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Abstract11

Temporal graphs (or evolving graphs) are time-varying graphs where time is assumed to be discrete.12

In this paper, we consider for the first time the problem of exploring temporal graphs of arbitrary13

unknown topology. We study the feasibility of exploration, under both the Fsync and Ssync14

schedulers, focusing on the number of agents necessary and sufficient to explore such graphs.15

We first consider the minimal (i.e., less restrictive) assumption on the dynamics of the graph16

under which exploration is still feasible: temporal connectivity. Let H be the class of temporally17

connected graphs; we show that for any temporal graph G ∈ H the number of agents sufficient18

to perform exploration is related to the number of its transient edges, a parameter η(G) we call19

evanescence of the graph. More precisely, any G ∈ H can be explored by a team of k ≥ 2η(G) + 120

agents; this bound is tight as we prove there are G ∈ H that cannot be explored by 2η(G) agents.21

We then turn our attention to the well-known stronger assumption on the dynamics of the graph,22

called 1-interval connectivity: the graph is connected at any time step. Let W ⊂ H be the class23

of these always-connected temporal graphs. For this class, we prove the existence of a difference24

between Fsync and Ssync when there is a bound ` on the number of edges missing at each time.25

In fact, we show a tight bound of 2`+ 1 on the number of agents necessary and sufficient in Ssync,26

and a smaller tight bound of 2` in Fsync. As a corollary, we re-establish two recently published27

bounds for 1-interval connected rings.28
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1 Introduction36

1.1 Framework and Background37

The graph exploration problem (Exploration), first introduced by Shannon [34], is a38

fundamental problem in theoretical computer science, in particular in the field of distributed39

computing by mobile entities. It requires each node of the graph to be visited by one or more40

entities, called agents, a finite number of times (exploration with termination) or infinitely41

often (perpetual exploration). In addition to its theoretical importance, Exploration is42

relevant from a practical viewpoint in networks with mobile entities (e.g., software agents,43
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23:2 Tight Bounds on Distributed Exploration of Temporal Graphs

vehicles, or robots): by visiting all nodes, agents can check whether there are some nodes44

with problems in the network, propagate some data across the network, or collect (or search)45

specific information from the whole network.46

This problem has been extensively studied over a variety of assumptions and settings47

depending on whether the nodes have distinct labelings or are anonymous, on the type of48

communication mechanisms available to the agents, on the degree of synchronization of the49

network, on the level of knowledge the agents have about the graph, on their memory, etc.50

(e.g., see [1, 8, 7, 10, 13, 14, 21, 22, 33, 35], and [9] for a recent survey). In spite of all the51

differences, the existing literature has until very recently made a common assumption: the52

graph is static, i.e., the link structure does not change during the exploration.53

Recently, researchers in the distributed computing community have started to investigate54

highly dynamic graphs, that is graphs where the topological changes are not sporadic or55

anomalous, but rather inherent in the nature of the network. Various models have been56

proposed to describe highly dynamic networks, under a variety of names. A model that57

describes them in a simple and natural way is the one of time-varying graphs, formally58

defined in [6], where main classes of systems studied in the literature and their computational59

relationship were identified. When time is assumed to be discrete, the evolution of these60

systems can be equivalently described as a sequence of static graphs, called evolving graph or61

temporal graph, a model suggested in [25], formalized in [17].62

If the dynamics of the changes is arbitrary and unrestricted, clearly any non-trivial63

computation is unfeasible and any non-trivial problem is unsolvable. Hence, all the studies64

are carried out under some assumptions restricting the arbitrariness of the dynamics. The65

minimal (i.e., less restrictive) assumption is temporal connectivity: starting at any time, there66

is temporal reachability between any two nodes (e.g., [5]). Stronger assumptions include67

1-interval connectivity : the graph is always connected (e.g., [24, 30, 31]); and T-interval68

connectivity : the graph is always connected and every T > 1 consecutive rounds contain69

the same spanning-tree (e.g., [28, 30]). A classification of the most common assumption was70

done in [6].71

While there are several studies on computations by mobile agents moving in temporal72

graphs (for a recent survey see [11]), the results on the exploration of temporal graphs are73

rather limited. On the probabilistic side, there is an early seminal work on random walks [2].74

