPXMSP: Let S be
sorted; then the vertex having the first 0 in the given
orientation is uniquely determined and can be
elected. &

In the case of unoriented rings, the relationship
between these problems is slightly more complicated.

Lemma 14. In unoriented rings with dðSÞ ¼ 2;

* if d0ðSÞ is odd, then MSPðSÞXVEPðSÞ;
* if n is odd, then MSPXVEP:

Proof. Assume S is sorted; i.e., S ¼ s0ysn�1 ¼
0d0ðSÞ1d1ðSÞ: If d0ðSÞ is odd, then the vertex rIðd0ðSÞ=2Þm is
uniquely determined by input collection, and is elected
as a leader. If n is odd and d0ðSÞ is odd we are back to
the previous case, otherwise d1ðSÞ must be odd and the
vertex rd0ðSÞþId1ðSÞ=2m is then uniquely determined by
input collection, and thus becomes a leader. &

Theorem 15. In unoriented rings with dðSÞ ¼ 2;
VEPðSÞ � MSPðSÞ if and only if either n or d0ðSÞ is odd.

Proof. (‘‘If ’’) By Lemmas 5 and 12, VEPXMSP: By
Lemma 14, if either n or d0ðSÞ is odd then
MSPðSÞXVEPðSÞ:
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(‘‘Only If ’’) Let both n and d0ðSÞ be even. We will
show that MSPðSÞaVEPðSÞ: Assume S is sorted; e.g.,
S ¼ s0ysn�1 ¼ 0d0ðSÞ1d1ðSÞ; and let j ¼ d0ðSÞ � 1: Since
the ring is unoriented, r0 and rj cannot be uniquely
distinguished from each other. At the same time, sk ¼
sj�k for all k; hence, skðSÞ ¼ skskþ1ysk�1 ¼
sj�ksj�k�1ysj�kþ1 ¼ s j�kð %SÞ: In other words rk and
rj�k cannot be distinguished. This implies that any
deterministic algorithm has a synchronous execution in
which rk and rj�k start in the same initial state, at every
step perform the same operations and receive the same
value; thus they move to the same state and remain
indistinguishable. Therefore no unique leader can be
elected. &

What happens in the other cases is answered by the
following.

Lemma 16. In unoriented rings with dðSÞ ¼ 2; if both n

and d0ðSÞ are even, then MSPðSÞXEEPðSÞ:

Proof. Assume S is sorted; i.e., S ¼ s0ysn�1 ¼
0d0ðSÞ1d1ðSÞ: A unique edge can be determined and thus
elected, e.g., the edge incident on vertices rðd0ðSÞ=2Þ�1 and
rðd0ðSÞ=2Þ: &

Thus, from Lemmas 12 and 16, and Theorem 15, we
have

Theorem 17. In unoriented rings with dðSÞ ¼ 2; MSP �
GEP:

Certain values of n can ensure that a solution to GEP

and MSP exists. By Property 3, Theorems 8, 13 and 15
we immediately have:

Theorem 18. If n is prime then MSP and VEP are

solvable.
Zj
3

Zj

Zj
3

3

Fig. 2. Block bj of zj 0’s.
4. Bounds on the Boolean case

In this section we study the Boolean case ðdðSÞp2Þ
and we establish a lower bound and construct an upper
bound for the case of prime n: The results apply both to
oriented and unoriented rings. We will present them in
detail for the oriented case, and describe how to extend
them to the unoriented case.

4.1. Lower bounds

Any string S can be viewed as a sequence of pairs of
alternating blocks of 0’s and 1’s whose lengths are
denoted by zS

j and tS
j ; respectively. Let lS denote the

number of such pairs. Where no ambiguity arises we will
omit the superscript. The XOR function is defined by
XORðSÞ ¼ d1ðSÞmod 2; where d1ðSÞ ðd0ðSÞÞ is the
multiplicity of 1 (0) in S:

Lemma 19. Any algorithm which correctly computes

XOR on all inputs, requires at least Oð
Pl

j¼1ððzjÞ2 þ
ðtjÞ2ÞÞ messages, on input S:

