
Title: Memoryless gathering of mobile robotic sensors
Name: Paola Flocchini1

Affil./Addr. School of Electrical Engineering and Computer Sci-
ence, University of Ottawa, Ottawa, ON, Canada

Keywords: Gathering; Sensors aggregation; Rendezvous
SumOriWork: 2005; Flocchini, Prencipe, Santoro, Widmayer

1999; Ando, Oasa, Suzuki, Yamashita

Memoryless gathering of mobile
robotic sensors
Paola Flocchini

1

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa,
ON, Canada

Years aud Authors of Summarized Original Work
2005; Flocchini, Prencipe, Santoro, Widmayer
1999; Ando, Oasa, Suzuki, Yamashita

Keywords
Gathering; Sensors aggregation; Rendezvous

Problem Definition
The Model: A mobile robotic sensor (or simply sensor) is modeled as a computational
unit with sensorial capabilities: it can perceive the spatial environment within a fixed
distance V > 0, called visibility range, it has its own local working memory, and it is
capable of performing local computations [3; 4].

Each sensor is a point in its own local Cartesian coordinate system (not neces-
sarily consistent with the others), of which it perceives itself as the centre. A sensor
can move in any direction, but it may be stopped before reaching its destination, e.g.
because of limits to its motion energy; however, it is assumed that the distance trav-
eled in a move by a sensor is not infinitesimally small (unless it brings the sensor to its
destination).

The sensors have no means of direct communication: any communication occurs
in an implicit manner, by observing the other sensors’ positions. Moreover, they are
autonomous (i.e., without a central control) identical (i.e., they execute the same pro-
tocol), anonymous (i.e., without identifiers that can be used during the computation).

The sensors can be active or inactive. When active, a sensor performs a Look-
Compute-Move cycle of operations: it first observes the portion of the space within its
visibility range obtaining a snapshot of the positions of the sensors in its range at that
time (Look); using the snapshot as an input, the sensor then executes the algorithm
to determine a destination point (Compute); finally, it moves towards the computed



2

destination, if different from the current location (Move). After that, it becomes inactive
and stays idle until the next activation. Sensors are oblivious: when a sensor becomes
active, it does not remember any information from previous cycles. Note that several
sensors could actually occupy the same point; we call multiplicity detection the ability
of a sensor to see whether a point is occupied by a single sensor or by more than one.

Depending on the degree of synchronization among the cycles of different sen-
sors, three sub-models are traditionally identified: synchronous, semi-synchronous, and
asynchronous. In the synchronous (Fsync) and in the semi-synchronous (Ssync) mod-
els, there is a global clock tick reaching all sensors simultaneously, and a sensor’s cycle
is an instantaneous event that starts at a clock tick and ends by the next. In Fsync, at
each clock tick all sensors become active, while in Ssync only a subset of the sensors
might be active in each cycle. In the asynchronous model (Async), there is no global
clock and the sensors do not have a common notion of time. Furthermore, the duration
of each activity (or inactivity) is finite but unpredictable. As a result, sensors can be
seen while moving, and computations can be made based on obsolete observations.

Let S(t) = {s1(t), . . . , sn(t)} denote the set of the n sensors’ at time t. When
no ambiguity arises, we shall omit the temporal index t. Moreover, with an abuse of
notation we indicate by si both a sensor and its position. Let Si(t) denote the set
of sensors that are within distance V from si at time t; that is, the set of sensors
that are visible from si. At any point in time t, the sensors induce a visibility graph
G(t) = (N,E(t)) defined as follows: N = S and, ∀r, s ∈ N , (r, s) ∈ E(t) iff r and s are
at distance no more than the visibility range V .

The Problem: In this setting, one of the most basic coordination and synchronization
task is Gathering: the sensors, initially placed in arbitrary distinct positions in a 2-
dimensional space, must congregate at a single location (the choice of the location is
not predetermined) within finite time. In the following, we assume n > 2. A problem
closely related to Gathering is Convergence, where the sensors need to be arbitrarily
close to a common location, without the requirement of ever reaching it. A special type
of convergence (also called Near-Gathering, or collision-less convergence) requires the
sensors to converge without ever colliding with each other.

