
Weak robots performing conflicting tasks without knowing
who is in their team

Subhash Bhagat
Indian Statistical Institute

Kolkata, India
subhash.bhagat.math@gmail.com

Paola Flocchini
University of Ottawa

Ottawa, Canada
paola.flocchini@.uottawa.ca

Krishnendu Mukhopadyaya
Indian Statistical Institute

Kolkata, India
krishnendu@isical.ac.in

Nicola Santoro
Carleton University
Ottawa, Canada

santoro@scs.carleton.ca

ABSTRACT
In this paper, we consider the problem of having two teams of
identical robots, each with its own task, inhabiting the same space.
The robots operate in Look-Compute-Move cycles and each team
needs to solve its own task without being able to distinguish which
of the robots belong to its team. The tasks we consider are two clas-
sical conflicting pattern formation problems: gathering (where the
robots need to gather at some arbitrary point), and circle formation
(where the robots need to place themselves in distinct points of
a circle). We show how to achieve this double goal using robots
that are anonymous, oblivious, silent, and asynchronous; the robots
share a coordinate system, but with possibly different orientations.
Unlike all the previous literature, which considers a single team of
robots with a single goal, this is the first result addressing multi-
ple anonymous teams of robots performing different (and possibly
conflicting) tasks in the same space at the same time.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
Distributed algorithms; Self-organization.

KEYWORDS
Swarm robots, asynchronous, oblivious, non-rigidmovements, direction-
only agreement, the gathering problem, the circle formation prob-
lem

ACM Reference Format:
Subhash Bhagat, Paola Flocchini, Krishnendu Mukhopadyaya, and Nicola
Santoro. 2020. Weak robots performing conflicting tasks without knowing
who is in their team. In ICDCN 2020. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICDCN’20, January 04-07, 2020„ Kolkata, India
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
1.1 Framework and Problem
The control and coordination of autonomous mobile robots have
long been object of study in several fields, including robotics, con-
trol, AI, as well as distributed computing. Within distributed com-
puting, in particular, extensive efforts have been conducted in the
last two decades to investigate the computational and complexity
issues arising in distributed systems composed of a team of mobile
computational entities moving and operating in a Euclidean space.
These entities, called robots, are identical in their outward appear-
ance, homogeneous (have the same capabilities and execute the
same algorithm), and without explicit means of direct communica-
tion. Each robot, when active, operates in Look-Compute-Move
cycles: it determines the positions of the robots in the system (Look);
this information is used to compute a destination point (Compute);
the robot then moves towards the computed destination (Move);
after the execution of a cycle, the robot may become temporarily
inactive. Furthermore, the entities are oblivious: at the beginning
of a cycle the robot has no recollection of computations and opera-
tions performed in previous cycles; that is, there is no persistent
memory. This computational model, called OBLOT , is the most
widely investigated within distributed computing [8]. The research
effort has been on determining which problems can be solved by a
team of such robots.

Crucial for the solvability of a problem is the activation schedule
of robots and the duration of their activities in each cycle. Three
main settings have been considered. In the fully synchronous setting,
FSYNC , time is discrete, all robots are active at all times, and cycles
are to be considered instantaneous. The semi-synchronous setting,
SSYNC , is like the fully synchronous one except that at each time
only a subset of the robots are active; the choice of which robots are
active at which time is made by an adversary. In the asynchronous
setting, ASYNC , there is no common notion of time (which is
possibly continuous), the times when each robot is activated as well
as the duration of each activity is decided by an adversary for each
cycle.

Both in SSYNC and ASYNC , the adversarial scheduler is con-
strained to be fair; i.e., for each robot r and time t there is a time
t ′ > t at which r will be active.

Another important factor is whether the movements are rigid;
that is when performing theMove operation, a robot always reaches

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICDCN’20, January 04-07, 2020„ Kolkata, India Subhash Bhagat, Paola Flocchini, Krishnendu Mukhopadyaya, and Nicola Santoro

its destination, regardless of the distance.Whenmovements are non-
rigid, the Move operation can be interrupted before its completion
by an adversary whose only limit is that, if the robot does not reach
its destination, it moves least a distance ρ > 0, unknown to the
robots.