On the deterministic side there are: the study of the complexity of computing a foremost75

exploration schedule under the 1-interval-connectivity assumption [32], generalized and76

extended in [15] and then in [16]; the computation of an exploration schedule for rings under77

the stronger T-interval-connectivity assumption [28]; the computation of an exploration78

schedule for cactuses under the 1-interval-connectivity assumption [26]. These studies are79

however centralized (or off-line); that is, they assume that the exploring agents have complete80

a priori knowledge of the topological changes and the times of their occurrence. Distributed81

approaches have been studied under particular constraints on the network connectivity and on82

its underlying topology. Exploration with termination by a single agent of periodic temporal83

networks, including carrier networks, has been studied in [18, 19, 27, 28]. Exploration with84

termination of 1-interval connected rings by two and three agents under both synchronous85

and semi-synchronous schedulers has been considered in [12]. Perpetual exploration by three86

agents on temporally connected rings has been studied in [4, 5]. Perpetual exploration by87

O(n) agents of n ×m dynamic tori (n ≤ m), where each column and row is a 1-interval88

connected ring, has been investigated in [23].89

All the existing results on distributed exploration of time-varying graphs have been90

obtained for temporal graphs with very specific topologies (rings, tori, or collections of cycles91
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in the case of carrier networks). In this paper we start the investigation of the exploration of92

temporal graphs with arbitrary and unknown topologies.93

1.2 Contributions94

In this paper we consider perpetual exploration of time varying graphs whose topology ia95

arbitrary and unknown to the agents. We focus on solvability of the exploration of such96

dynamic graphs and we determine the number of agents that are necessary and sufficient for97

exploration under the Fsync and Ssync activation schedulers.98

Clearly, if the graph is not temporally connected, perpetual exploration is trivially im-99

possible to achieve. We thus start our investigation with the class H of temporally connected100

temporal graphs. We show that for the graphs G ∈ H, the number of agents sufficient to101

perform exploration is related to the evanescence η(G) of the graph, that is the number of102

transient edges. More precisely, any G ∈ H can be explored by a team of k ≥ 2η(G) + 1103

agents; this bound is tight as we prove there are G ∈ H that cannot be explored by 2η(G)104

agents. The impossibility holds under very strong conditions (Fsync scheduler, agents and105

nodes with distinct IDs, knowledge on n and k). On the other hand, the proposed exploration106

algorithm, based on the rotor router technique, works under very weak conditions (Ssync107

scheduler, anonymous agents, no knowledge of topological parameters).108

We then turn our attention to the stronger assumption on the dynamics of the graph,109

1-interval connectivity: the graph is always connected. Let W(`) ⊂ H be the class of these110

always-connected temporal graphs where the number of missing edges at each time is at most111

`. For this class, we first show a tight bound of 2`+ 1 under the Ssync scheduler on the112

number of agents. We then prove the existence of a difference between Fsync and Ssync113

if the network size and the number of agents are known. In fact, in this case, while the114

bound for Ssync remains unchanged, we prove a tight bound of 2` for Fsync. Moreover,115

we show that if 2` + 1 agents are available in Ssync, the exploration with termination116

is possible As a corollary of these results, we re-establish a recently published bound for117

temporally-connected rings [5] and one for 1-interval connected rings [12].118

Note that, when considering the class H(`) of temporally connected graphs with at most `119

transient edges and the class W(`) ⊂ H(`) of `-bounded 1-interval connected graph, we have120

that the bound on the number of agents for H(`) is the same as the one for W(`) for Ssync,121

while the two differs in the case of Fsync, showing that the stronger connectivity assumption122

of W does not influence the solvability bound in case of semi-synchronous schedulers, but123

does have an impact for fully synchronous ones.124

2 The Model125

2.1 The Network126

The system is modeled as a time-varying graph (TVG), G = (V,E,T, ρ), where V is a set of127

nodes, E is a set of edges, T is the temporal domain, and ρ : E ×T→ {0, 1}, called presence128

function, indicates whether a given edge is available at a given time. The graph G = (V,E)129

is called underlying graph (or footprint) of G, with |V | = n and |E| = m. Let E(v) denote130

the set of edges incident on node v in the footprint, let δv = |E(v)| be the degree of node v131

in the footprint, and let ∆ = Maxv{δv} be the maximum degree of G.132

In this paper we consider discrete time; that is, T = Z+. Since time is discrete, the133

dynamics of the system can be viewed also in terms of a sequence of static graphs: SG =134