Key Results
Basic Impossibility Results
First of all, neither Convergence nor Gathering can be achieved from arbitrary initial
placements if the initial visibility graph G(0) is not connected. So, in all the literature,
G(0) is always assumed to be connected. Furthermore, if the sensors have neither
agreement on the coordinate system nor multiplicity detection, then Gathering is not
solvable in Ssync (and thus in Async), regardless of the range of visibility and the
amount of memory that they may have.

Theorem 1. [8] In absence of multiplicity detection and of any agreement on the co-
ordinate systems, Gathering is deterministically unsolvable in Ssync.

Given this impossibility result, the natural question is whether the problem can
be solved with common coordinate systems.

Gathering with common coordinate systems
Assuming that the sensors agree on a common coordinate system, Gathering has been
shown to be solvable under the weakest of the three schedulers (Async) [2].



3

si

H

Li

A

si

A

sj

a. b. c.

β β

A

si
h

B

H

β

C

ΨA′

sj

A′

B

si

Li

sj

C

Ψ

S′

S

Fig. 1. From [4]: (a) Notation. (b) Horizontal move. (c) Diagonal move.

Let R be the rightmost vertical axis where some sensor initially lie. The idea of
the algorithm is to make the sensors move towards R, in such a way that, after a finite
number of steps, they will reach it and gather at the bottom-most position occupied
by a sensor at that time. Let the Look operation of sensor si at time t return Si(t).
The computed destination point of si depends on the positions of the visible sensors.
Once the computation is completed, si moves towards its destination (but it may stop
before the destination is reached). Informally,

• If si sees sensors to its left or above on the vertical axis passing through its
position (this axis will be referred to as its vertical axis), it does not move.

• If si sees sensors only below on its vertical axis, it moves down towards the
nearest sensor.

• If si sees sensors only to its right, it moves horizontally towards the vertical axis
of the nearest sensor.

• If si sees sensors both below on its vertical axis and on its right, it computes
a destination point and performs a diagonal move to the right and down, as
explained below.

To describe the diagonal movement we introduce some notation. (refer to Fig-
ure 1). Let AA′ be the vertical diameter of Si(t) with A′ the top and A the bottom end
point; let Li denote the topologically open region (with respect to AA′) inside Si(t)
and to the right of si and let S = siA and S ′ = siA′, where neither S ′ and S include
si. Let Ψ be the vertical axis of the horizontally closest sensor (if any) in Li.

Diagonal Movement(Ψ)

B := upper intersection between Si(t) and Ψ ;
C := lower intersection between Si(t) and Ψ ;
2β = AŝiB;
If β < 60◦ Then

(B, Ψ ) := Rotate(si, B);
H := Diagonal Destination(Ψ,A,B);
Move towards H .

where Rotate() and Diagonal Destination() are as follows.

- Rotate(si, B) rotates the segment siB in such a way that β = 60◦ and returns the
new position of B and Ψ . This angle choice ensures that the destination point is
not outside the circle.

- Diagonal Destination(Ψ,A,B) computes the destination of si as follows: the di-
rection of si’s movement is given by the perpendicular to the segment AB; the



4

destination of si is the point H on the intersection of the direction of its movement
and of the axis Ψ .

Theorem 2. [2] With common coordinate systems, Gathering is possible in Async.

Gathering has been shown to be possible in Ssync also when compasses are
unstable for some arbitrary long periods, provided they have a common clockwise
notion, and that they eventually stabilize, and assuming the total number of sensors is
known [9].

Convergence and Near-Gathering
Convergence in Ssync. The impossibility result does not apply to the case of
Convergence. In fact, it is possible to solve it in Ssync in the basic model (i.e., without
common coordinate systems) [1].

Let SCi(t) denotes the smallest enclosing circle of the set {sj(t)|sj ∈ S(t)} of
positions of sensors in S(t); let ci(t) be the center of SCi(t).

Every time si becomes active, it moves toward ci(t), but only up to a certain
distance. Specifically, if si does not see any sensor other than itself, then si does not
move. Otherwise, its destination is the point p on the segment si(t)ci(t) that is closest
to ci(t) and that satisfies the following condition: For every sensor sj ∈ S(t), p lies in
the disk Cj whose center is the midpoint mj of si(t) and sj(t), and whose range is V/2.
This condition ensures that si and sj will still be visible after the movement of si, and
possibly of sj.

ci(t)

a. b.

mj

si(t)

V/2

sj(t)

Cj

dj

mj

lj

Cj

V/2

si(t) sj(t)θj

Fig. 2. From [4]: Notation for algorithm Convengence [1].