The study of which problems can be solved by a team of such
robots has been conducted in all three settings, considering all those
factors. The main focus has been on the important class of Pattern
Formation problems, where the robots are required to arrange them-
selves to form a given geometric shape (e.g., [4, 5, 10, 12, 18–20]).
Interestingly, this class includes the Point Formation problem requir-
ing the robots to move to the same location, not decided in advance.
This problem, known also as Gathering or Rendezvous, is of particu-
lar importance and has been extensively studied in all three settings
(e.g., [2, 11, 13, 14]). Other investigated problems include Election
(e.g., [7]) Flocking (e.g., [15, 17, 21]), Scattering and Spreading (e.g.,
[1, 3, 6, 16]), etc. For more details, see the monograph [9] and the
recent book (and chapters therein) [8].

The crucial point is that all these investigations consider a single
team performing the same task. Nobody has yet considered the
case of two (or more) teams of robots, in the same space at the same
time, each team with a different goal, needing to solve a different
problem.

Clearly each robot knows the problem it must solve, but because
they all are outwardly undistinguishable, it does not know which
are the other members of its team. In this novel setting, several
questions immediately arise. In particular: Is it possible for each of
the two teams to solve its problem ? Can it be done by the same
protocol ? Under which setting ? Under what conditions ? What
happens if the two tasks to be performed are conflicting ?

1.2 Contributions
In this paper we start this line of investigation by considering
two conflicting classical pattern formation problems, and we show
how they can be solved concurrently by two anonymous teams
operating in the same space under the worst adversarial scheduler
(asynchronous and with non-rigid movements).

More precisely, we are given two teams of anonymous robots Rд
and Rf , where the goal of the robots in Rд is to achieve Gathering
(i.e., to meet at some arbitrary point), while the goal of the robots in
Rf is to solve the Circle Formation problem (i.e., to place themselves
at distinct points of an arbitrary circle). The robots are located at
distinct points in the same space and they do not know who, among
the robots they see, belong to their own team.

We devise a terminating deterministic algorithm that allows
each team to solve its problem asynchronously and with non-rigid
movements.

Our algorithm assumes agreement of the local coordinate axes
(but not necessarily of their orientation) and weak multiplicity
detection (i.e., the ability to distinguish points occupied by more
than one robot).

2 MODEL AND PRELIMINARIES
2.1 Model
Let Rд and Rf be two teams of robots in the Euclidean plane op-
erating in Look-Compute-Move cycles in the standard OBLOT

model [8]. Let R = {r1, r2, . . . , rn } = Rд ∪ Rf , with |Rд | ≥ 6 and
|Rf | ≥ 2.

The robots are represented by points and they can move freely
in the plane; they are anonymous, indistinguishable by their ap-
pearances, and they run the same distributed algorithm; they do
not have explicit means of communication; they are oblivious in the
sense that, at the beginning of each Look-Compute-Move cycle,
a robot does not carry any information from its previous cycles
(i.e., whenever robots are activated they start afresh). The robots
lack a global coordinate system, they however share common axis
(without necessarily agreeing on their directions); each robot has
its own axis direction having origin at its current position. Robots
have weak multiplicity detection capability which enables them to
determine whether there is more than one robot at single point.

Within the OBLOT model, we consider two strong adversarial
conditions. First of all, the setting is ASYNC: there is no common
notion of time and, except for the Look operation that is instan-
taneous, all other operations take a finite but arbitrary amount
of time, decided by the adversary. Furthermore, the movements
are non-rigid: every movement performed in the Move operation
can be interrupted by an adversary; if the robot does not reach its
destination, however, it travels at least a distance ρ > 0, unknown
to the robots.

The robots in Rд and Rf are required to solve the gathering
problem (i.e., to gather exactly at some point) and the circle formation
problem (i.e., to place themselves on a circle), respectively. A robot
knows the team to which it belongs, however it can not distinguish
the teams the other robots belong to. We assume that initially,
at time t = 0, all robots occupy distinct positions and they are
stationary.