G0, G1, . . . , Gt, . . ., where Gt = (Vt, Et) is the graph of the edges present at time t (also135
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23:4 Tight Bounds on Distributed Exploration of Temporal Graphs

called snapshot at time t). The TVG in this case is called temporal graph (or evolving graph).136

We denote by Ēt = E \Et (⊆ E) the set of edges that do not appear in the snapshot at time137

t.138

In a temporal graph, the edge set E can be partition into the set of recurrent edges139

E∗, and the one of transient edges E−. Formally, a recurrent edge e∗ ∈ E∗ is such that140

∀t ∈ Z+,∃t′ > t : ρ(e∗, t′) = 1. In other words, a recurrent edge appears infinitely often. On141

the other hand, a transient edge e− ∈ E− is such that ∃t ∈ Z+,∀t′ ≥ t : ρ(e−, t′) = 0. In142

other words, a transient edge eventually ceases to exist forever.143

The solidity of G is defined as the number σ(G) of recurrent edges, and the evanescence144

of G, denoted by η(G), as the number of transient edges (i.e., η(G) = |E| − σ(G)).145

A journey is a temporal walk in G and it is defined as a sequence of couples J = {(e1, t1),146

(e2, t2) . . . , (ek, tk)}, such that {e1, e2, ..., ek} is a walk in G and ∀i, 1 ≤ i < k, ρ(ei, ti) = 1147

and ti+1 > ti. Let J(u, v, t) denote the set of journeys from u to v starting at time t′ ≥ t.148

A particularly important class of temporal graphs are temporally connected ones:149

I Definition 1 (Temporally connected). A TVG G is temporally connected (or connected over150

time) if ∀t ∈ Z+, ∀u, v ∈ V , J(u, v, t) 6= ∅.151

Note that temporal connectivity is the minimal condition to be able to perform any global152

tasks; in particular, perpetual exploration (i.e., requiring every node to be visited infinitely153

often) is trivially impossible if the graph is not temporally connected. Let H denote the class154

of temporally connected TVGs.155

A variety of stronger assumptions have been studied in the literature. In this paper we156

are interested in a particular temporally connected graph, where connectivity is actually157

guaranteed at every time (always connected or 1-interval connected temporal graphs); in158

particular, when the number of missing edges at any given time is bounded.159

I Definition 2 (`-Bounded 1-Interval Connected). A temporal graph G is 1-interval connected160

(or always connected) if ∀Gi ∈ SG, Gi is connected. Moreover, G is `-bounded 1-interval161

connected if it is always connected and |Ēt| ≤ `.162

Let W(`) ⊂ H denote the class of `-bounded 1-interval connected temporal graphs.163

The nodes of G are anonymous (i.e., they have no IDs) and each node provides a constant164

amount of local memory called whiteboard. Each edge incident to node v is locally labeled by165

a bijection λv : E → {0, . . . , δv − 1}; no other assumptions are made about the labels. Every166

node v has ports pi for 0 ≤ i ≤ δv which are used to store at most one agent trying to move167

through e such that λv(e) = i.168

2.2 Mobile agents169

A set A = {a0, a1, . . . , ak−1} of k agents operate on the network, initially occupying arbitrary170

positions. Agents are anonymous and have access to their private notebook (local memory)171

and to whiteboards (memory of nodes).172

The agents operate in synchronous rounds, and each round is composed by three phases:173

Look , Compute , and Move , during which they execute the following actions [20]:174

Look : Agent ai observes the content of its own notebook and of the whiteboard of the175

node it occupies, and it checks, for each port of the node, if there are other agents at the176

same node.177
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Compute : On the basis of the information obtained in the Look phase, agent ai decides178

whether to move or not. It can write information on the whiteboard1 and, if it decides179

to move, it places itself in correspondence of the selected port (if it is not occupied by180

another agent).181

Move : If ai occupies a port, it tries to move. If the corresponding edge exists, ai reaches182

the other side, otherwise it stays on the port to try again at the next round. If ai does183

not occupy a port, it does not move.184

We distinguish between the fully-synchronous activation scheduler (Fsync), when all185

the agents are activated in every round, and the semi-synchronous one (Ssync), when an186

arbitrary subset of the agents is activated at each round. In Ssync, the scheduler is an187

adversary which knows the algorithm of the agents, has infinite computing capacity, and188

tries to prevent agents from completing their task; however, it must activate every agent189

infinitely often. An agent which is not activated at round t is said to be sleeping at that190

round. The length of the sleeping time is finite but unbounded.191

Under the semi-synchronous scheduler, we need to specify the behavior of the agents192

that fall asleep on a port when the corresponding edge is missing. In this paper, we assume193

the weakest rule, called eventual transport rule [12], in which the agent sleeping at a port194

will eventually be activated at a time when the edge corresponding to the port is present.195