Convergence

Assumptions: Ssync.

1. If S i(t) = {si}, then gathering is completed.
2. ∀sj ∈ Si(t) \ {si},
2.1. dj := dist(si(t), sj(t)),

2.2. θj := ci(t)ŝi(t)sj(t),

2.3. lj := (dj/2) cos θj +
√
(V/2)2 − ((dj/2) sin θj)2,

3. limit := minsj∈Si(t)\{si}{lj},
4. goal := dist(si(t), ci(t)),
5. D := min{goal, limit},

6. p := point on si(t)ci(t) at distance D from si(t).
7. Move towards p.

Theorem 3. [1] Convergence is possible in Ssync.



5

Convergence in Async. Convergence has been shown to be possible also inAsync,
but under special schedulers: partial Async [6] and 1-fair Async [5]. In partial Async

the time spent by a sensor performing the Look, Compute and Sleep operations is
bounded by a globally predefined amount, and the time spent in the Move operation
by a locally predefined amount; in 1-fair Async between two successive activations
of each sensor, all the other sensors are activated at most once. Finally, Convergence
has been studied also in presence of perception inaccuracies (radial errors in locating a
sensor) and it has been show how to reach convergence in Fsync for small inaccuracies.

Near-Gathering. Slight modifications can make the algorithm of [1] described above
collision-less, thus solving also the Collision-less Convergence problem (i.e., Near-
Gathering) in Ssync. Near-Gathering can be achieved also in Async, with two ad-
ditional assumptions [7]: 1) the sensors must partially agree on a common coordinate
system (one axis is sufficient) and 2) the initial visibility graph must be well-connected,
that is, the subgraph of the visibility graph that contains only the edges corresponding
to sensors at distance strictly smaller than V must be connected.

Open Problems

The existing results for Gathering and Convergence leave several problems open. For
example, Gathering in Ssync (and thus Async) has been proven impossible when
neither multiplicity detection nor an orientation are available. While common orien-
tation suffices, it is not known whether the presence of multiplicity detection alone is
sufficient to solve the problem. Also, the impossibility result does not apply to Fsync;
however no algorithm is known in such a setting that does not make use of orienta-
tion. Finally, it is not known whether Convergence (collision-less or not) is solvable in
Async without additional assumptions: so far no algorithm has been provided, nor an
impossibility proof.

Recommended Reading
1. Ando H, Oasa Y, Suzuki I, Yamashita M (1999) A distributed memoryless point convergence

algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation
15(5):818–828

2. Flocchini P, Prencipe G, Santoro N, Widmayer P (2005) Gathering of asynchronous mobile robots
with limited visibility. Theoretical Computer Science 337:147–168

3. Flocchini P, Prencipe G, Santoro N (2011) Computing by mobile robotic sensors. Chapter 21 in
Theoretical Aspects of Distributed Computing in Sensor Networks, S. Nikoletseas and J. Rolim Eds,
Springer, ISBN 978-3-642-14849-1

4. Flocchini P, Prencipe G, Santoro N (2012) Distributed Computing by Oblivious Mobile Robots.
Morgan & Claypool

5. Katreniak B (2011) Convergence with limited visibility by asynchronous mobile robots. In: 18th Int.
Colloquium on Structural Information and Communication Complexity (SIROCCO), pp 125–137

6. Lin J, Morse A, Anderson B (2007) The multi-agent rendezvous problem. part 2: The asynchronous
case. SIAM Journal on Control and Optimization 46(6):2120–2147

7. Pagli L, Prencipe G, Viglietta G (2012) Getting close without touching. In: 19th Int. Colloquium
on Structural Information and Communication Complexity (SIROCCO), pp 315–326

8. Prencipe G (2007) Impossibility of gathering by a set of autonomous mobile robots. Theoretical
Computer Science 384(2-3):222–231

9. Souissi S, Défago X, Yamashita M (2009) Using eventually consistent compasses to gather memory-
less mobile robots with limited visibility. ACM Transactions on Autonomous and Adaptive Sys-
temse 4(1):1–27


	Memoryless gathering of mobile robotic sensors