2.2 Preliminaries
Let ri (t) denote the point occupied by robot ri at time t . A robot
configuration is denoted by the multiset R(t) = {r1(t), . . . , rn (t)}.
Let Rд(t) and Rf (t) denote the set of robot positions in Rд and Rf ,
respectively, at time t .

A multiplicity point is a point where at least two robots lie. A
stable multiplicity point contains at least two robots from Rд .

Let S(t) denote the smallest enclosing circle of the points in R(t)
and let O be the center of the initial smallest enclosing circle S(0).
Moreover, let Sout (t) and Sin (t) denote the robot positions in R(t)
lying on S(0) and inside S(0), respectively, at time t .

We define a sequence of concentric circles C1(t), C2(t) . . . Ck (t)
centered in O, as follows. Let Ci (t) be the circle centered at O and
passing through the ith -nearest robot positions from O, (not lying
at O) for 1 ≤ i ≤ k (see Figure 1). Note that, if k = 1 (i.e., there is
just one circle C1(t) = Ck (t) = S(0)), then either |Sin (t)| = 0 or all
the robots, having positions in Sin (t), lie at O.

Letp and q be two points in the plane. By (p,q) andpq, we denote
the open (excluding p and q) and closed (including p and q) line
segments joining p and q, respectively.
Pivotal Robot Positions.

We define a special set of robots positions P(t) ⊂ Sout (t) (the
pivotal robot positions) which are sufficient to define S(0). The ro-
bot positions in P(t) are used to maintain S(0) during part of the
algorithm execution.

Weak robots performing conflicting tasks without knowing
who is in their team ICDCN’20, January 04-07, 2020„ Kolkata, India

Figure 1: Illustrations of the circles Ck (t), k ≥ 1: blue robots
are from Rf and red robots are from Rд

If |Sout (t)| ≤ 4, then P(t) = Sout (t).
If |Sout (t)| > 4, let L be the line passing through O and parallel

to the Y -axis, intersecting S(t) in two points p1 and p2. The set P(t)
is defined differently depending on the situation:

(1) Exactly one of p1 and p2 contains a robot position (without
loss of generality, let it be p1 containing robot position rc (t)
(see Figure 2(A)). Let rd (t) and re (t) be the two robot posi-
tions in Sout (t) such that they lie on different sides of L and
closest to p2. Then P(t) = {rc (t), rd (t), re (t)}.

(2) Both p1 and p2 contain robot positions (Figure 2(B)). Let ri (t)
and r j (t) be two robot positions at p1 and p2 respectively.
Then P(t) = {ri (t), r j (t)}.

Figure 2: Illustrations of different scenarios of pivotal sec-
tion: (A) exactly one of p1 and p2 contains a robot position
(B) both of p1 and p2 contain robot positions (C) none of p1
and p2 contains a robot position. Blue robots are from Rf
and red robots are from Rд

(3) Neither p1 nor p2 contain a robot position (Figure 1(C)). Let
ru (t) and rv (t) be two robot positions in Sout (t) such that
they lie on two different sides of L and they are clockwise
and counterclockwise neighbors of p1 on S(t). Similarly, let

rx (t) and ry (t) be two robot positions in Sout (t) such that
they lie on two different sides of L and they are clockwise
and counterclockwise neighbors of p2 on S(t). In this case,
P(t) = {ru (t), rv (t), rx (t), ry (t)}.

Lemma 1. The set of points P(t) uniquely defines the smallest
enclosing circle S(t).

3 THE ALGORITHM
3.1 Overview and Preliminaries
During the algorithm, the initial smallest enclosing circle S(0) plays
an important role and the algorithm is designed in such a way that
S(0) is always recognizable.

First of all, robots in Rд coordinate their movements to create a
multiplicity point at the center of S(0) (Multiplicity Creation Phase).
In this phase, if necessary, we make use of the agreement on the axis
directions to select special robots (the ones on pivotal positions)
for preserving S(0); in fact, during this phase S(t) always coincides
with S(0).