This prevents the adversary from using semi-synchronicity to block an agent forever on a196

recurrent edge.197

2.3 Configuration and execution198

A configuration Ct is defined by: the contents of the whiteboards, the local memory of the199

agents, the locations of the agents, and the snapshot Gt of the temporal graph in the sequence200

SG , at round t. An execution EA = C0C1 . . . of an algorithm A is an infinite sequence of201

configurations such that C0 is an initial configuration (i.e., a configuration at round 0) and202

Ct+1 is obtained from Ct by executing one round of algorithm A. This execution is subject203

to two types of adversarial actions: those by the activation scheduler deciding which agents204

are activated in that round, and those of the topological scheduler deciding which edges are205

missing in that round. When no ambiguity arises, we use E instead of EA.206

2.4 The Exploration problem207

We say that a node v is visited by round t if there exists a round t′ (0 ≤ t′ < t) such that an208

agent occupies v at time t′. We say that the network is explored by round t if every node209

has been visited by round t.210

A perpetual exploration algorithm is one where, in every execution, every node is visited211

infinitely often. An exploration with termination algorithm is one where the agents terminate212

when all nodes have been visited at least once. In this paper we are concerned with perpetual213

exploration.214

3 Exploration of temporally connected TVGs215

In this section, we show that the feasibility of exploration of temporally connected TVGs is216

related to their evanescence.217

1 Access to the whiteboard is done in fair mutual exclusion

OPODIS 2019



23:6 Tight Bounds on Distributed Exploration of Temporal Graphs

3.1 Impossibility218

Let H(`) = {G ∈ H : η(G) ≤ `} be the class of temporally connected TVGs with evanescence219

at most `. In this section we show that it is impossible to perform perpetual exploration220

of all G ∈ H(`) with 2` agents. The result is quite strong as it applies also to TVGs221

that are connected at every time step, with uniquely labeled nodes and agents, under a222

fully-synchronous scheduler, and in presence of topological knowledge.223

I Theorem 3. There exist temporally connected time-varying graphs G ∈ H(`) that cannot224

be explored by k = 2` agents. The result holds even if nodes and/or agents have distinct IDs,225

the network is always connected, the agents have some topological knowledge (n, m or k),226

and the scheduler is fully-synchronous.227

Proof. We show the theorem by constructing a graph G ∈ H(`) that cannot be explored by228

2` agents by any algorithm. The main point of this proof is that an agent can eventually have229

only one of these two behaviors when wishing to traverse an edge that is missing: (i) the230

agent stays permanently on the chosen port, waiting for the appearance of the continuously231

missing edge; (ii) the agent eventually chooses a different edge. The former type of agents232

are called (with respect to the number of changes of a selected edge) finite and the latter233

infinite.234

The components for constructing the graph are as follows. For 0 ≤ i ≤ 2`− 1 (= k − 1),235

let S inf
i be a star with center node cinfi and 3 leaf nodes {binf(i,0), b

inf
(i,1), b

inf
(i,2)} and Sfin

i be a star236

with center node cfini and 3 leaf nodes {bfin(i,0), b
fin
(i,1), b

fin
(i,2)}. We construct the graph using S inf

i ,237

Sfin
i and an additional node u.238

Each component is connected as follows. For S inf
i (0 ≤ i ≤ 2` − 1) and u, each binf(i,j)239

(0 ≤ j ≤ 2) is connected with u by edge (binf(i,j), u). For Sfin
i (0 ≤ i ≤ 2`− 1) and u, each bfin(i,j)240

(j = 0 or 1) is connected with u by edge (bfin(i,j), u). In addition to that, for 0 ≤ i ≤ l − 1,241

bfin(2i,2) and bfin(2i+1,2) are connected by (bfin(2i,2), b
fin
(2i+1,2)). A graph for l = 2 (k = 4) is depicted242

in Figure 1.243

Figure 1 Example of a graph for ` = 2 and k = 2` = 4. There are four stars Sfin
i (S inf

i ) for
0 ≤ i ≤ 3 on the top (bottom) of the figure. Each star Sfin

i (S inf
i ) has one center node cfini (cfini ) and

three leaf nodes {bfin(i,0), b
fin
(i,1), b

fin
(i,2)} ({bfin(i,0), b

fin
(i,1), b

fin
(i,2)}).