Proof. W.l.o.g., we consider the oriented case, since the
bound for the unoriented case follows immediately.
Using a mechanism similar to the one introduced in [4]
we use as an adversary a synchronizing scheduler that
keeps computations as symmetric as possible and
delivers messages in cycles but delays messages across
the boundary of each block. Note that messages have to
be exchanged, since otherwise processors would incor-
rectly compute the XOR function only based on their
input value. The computation proceeds as follows:
Every processor starts at cycle one and at a generic
cycle i receives left and right messages sent at cycle i � 1;
executes some actions and sends new messages; its state
therefore depends only on its left and right i-neighbour-
hoods. Let us first assume Sef0n; 1ng; and, w.l.o.g.,
consider a single block bj of zj 0’s, and the middle Izj

3
m-

processors of bj (see Fig. 2).
The left and right Izj

3
m-neighbourhood of all such

processors is composed of all 0’s, and therefore for at
least Izj

3
m cycles the Izj

3
m processors will move to the

same state.
Observe that, if these processors compute the XOR

function at cycle toIzj

3
mþ 1 (i.e., before observing a

different bit), then the adversary can choose to complete
the string S with n � t bits so that the output of XORðSÞ
is different from the one computed by at least one of
these processors. (Note that XORðSÞaXORðS0Þ if S

and S0 differ in a singe bit.) This implies that at least
Izj

3
m cycles must pass and at least Izj

3
mIzj

3
m messages will

have been sent before one of the processors in the block
observes a different value and moves to a different state.
Obviously, this holds for every block of length zj and

therefore globally at least Oð
Pl

j¼1ðzjÞ2Þ messages must
be sent. A similar argument can be provided for the
blocks of 1’s.
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For the case of S ¼ 0n (S ¼ 1n; respectively) we can
use the Oðn2Þ messages lower bound of [4]. Note that
however z1 ¼ n (t1 ¼ n; respectively), and therefore the
bound of the lemma follows. &

We now establish a basic relationship between MSP

and the problem of computing the XOR of a string S

with dðSÞ ¼ 2:

Lemma 20. MSPXXOR using a reduction that requires

OðnÞ messages.

Proof. First observe that the XOR function is invariant
with respect to orientation (i.e., XORðSÞ ¼ XORð %SÞ).
Assume S is sorted, i.e., S ¼ 0d0ðSÞ1d1ðSÞ: Starting from s0
(and also sd0ðSÞ�1 if the ring is unoriented) compute d1ðSÞ
(and d1ð %SÞ if unoriented) by sending a counter (two
counters) around the ring; then XORðSÞ ¼ XORð %SÞ ¼
d1ðSÞmod 2 ¼ d1ð %SÞmod 2 is easily computed and
broadcasted to all processors using a further n

messages. &

From the above we derive the following:

Theorem 21. Given a string S; the problems GEPðSÞ and

MSPðSÞ require at least Oð
Pl

j¼1ððzjÞ2 þ ðtjÞ2ÞÞ messages

in an asynchronous ring.

Proof. From Lemma 20 we know that a lower bound
for the XOR function is a lower bound for the MSPðSÞ
(to within an additive factor of OðnÞ) and, from
Theorems 13 and 17, the same holds for GEPðSÞ: The
result follows by Lemma 19. &

4.2. Upper bounds

In this section, we present two algorithms one for
oriented and one for unoriented rings of n processors, in
the case of prime n: The two algorithms exchange at
most Oð

Pl
j¼1 ððzjÞ2 þ ðtjÞ2 þ n log nÞÞ messages and

solve GEPðSÞ or MSPðSÞ; if a solution exists; in the
case no solution exists, all vertices become aware of this
fact.