Once a multiplicity point is created, the robots start the For-
mation Phase, during which the robots in Rд move towards the
multiplicity point and those in Rf move towards S(0). All move-
ments are designed in such a way that the original multiplicity
point is preserved throughout the execution of the algorithm in
spite of asynchrony and non-rigidity. Note that, in this phase, the
smallest enclosing circle might change. However, the robots can
always reconstruct S(0) by computing the circle centered at the
multiplicity point and passing through the farthest robot position
from it.

This simple structure requires a careful design of the rules as
the indistinguishability and the asynchrony of the robots pose
several difficulties. Two such difficulties are: 1) guaranteeing that
the multiplicity point that is initially formed remains unchanged,
and 2) ensuring that no newmultiplicity points are created. The first
issue is related to the possibility of disintegration of the multiplicity
point formed by a robot in Rf , being initially in the center of S(0),
and one inRд arriving there; the second issue is related to collisions.
Our algorithm guarantees that both problems are avoided.

Note that, since robots are asynchronous and indistinguishable,
the multiplicity creation phase and the formation phase may run
concurrently (i.e., some robots might start executing the second
phase while others are still executing the first one) creating addi-
tional potential problems. The rules of the two phases must thus be
compatible in order to maintain the continuity of the multiplicity
point and to avoid collisions in spite of the concurrent executions.

In the algorithm description, we will consider the following
classes of configurations:

• Multi: Configurations having exactly one multiplicity point.
• F ewOut : Configurations having no multiplicity points, with
|Sout (t)| ≤ 4.

• ManyOut : Configurations having no multiplicity points,
with |Sout (t)| > 4.

Observe that, since |Rд | ≥ 6, for a configurationR(t) ∈ F ewOut ,
the set Sin (t) contains at least two members from Rд(t). Also note
that, by design, we will ensure that these classes form a partition

ICDCN’20, January 04-07, 2020„ Kolkata, India Subhash Bhagat, Paola Flocchini, Krishnendu Mukhopadyaya, and Nicola Santoro

of all possible configurations arising during the execution of the
algorithm.

3.2 Algorithm PatternFormation()
In both phases, movements of the robots are regulated by a special
routine, MoveToDestination(), which will be described later, whose
objective is to maintain some form of synchronization in the robots’
movements in order to guarantee the absence of collisions (and
thus prevent potential creation of multiple multiplicity point).

3.2.1 Multiplicity creation phase. This phase is executed when
there are no multiplicity points in the current configuration and the
goal is to create a unique multiplicity point at O. In order to create
a multiplicity point, robots lying on S(t) that are not in pivotal
positions are let to move inside of S(t) (regardless of the team they
belong to) until |Sout (t)| ≤ 4. During this time, on the other hand,
robots lying inside S(t) do not move. Since |Rд | ≥ 6 this procedure
ensures that, before robots start moving to create the multiplicity
point, there are at least two robots from the set Rд which lie inside
S(t). These robots will eventually make the multiplicity point stable.

More precisely, robot ri acts as follows, according to its position
and the class to which R(t) belongs.

(1) R(t) ∈ F ewOut :
• ri (t) ∈ Sout (t) : Robot ri does not move regardless of the
team it belongs to. This ensures that S(t) remains invariant
until a stable multiplicity point is created at O.

• ri (t) ∈ Sin(t) ∩ Rf (t) : Robot ri moves, according to al-
gorithm MoveToDestination(), towards the circle Ck−1(t)
(where Ck (t) = S(t)). The movement of these robots en-
sures free corridors for robots in Rд towards O to avoid
the creation of multiple multiplicity points while main-
taining |Sout (t)| ≤ 4.

• ri (t) ∈ Sin(t) ∩ Rд(t) : Robot ri moves towards O ac-
cording to algorithmMoveToDestination(). Note that, since
|Sout (t)| ≤ 4 and |Rд | ≥ 6, the set Sin (t) ∩ Rд(t) contains
at least two robot positions which will eventually create a
stable multiplicity point.