For the constructed graph, we first show that, given any exploration algorithm using 2`244

agents, the adversary can construct an execution for the algorithm such that in the execution245
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G cannot be explored while the adversary may violate the restriction of H(`), i.e., η(G) may246

be more than `. Then, we give a way to convert the execution into another execution such247

that η(G) is at most ` in the new execution and the agents cannot distinguish these two248

executions and thus cannot explore G also in the new execution.249

We start by showing that, given any exploration algorithm, say A, using 2` agents, the250

adversary can construct an execution E1 of A in which the agents cannot explore G. The251

adversary puts agent ai on cinfi for 0 ≤ i ≤ 2`− 1 in the initial configuration of E1. During252

execution E1 of A, the adversary deletes edge (binf(i,j), u) whenever ai is on binf(i,j). Clearly, this253

prevents any agent executing A to visit u and thus G is not explored permanently while the254

adversary violates the restriction for the number of transient edges (it is at most 2` in E1).255

We now show how the adversary converts E1 into another execution, say E2, so that256

the agents cannot distinguish E1 and E2 and η(G) is at most ` in E2. To decide the initial257

configuration of E2, the adversary first separates the agents into two groups: finite agents258

and infinite agents depending on their behavior when faced with a missing edge during E1.259

Let f (0 ≤ f ≤ k − 1) be the number of finite agents. In the following, finite agents are260

denoted by afin0 , . . . , a
fin
f−1, and the infinite agents are denoted by ainf0 , . . . , a

inf
k−f−1. W.l.o.g.,261

we assume that afini = ai, i.e, afini is the agent starting from cinfi in E1.262

The adversary decides the initial configuration of E2 as follows: each ainfi (0 ≤ i ≤ k−f−1)263

is put on the same node as in the initial configuration of E1, while each afini (0 ≤ i ≤ f − 1)264

is put on cfini .265

Then, the adversary changes the assignment of the port labels and the node ID (if any)266

of cfini , bfin(i,0), bfin(i,1), and, bfin(i,2) in Sfin
i so that afini cannot distinguish E1 and E2. Let vi = binf(i,x)267

be the node where ai = afini finally waits a missing edge permanently in E1. For bfin(i,2), the268

assignment of the port labels and the node ID (if any) are copied from vi. The ones of cfini269

are copied from cinfj . The ones of bfin(i,0) and bfin(i,1) are copied from each of binf(i,y) for y 6= x.270

Execution E2 with the initial configuration, the node ID, and, the assignment of port271

labels is constructed similarly to E1: the adversary deletes the edge leading to u (resp, u or272

Sfin
i′ for i′ 6= i) when ainfi′′ = ai (resp, afini ) exists on binf(i,j) (resp, bfin(i,j)). Obviously, every agent273

cannot distinguish E1 and E2, since the difference between E1 and E2 is only the order of the274

port labeling (and the node degrees are fixed). Thus, G cannot be explored since u is not275

visited by any agent in E2.276

Finally, we show that, in E2, η(G) is at most `. To prevent infinite agents, no transient277

edge is necessary; in fact, an infinite agent eventually changes its selected edge if it is kept278

missing, and no two infinite agents wait on the same edge (otherwise, the edge may be279

transient). For finite agents, by construction, afin2i and afin2i+1 for 0 ≤ i ≤ (f − 1)/2 eventually280

wait for the same edge (bfin(2i,2), b
fin
(2i+1,2)) (when f is odd, only af−1 waits for (bfin(f−1,2), b

fin
(f,2))).281

Since f is at most k = 2`, at most ` edges are necessary to prevent finite agents. J282