4.2.1. Oriented ring

In this section we consider an oriented ring of n

processors, with prime n; and we present an algorithm
(run by each processor, e.g., by p) for solving the leader
election and sorting problems.
The general idea is to assign to each active processor

dynamically changing labels and to decrease step by step
the number of active processors (by comparing neigh-
bouring labels), up to a state in which only one is active
and may elect itself a leader, tell the other processors
they are defeated and eventually sort (if required).
Formally, a processor p starts as active in an Initial

state with an input bit b; it sends this bit to the right and
moves to a SeenOnlyEqual state. Intuitively, p remains
in this new state as long as it ‘‘sees’’ on its left only
processors with the same input b: The number of such
processors will eventually determine its new label that
will be used in the next state. More precisely, many cases
may arise: (a) p receives a total of n � 1 bits equal to b

from the left and in this case it moves to an All-Equal

state since it detects that SAf0n; 1ng and therefore the
algorithm can end (no leader can be elected and S is
already sorted); (b) p sends bits to the right and receives
bits from the left until it receives a bitab; it chooses as a
new label v the number of b’s it has collected from the
left plus its own, sends this value to the right and to the
left in a /SOE; vS message, and then moves to an
Electing state; (c) it receives a /SOE; zS message from a
neighbouring processor. It stores the new label z of its
neighbour; moreover if /SOE; zS comes from the left it
chooses as its new label the value z þ 1 (as this message
is equivalent to the reception of a bit ab) and then
moves to the Electing state.
Intuitively in the Electing state the number of active

processors has to decrease. Formally, a processor p first
receives (unless this was done in the previous state) the
/SOE; xS and /SOE; yS messages, containing the new
labels (values x and y) of its active left and right
neighbours. It then compares its value v with x and y: If
v is such that xpv and yov or xov and ypv; then p

remains active, otherwise it becomes passive and moves
to a Passive state. If p remains active, it then sends a
counter (initialized to 1) to the right and moves to a
Counting state. In this state the remaining active
processors update their labels into a new one computed
as follows. Passive processors that receive the counter
increase it of 1 and forward it to the right. An active
processor p receiving a counter d from the left checks if
d ¼ n: In this case p knows that this is its own counter as
all the other n � 1 processors are passive. It therefore
becomes a leader and moves to an Elected state.
Otherwise, don and p chooses the value d as its new
label, sends a /SOE; dS message to the left and to the
right and moves back to the Electing state. As the
number of active processors decrease at each iteration of
the Electing and Counting states, at a certain point there
will be a unique leader that moves to the Elected state.
In this state the leader has to complete respectively the
election or the sorting problem. Formally, in case of
election, the leader sends its value around and enters a
final state Leader. While receiving this message all other
processors move from a Passive to a Defeated state
(where they know they have not been elected) and stop.
In case of sorting, the leader determines (by circulating a
counter) d0ðSÞ; chooses value 0 and by circulating a
message tells the first d0ðSÞ � 1 processors on its right to
change their input bit into 0 and the others into 1; once a
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processor knows its final value it moves to a Sorted state
and stops.
A formal description of the algorithm is contained in

the appendix. We assume, without loss of generality,
that all processors start independently the execution of
the algorithm. (Should this not be the case, a ‘‘wake-up’’
preprocessing phase requiring OðnÞ messages can be
added.)

Theorem 22. The above algorithm correctly solves the

GEPðSÞ and MSPðSÞ for prime n (if SAf0n; 1ng it reports

GEPðSÞ is unsolvable); it exchanges at most

Oð
Pl

j¼1ððzjÞ2 þ ðtjÞ2Þ þ n log nÞ messages in the worst

case.

Proof. Let us first prove the correctness. In the
SeenAllEqual state there are two cases: (1) all processors
detect that SAf0n; 1ng and stop as no leader can be
elected and the string is already sorted; (2) at least one
processor detects that Sef0n; 1ng and moves to an
Electing state.
Note that, if Sef0n; 1ng; as n is prime, then S is

aperiodic (see Property 3). This implies that in the first
Electing state at least one of the processors has a value
different from one of its neighbours, i.e., values are not
all equal. The same holds also in the next Electing states,
during which labels are distances between neighbouring
active processors (the sum of all such distances gives n;
but n is prime therefore they cannot be all equal).
We want now to prove that in every Electing state at

least one processor remains active. A processor with
maximal value, which has a neighbouring active
processor with a smaller value will remain active. Such
processor does not exist only if values are all equal but
this is not possible for what we have proved above.
Note now that, in every Electing state at least 1=3 of

the processors become passive since a processor remains
active if it has a value larger than at least one of its
neighbours (that in this case becomes passive). This
implies that both this and the Counting states are
repeated at most log1:5 n ¼ Oðlog nÞ times.
In the Elected state a unique processor is active and it