(2) R(t) ∈ ManyOut : In this case, Sout (t) > 4. Robots lying
on S(t) (except for those on the pivotal points P(t)), move
inside S(t) as follows to convert the current configuration
into one in F ewOut .
• ri (t) ∈ Sout (t) : If ri (t) < P(t), ri moves towards its
destination point pi (t) computed as follows: if C1(t) =

S(t), then pi (t) is the middle point of ri (t)O; otherwise,
then pi (t) is the middle point of ri (t)wi , where wi is the
intersection point between the circle Ck−1(t) and radi (t).
On the other hand, if ri (t) ∈ P(t), robot ri does not move.

• ri (t) ∈ Sin(t) : Robot ri does not move.

3.2.2 Formation phase. This phase is executed only after a multi-
plicity point has been created at O; that is, when R(t) ∈ Multi . We
denote the multiplicity point by pm . During this phase, the robots
form their assigned pattern. We ensure that at least one robot from
Rf lies on S(0) before the robots in P(t) ∩ Rд start moving; this
ensures that all robots can compute S(0) using the multiplicity point
pm and the farthest robot position from the multiplicity point.

More precisely, robot ri acts according to its position as follows.

• ri (t) ∈ Sout (t) ∧ |Sin | > 1 : Robot ri does not move. This
is required to allow the robots to be able to reconstruct S(0).

• ri (t) ∈ Sout (t) ∧ |Sin | = 1 : If ri ∈ Rf , it does not move.
Otherwise, it moves towards pm along the line segment
ri (t)pm .

• ri (t) ∈ Sin(t) ∩ Rf (t) : Robots compute S(0) as the circle
centered at pm and passing through the farthest robots po-
sition in R(t) from pm . If ri (t) = O and |Sin (t)| > 1, ri does
not move (this is required for the stability of the multiplic-
ity point); otherwise, ri moves towards S(0) according to
algorithm MoveToDestination().

• ri (t) ∈ Sin(t) ∩ Rд(t) : Robot ri moves towards O accord-
ing to algorithm MoveToDestination().

Note that the two phases might very well run concurrently. In
fact, once a multiplicity point is created, some robots may still be
executing the multiplicity creation phase while some might start
the formation one.

3.3 Routine MoveToDestination()
Routine MoveToDestination() prescribes the robots’ movement in
such a way that during the whole execution of PatternFormation()
exactly one multiplicity point is created and robots reach their
respective destination points in finite time.

The algorithm achieves some form of movement sequentializa-
tion by allowing only robots on the smallest concentric circle C1
to move: the movement is either straight towards the center (in
the case of robots in Rд) or towards C2 at some appropriate an-
gular direction to create/maintain a free corridor to S(0) (in the
case of robots in Rf). In doing so the number of concentric circles
decreases while free corridors are created, and eventually all robots
will be either on S(0) or at O.

More precisely, robot ri acts as follows depending on its position.
• r i lies onC1(t):
If ri ∈ Rд , then ri has O as its destination point, and it moves
straight to O along ri (t)O.
If ri ∈ Rf , then ri moves towards C2(t) chosing a special
angular direction. Let radi (t) intersect the circleC2(t) at the
point qi . If radi (t) does not contain any other robot position,
then robot ri moves to qi along radi (t). Otherwise, it moves
in the followingway: LetAi (t) be the set of all robot positions
in R(t) not lying on ri (t)pi . Let r j (t) ∈ Ai (t) be such that
θi (t) = ∠ri (t)Or j (t) is maximum for all robot positions in
Ai (t) (tie, if any, broken arbitrarily). Let x be a point on the
circle C1(t) such that:

∠ri (t)Ox =
1
3
θi (t)

Let Li be the half-line originated at O and passing through
x . Let Li intersect C2(t) at the point ui .
Robot ri moves towards ui along ri (t)ui (see Figure 3).