3.2 Semi Synchronous Exploration by 2η(G) + 1 agents283

In this section, we show that every temporally connected time-varying network G ∈ H can be284

explored by 2η(G) + 1 anonymous agents that do not know the topology. In fact, we propose285

an exploration algorithm for 2η(G) + 1 anonymous agents in an anonymous network, which286

works under the semi-synchronous scheduler with eventual transport.287

The strategy is simple and it is based on the classical rotor router mechanism, which was288

introduced as a deterministic alternative to random walk and was studied in a variety of289

contexts, including static graph exploration (e.g., [3, 29, 35]).290

In rotor router, each node v has a variable written on its whiteboard, pointerv, indicating291

one of its incident ports. When an agent a visits node v, a checks each port in ascending292
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order from the port pointed by pointerv. If a finds some unoccupied port p, a moves to that293

port and sets pointerv to p+ 1. If a finishes to check all the ports and they all are occupied,294

a does nothing.295

Algorithm 1 Computation at node v
1: if not on a port then
2: i← 0
3: p← pointerv

4: while i < δv∧ port p is occupied do
5: p← (p+ 1) mod δv

6: i← i+ 1
7: if i < δv then
8: pointerv ← (p+ 1) mod δv

9: move to port p

We first show that in any round, there exists at least one agent succeeding to move within296

finite time (Lemma 4). We then show that, 2l+ 1 agents achieve perpetual exploration using297

Algorithm 1 (Theorem ).298

I Lemma 4. For any round t, if 2η(G) + 1 agents execute Algorithm 1 in a temporally299

connected temporal graph G, at least one of them eventually moves within finite time after t.300

Proof. By contradiction, assume that there exists a round t such that every agent never301

succeeds to move after t. We consider two cases: (i) there exists a node v containing more302

than δv − 1 agents, and (ii) there does not exist such a node.303

In the first case, every agent on v is activated within finite time after t because of the304

fairness of the scheduler, which means that every port of v is eventually occupied by an agent.305

Since at least one of the edges incident to v is a recurrent edge, say e, the agent sleeping on306

the corresponding port of e eventually succeeds to move because of the eventual transport307

rule. This is a contradiction.308

Also in the second case, every agent on v is activated within finite time after round t309

because of the fairness of the scheduler. Since there is no node containing more agents than310

its degree, every agent eventually stays on a port. When this happens, at least one of the311

agents is sleeping at the port of a recurrent edge since the number of agents is 2η(G) + 1312

and there exist at most 2η(G) ports corresponding to transient edges. This means that, by313

the eventual transport rule, the agent sleeping at the port of a recurrent edge eventually314

succeeds to move after t; a contradiction. J315

Then, the following theorem holds.316

I Theorem 5. Any G ∈ H can be explored by 2η(G) + 1 anonymous agents under the317

semi-synchronous scheduler.318

Proof. Consider Algorithm 1. By definition of transient edges, there exists a time step te319

such that, for any transient edge e, ρ(e, t) = 0 for all t > te. Let tE be maxe∈E te, i.e., a320

time when all the transient edges have ceased to exist and all the edges that appear from321

this moment are recurrent. Let x(t) be the sum of the number of visits over all the nodes322

from the beginning of the execution up to time t.323

We now show that, from an arbitrary initial configuration, 2η(G) + 1 agents following324

Algorithm 1 visit all the nodes infinitely often.325
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First, note that there exists a node, say v, that is visited infinitely often (for t → ∞)326

because x(t) goes to infinity for t→∞) by Lemma 4.327

We now show that every neighbor of v connected by a recurrent edge is also visited328

infinitely often. We prove it by contradiction. Suppose that a neighbor u of v connected by329

a recurrent edge is visited only a finite number of times and let t′ be the last round when u330

is visited. Since v is visited infinitely often and the agents execute Algorithm 1 perpetually,331

some agent a visiting v eventually chooses (v, u) as the edge from which a moves out of332

v after time t′. Recall that (v, u) is a recurrent edge and the agents are activated by the333

eventual transport rule. It follows that a eventually visits u after round t′; a contradiction.334

Since Gr is temporally connected, we can apply inductively the claim (e.g., the neighbors335

of a neighbor of v is also visited infinitely often) to all the nodes, proving the theorem. J336