can trivially elect itself as a leader, count d0ðSÞ (by
sending a counter around the ring) and sort the string.
For the complexity cost, observe that in the SeenOn-

lyEqual state every processor collects at most a set zj or
tj of bits, depending on the block it receives. More
precisely every bit 0 (1) in block zj ðtjÞ at distance ipzj

from the first bit 1 (0) travels at most i steps, therefore in

block zj at most
Pzj

i¼1 i ¼ zjðzjþ1Þ
2

ð
Ptj

i¼1 i ¼ tjðtjþ1Þ
2

Þ bits

travel. In total at most
Pl

j¼1 ðzjðzjþ1Þ
2

þ tjðtjþ1Þ
2

Þ messages
travel. Moreover in the case of SAf0n; 1ng; Oðn2Þ
messages travel (and z1 ¼ n or t1 ¼ n). Note that only
OðnÞ messages are necessary for counters. At the
Electing state at least 1=3 of the processors become
passive in each round, and there are at most Oðlog nÞ
rounds during which each active processor sends a
counter. The total number of messages exchanged in this
state is then Oðn log nÞ: Finally at the Elected state the
leader computes d0ðSÞ and sorts using a counter (i.e.,
sending twice at most OðnÞ messages). The total number
of messages exchanged is therefore at most

Oð
Pl

j¼1ððzjÞ2 þ ðtjÞ2Þ þ n log nÞ: &
4.2.2. Unoriented ring

In the case of an unoriented ring, every processor will
be involved into two separate executions, one for each
direction, of the algorithm for the oriented case. Two
situations are possible as a result of the two independent
executions. If dðSÞ ¼ 1 every processor knows that
SAf0n; 1ng and therefore that MSPðSÞ is already solved
and GEPðSÞ is unsolvable. If dðSÞ ¼ 2; then two leaders
are elected; the two leaders, x and y; will then send a
counter in both directions, in order to compute the two
distances (i.e., the number of processors inside the path)
to the other leader. Note that n is prime, therefore one of
the two distances is odd (and the other is even). The
leaders x and y can then send an election message to the
processor in the middle of the odd path. This processor
moves to a NewElected state and can eventually sort. As
usual, passive processors in the Passive state forward
(and, if appropriate, increase) the received values.
Observe that, since the two executions of the algorithm
for the oriented case are run concurrently and indepen-
dently, a processor can be in different states with respect
to each execution. Note that it is possible that a passive
processor becomes elected (because it is in the middle of
the path). We now have:

Theorem 23. For the case prime n; GEPðSÞ and MSPðSÞ
can be solved in an anonymous unoriented ring exchanging

at most Oð
Pl

j¼1ððzjÞ2 þ ðtjÞ2Þ þ n log nÞ messages in the

worst case.

Note that the upper bound of Theorems 22 and 23
differs from the lower bound of Theorem 21 for an
n log n additive term. Since the lower bound can be as
low as OðnÞ (when zi and ti are Yð1Þ for all i), the
asymptotic difference between the two bounds is always
reasonably small. The two bounds may match, e.g.,
when for a given i; zi or ti is of order YðnÞ:

5. Conclusions

In this paper we have considered the problem of
distributively sorting a multiset of input values in a ring
of n processors. We have studied its properties and we
have investigated its relationship with the leader election
problem. We have also studied the communication
complexity of the above problems for Boolean S and
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PASSIVE ALLEQUAL

DEFEATED

d=n

d<>n Sorting

Election

receiving(S1,w) and w <> b

INITIAL

SORTING

SORTED

receving (S1,w) and w=b and c=n

receving(S1,x) and x=b and c<>n

Sorting

x<=v and y<v or x<v and y<=v
x=y=v or x>v or y>v

Election

SEENALLEQUAL

ELECTING

COUNTING ELECTED

LEADER

Fig. 3. Set of rules.