• r i lies at O and r i ∈ Rf :
In this case, robot ri moves towards S(0) only when all the
robots inside S(t) lie at O. Let L∗(t) be the bisector of the
angle the largest angle made by two consecutive robot posi-
tions on S(t). Let vi be the intersection point between L∗(t)

and S(t). Robot ri moves towards vi along ri (t)vi .

Weak robots performing conflicting tasks without knowing
who is in their team ICDCN’20, January 04-07, 2020„ Kolkata, India

Figure 3: Illustration of movements of the robots during al-
gorithmMoveToDestination(): robot ri moves towards the point
ui lying onC2(t) and robot r j move towards the point qj lying
on C2(t)

• All other cases: ri does not move.

4 CORRECTNESS
We now show that our solution is correct by proving that a unique
point pm is created and that, within finite time, robots in Rд gather
in pm , while robots in Rf position themselves on the original small-
est enclosing circle S(0).

Lemma 2. Routine MoveToDestination() provides collision free
movements for the robots.

Proof. We prove the lemma by considering each case separately.
For robots executing the Multiplicity Creation Phase: Consider first
the movements of the robots when R(t) ∈ ManyOut . In this case,
a robot ri moves only if it is on S(t) and do so along radi (t) to a
destination point which lies on radi (t) and is different O. Since the
destination points of any two such moving robots are distinct, so
are their radii, hence their movements are collisions free.

Consider now the case when R(t) ∈ F ewOut . By construction,
the movements of the robots that perceive R(t) ∈ F ewOut are
ordered according to their distances from O, and only the robots
on C1(t) move.

The robots in Rд move straight towards O and their paths do
not intersect; thus their movements are collisions free.

Consider the robots in Rf . By routineMoveToDestination(), these
robots move towards C2(t). Consider two robots ri , r j ∈ Rf lying
on C1(t). We show that the paths of these robots towards their
respective destination points do not intersect in between. If these
robots have robots-free straight paths towards C2(t) along radi (t)
and radj (t) respectively, then they move along radi (t) and radj (t)
and they clearly do not collide with each other. Now, suppose
that neither of them has a free corridor to C2(t) (the case when
exactly one of them has a free corridor, follows from this case).
Let the wedge Di j (t), defined by radi (t) and radj (t), contain at
least one robot, say rk , inside it (Figure 4(A)). Then by routine
MoveToDestination(), the paths of ri and rk are separated by radk (t)

and they do not collide. Suppose Di j (t) does not contain any robot
position inside it (Figure 4(B)). If at least one robot has a path lying
outside of Di j (t), then these two robots do not collide. Otherwise,
∠ri (t)Or j (t) = θi (t). Let Lb

i (t) be the bisector of the angle θi (t).
According to routine MoveToDestination(), the paths of the robots
ri and r j are separated by Lb

i (t).
Note that, since robots are asynchronous, some robots may have

pending movements from the case R(t) ∈ ManyOut . These move-
ments, however are towards the interior of S(t) (stopping before
Ck−1(t)) and do not interfere with the other movements.

We can conclude that the lemma holds in this case.

Figure 4: Illustration of scenarios for the proof of lemma
2: (A) wedge Di j (t) contains a robot position rk (t) (B) Di j (t)
does not contain any robot position inside it

For robots executing the Formation Phase: If rl ∈ Rf does not lie at
O, according to routineMoveToDestination(), its movements are the
same as if in the multiplicity creation phase. If instead rl ∈ Rf lies
at O (which can happen only if it was there intitially at time t = 0),
according to routine MoveToDestination(), it moves only when all
robots in Rf are on S(0). When this happens, only some robots
in Rд lying on S(0) might concurrently move towards O (these
must be the robots which were initially on pivotal positions). These
robots move straight towards O and robot rl moves along a free
corridor to S(0). These paths do not intersect by construction; thus,
they are collision free.

□

Lemma 3. The multiplicity creation phase creates a unique mul-
tiplicity point, which becomes stable in finite time.

Proof. Consider a configuration R(t) ∈ F ewOut ∪ManyOut .
If R(t) ∈ ManyOut , robots coordinate their movement to convert
R(t) into a configuration in F ewOut . In this case, robots lying on
S(t) are moved inside S(t) in such way that S(t) remains invariant
(which is possible by Lemma 1 and the fact that |Rд | ≥ 6). Thus
R(t) is converted into a configuration in F ewOut in finite time.

Suppose R(t) ∈ F ewOut . We have to show that at least two
robots from the set Rд reach O in finite time. The movements of
the robots are ordered according to their distances from O. A robot
is eligible for movement at time t only if it lies on C1(t). If C1(t)
contains at least two robots from Rд , then these robots reach O in
finite time and we have a stable multiplicity point. Otherwise, the

ICDCN’20, January 04-07, 2020„ Kolkata, India Subhash Bhagat, Paola Flocchini, Krishnendu Mukhopadyaya, and Nicola Santoro

robots in Rf , lying onC1(t), move towardsC2(t). These movements
convertC2(t) toC1(t ′) in finite time, for some t ′ > t and the robots
lying onC1(t ′) become eligible for movements. If initially the circles
C1(t) and C2(t) contain at least two robots from Rд , then we are
done. Otherwise, the robots from C1(t ′) move towards C2(t ′). This
process continues until at least two robots from Rд find themselves
eligible for movements. Since the number of robots is finite and
|Rд | ≥ 6, this process terminates (in the worst case, robots in Rf
may have to move to Ck−1(t) where Ck (t) = S(t)). This implies
that within finite time at least two robots from Rд reach O. The
uniqueness of the multiplicity point follows from Lemma 2. □

Lemma 4. Algorithm PatternFormation() solves the gathering
problem for the robots in Rд within finite time.

Proof. We have to show that all robots in Rд gather at a single
point. By Lemma 3, a unique multiplicity point is created at O
during the multiplicity creation phase and this point becomes stable
in finite time. Since robots are endowed with weak multiplicity
detection capability, they can identify the multiplicity point. The
robots in Rд move towards the multiplicity point according to
routine MoveToDestination(). By Lemma 2 and the same argument
as in the proof of Lemma 3, we can conclude that within finite time
all robots in Rд reach O. □

Lemma 5. Algorithm PatternFormation() solves the circle forma-
tion problem for the robots in Rf within finite time.

Proof. The robots in Rf solves the circle formation problem
by placing themselves on S(0). Since robots have weak multiplicity
detection capability and exactly one multiplicity point is created,
robots can identify O once it becomes a multiplicity point. If P(t)
contains at least one robot position fromRf (t), then themultiplicity
point and this robot uniquely defines S(0): the circle having center
at the multiplicity point and passing through the farthest robot
position from themultiplicity point. SupposeP(t) contains no robot
position from Rf (t). In this case, the robots having position in P(t)
move, by construction, only when |Sin (t)| = 1. During the whole
execution of algorithm PatternFormation(), robots in Rf do not
have O as their destination point. Since |Rf | ≥ 2, we can say that
S(t) contains at least one robot from Rf when the robots having
positions in P(t) start moving. Since robots move according to
routine MoveToDestination(), we can conclude the proof by Lemma
2. □

From the above sequence of lemmas, we have:

Theorem 1. Algorithm PatternFormation() allow the set of robots
in Rf to form a circle and the set of robots Rд to gather within finite
time.

5 CONCLUSIONS
In this paper, we have started a new line of investigation within
the context of robots operating according to the Look-Compute-
Move model. In fact, we have considered for the first time the
simultaneous presence in the same space of more than one team of
undistinguishable robots, each teamwith a different task to solve. In
particular, we have considered two teams and two conflicting tasks:
gathering and circle formation. The solution we proposed works

under the worst possible adversarial scheduler (asynchronous and
non-rigid), but assumes agreement of the local coordinate axes (not
necessarily of their orientation) and weak multiplicity detection.

This result opens several interesting investigation directions.
Apart from the obvious open problem of relaxing the assumptions,
the study of various combinations of tasks constitutes a whole new
area of investigation worth exploring.