P. Flocchini et al. / J. Parallel Distrib. Comput. 64 (2004) 254–265262
prime n; establishing two reasonably close lower and
upper bounds.
There are several obvious extensions, among them the

establishment of an upper-bound for the non-Boolean
case and tight bounds for the Boolean case.
It would be interesting to determine if an analogous

relationship between sorting and leader election exists in
networks with other symmetric topologies (e.g., hyper-
cube, torus, etc.). A negative answer would be particu-
larly intriguing.
Appendix. Algorithm for oriented rings

The algorithm is specified as a set of rules ð
denotes the null action.
At each processor the algorithm uses the follow
b—input and final value of the processor;
I ;SOE;E:1;E:2;SOR:1;SOR:2—header of the
c; d; z; l; counter—counters;
v; value; x; y; newy—processor labels;
w—Boolean value.

Set of states:
INITIAL—initial state;
ALLEQUAL—stop since SAf0n; 1ng;
SEENALLEQUAL—detect if SAf0n; 1ng or ge
ELECTING—be selected or become passive;
COUNTING—become a leader or be selected
ELECTED—send election or sorting message
SORTING—compute number of 0’s;
PASSIVE—forward and eventually change me
SORTED,LEADER,DEFEATED—terminal st
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 event-actionÞ: By default, absence of ‘‘action’’

ing local variables.

messages sent in different states;

t a new label;
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around;

ssages and become sorted or defeated;
ates.
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Set of rules (see also Fig. 3):

INITIAL
x; y; z; l; newy :¼ |;
c :¼ 1;
send /I ; bS to right;
become SEENALLEQUAL;

SEENALLEQUAL
receiving /I ;wS from left do
if wab then v :¼ c;

send /SOE; vS to both directions;
become ELECTING

else c :¼ c þ 1;
if c ¼ n then become ALLEQUAL

else send /I ; bS to right
fi

fi;
receiving /SOE; valueS from left do
y :¼ value; /� this is the new label of my left neighbour �/
l :¼ 1;
v :¼ value þ 1; /� this is my new label �/
send /SOE; vS to both directions;
become ELECTING;

receiving /SOE; valueS from right do
x :¼ value; /� this is the new label of my right neighbour �/

ALLEQUAL
stop;

ELECTING
while ðx ¼ |Þ or ðy ¼ |Þ do /� I wait for the new labels of my neighbours �/
receiving /I ; valueS from left do remove it; /� old message �/
receiving /SOE; valueS from right do x :¼ value;
receiving /SOE; valueS from left do
if l ¼ | then l :¼ 1;

y :¼ value;
else newy :¼ value;

receiving /E:1; dS from left do z :¼ d;
if x ¼ y ¼ v or x4v or y4v then if za| then send /E:1; z þ 1S to right;

if newya| then send /SOE; newyS to right;
become PASSIVE

else send /E:1; d :¼ 1S to right;
become COUNTING

fi;

COUNTING
if (ðza|Þ or receiving /E:1; dS from left) then
if ðza|Þ then d :¼ z;
if d ¼ n then become ELECTED /� all others are passive �/
else v :¼ d; /� my new label �/

x :¼ |;

P. Flocchini et al. / J. Parallel Distrib. Comput. 64 (2004) 254–265 263
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if newya| then y :¼ newy;
l :¼ 1;
newy :¼ |;

else y; l :¼ |;
send /SOE; vS to both directions;
become ELECTING

fi;

ELECTED
if Problem:type ¼ Election then send /E:2; valueS to right;
become LEADER

else /� Problem.type=Sorting �/
if b ¼ 0 then counter :¼ 1
else counter :¼ 0;

send /SOR:1; counterS to right;
become SORTING

fi;

SORTING
receiving /SOR:1; counterS from left do

b :¼ 0;
send /SOR:2; counter � 1S to right;
become SORTED

PASSIVE
receiving /HEAD; valueS from direction do
case HEAD of

SOE : send /SOE; valueS to opposite(direction);
E:1 : send /E.1; value þ 1S to opposite(direction);
E:2 : send /E.2; valueS to opposite(direction);
become DEFEATED;

SOR:1 : if b ¼ 0 then value :¼ value þ 1;
send /SOR.1; valueS to opposite(direction);

SOR:2 : if value40 then b :¼ 0 else b :¼ 1;
send /SOR.2; value � 1S to right;
become SORTED

end;

SORTED
stop

LEADER
stop

DEFEATED
stop

P. Flocchini et al. / J. Parallel Distrib. Comput. 64 (2004) 254–265264
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