ACKNOWLEDGMENTS
This research has been supported in part by the Natural Sciences
and Engineering Research Council of Canada (N.S.E.R.C.) under
the Discovery Grant program, and by Dr. Flocchini’s University
Research Chair. This work has been done while S. Bhagat was a
postdoctoral fellow under the supervision of P. Flocchini and N.
Santoro.

REFERENCES
[1] D. Canepa, X. Défago, T. Izumi, and M. Potop-Butucaru. Flocking with oblivious

robots. In 18th Int. Symposium on Stabilization, Safety, and Security of Distributed
Systems, pages 94–108, 2016.

[2] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing
by mobile robots: Gathering. SIAM Journal on Computing, 2012.

[3] R. Cohen and D. Peleg. Local spreading algorithms for autonomous robot systems.
Theoretical Computer Science, 399:71–82, 2008.

[4] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Forming sequences of geomet-
ric patterns with oblivious mobile robots. Distributed Computing, 28(2):131–145,
2015.

[5] Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Circle formation of weak mobile
robots. ACM Transactions on Autonomous and Adaptive Systems, 3(4):16:1–16:20,
2008.

[6] Y. Dieudonné and F. Petit. Scatter of robots. Parallel Processing Letters, 10(1):175–
184, 2009.

[7] Y. Dieudonné, F. Petit, and V. Villain. Leader election problem versus pattern
formation problem. In International Symposium on Distributed Computing (DISC),
LNCS 6343, pages 267–281, 2010.

[8] P. Flocchini, G. Prencipe, and N. Santoro (Eds). Distributed Computing by Mobile
Entities. Springer, 2019.

[9] P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool Publishers, 2012.

[10] P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Distributed computing by
mobile robots: uniform circle formation. Distributed Computing, 30(6):413–457,
2017.

[11] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asyn-
chronous mobile robots with limited visibility. Theoretical Computer Science,
337:147–168, 2005.

[12] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern for-
mation by asynchronous oblivious robots. Theoretical Computer Science, 407(1-
3):412–447, 2008.

[13] P. Flocchini, N. Santoro, G. Viglietta, andM. Yamashita. Rendezvous with constant
memory. Theoretical Computer Science, 621:57–72, 2016.

[14] S. Gan Chaudhuri and K Mukhopadhyaya. Leader election and gathering for
asynchronous fat robots without common chirality. Journal of Discrete Algorithms,
33:171–192, 2015.

[15] V. Gervasi and G. Prencipe. Coordination without Communication: The Case of
the Flocking Problem. Discrete Applied Mathemathics, 144(3):324–344, 2004.

[16] T. Izumi, D. Kaino, M. Potop-Butucaru, and S. Tixeuil. On time complexity
for connectivity-preserving scattering of mobile robots. Theor. Comput. Sci.,
738:42–52, 2018.

[17] S. Souissi, Y. Yang, X. Défago, andM. Takizawa. Fault-tolerant flocking for a group
of autonomous mobile robots. The Journal of Systems and Software, 84:29–36,
2011.

[18] K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric
patterns with many mobile robots. Journal of Robotics Systems, 13:127–139, 1996.

[19] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

[20] M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by obliv-
ious anonymous mobile robots. Theoretical Computer Science, 411(26-28):2433–
2453, 2010.

[21] Y. Yang, N. Xiong, N. Y. Chong, and X. Défago. A decentralized and adaptive
flocking algorithm for autonomous mobile robots. In The 3rd International
Conference on Grid and Pervasive Computing Workshops, pages 262–268, 2008.

	Abstract
	1 Introduction
	1.1 Framework and Problem
	1.2 Contributions

	2 Model and Preliminaries
	2.1 Model
	2.2 Preliminaries

	3 The Algorithm
	3.1 Overview and Preliminaries
	3.2 Algorithm PatternFormation()
	3.3 Routine MoveToDestination()

	4 Correctness
	5 Conclusions
	References