From Theorems 3 and 5, the following Theorem holds.337

I Theorem 6. Exploration of all temporal graphs in H(`) is possible iff

k ≥ 2`+ 1

Note that, if a graph is temporally connected, then its rigidity σ(G) ≥ n − 1; as a338

consequence, we have:339

I Theorem 7. Every temporally connected temporal graph can be explored by 2(m− n) + 3340

agents.341

4 Exploration of 1-interval connected temporal graphs with bounded342

missing edges343

In this Section, we turn our attention to the class W(`) of 1-interval connected temporal344

graphs where the number of missing edges is bounded in each round by a constant `. In345

other words, at any time t the TVG is connected, and no more than ` edges are missing. We346

establish tight bounds for the exploration of this class of temporal graphs, in Ssync and in347

Fsync.348

4.1 Semi-synchronous model349

We first consider `-bounded, 1-interval connected TVGs operating under a semi-synchronous350

scheduler and we show that there exists TVGs that cannot be explored by 2` agents.351

I Theorem 8. There exist 1-interval connected time-varying graphs G ∈ W(`) that cannot352

be explored by k = 2` anonymous agents. The result holds even if nodes and/or agents have353

distinct IDs and the agents have some topological knowledge (n, m or k).354

Proof. We use the same graph G constructed for the proof of Theorem 3. The construction355

is omitted in this proof.356

We first show that, given any exploration algorithm, say A, using 2` agents, the adversary357

can construct an execution E1 of A, possibily violating the eventual transport rule, in which358

the agents cannot explore G. We then show that it is always possible to convert this execution359

into another execution E2 that does not violate the eventual transport rule, and where the360

agents cannot explore G.361

In execution E1, the adversary puts agent ai on cinfi for 0 ≤ i ≤ k − 1 = 2`− 1 in initial362

configuration of E1. During E1, exactly one agent is activated at each round: ai is activated363
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at round t when t ≡ i(mod k). When the adversary activates ai and ai exists on binf(i,j), the364

adversary deletes (binf(i,j), u) whereas all the other edges are present. Note that the agents and365

the nodes are anonymous and thus either they are all finite (i.e., every agent permanently366

waits for appearance of its selected edge if the edge is permanently missing) or they are all367

infinite (i.e., every agent eventually changes its selected edge if the edge remains missing) in368

E1. If the agents are infinite, since the eventual transport rule is not violated even in E1, the369

adversary can prevent the agents from completing the exploration in E1. If the agents are370

finite, the adversary converts E1 into another execution, say E2, as follows. The adversary371

first puts ai (0 ≤ i ≤ k − 1) on cfini in the initial configuration of E2. Then, the adversary372

changes the assignment of the port labels and the node ID (if any) of cfini , bfin(i,0), bfin(i,1), and,373

bfin(i,2) in the same way explained in the proof of Theorem 3 (also omitted in this proof). In E2,374

the adversary activates each agent in the same order as in E1 and deletes an edge leading to375

u or Si′ for i′ 6= i whenever ai is on bfin(i,j). After some round t from when every agent ai does376

not change its selected edge at bfin(i,2) for 0 ≤ i ≤ 2l, the adversary deletes (bfin(2j,2), b
fin
(2j+1,2))377

for 0 ≤ j ≤ l − 1 at every round. Obviously, every agent cannot distinguish E2 from E1 and378

G cannot be explored since u is not visited by any agent in E2. It is also clear that the379

eventually transport rule is not violated in E2. J380

Clearly, W(`) ⊂ H(`), thus any G ∈ W(`) can be explored by Algorithm 1; that is:381

I Theorem 9. Any G ∈ W(`) can be explored by 2` + 1 anonymous agents under the382

semi-synchronous scheduler.383

From Theorems 8 and 9 it follows that:384

I Theorem 10. Under a semi-syncrhonous scheduler, exploration of all `-bounded 1-interval
connected TVG G is possible iff

k ≥ 2`+ 1

4.2 Fully-synchronous model385

In this section, we show that, if the network size and the number of agents are known, there386

exists a difference between Fsync and Ssync in the exploration of `-boundend 1-interval387

TVGs. In fact, we show that, G ∈ W(`) can be explored if k ≥ 2`, while there exist graphs388

that cannot be explored with 2`− 1 agents.389

4.2.1 Impossibility390

We now consider `-bounded, 1-interval connected TVGs operating under a fully-synchronous391

scheduler and we show that there exists TVGs that cannot be explored by 2` − 1 agents,392

even if the agents know n,m, and k.393

I Theorem 11. There exist 1-interval `-bounded time-varying graphs G ∈ W(`) that cannot394

be explored by k = 2`− 1 anonymous agents in Fsync. The result holds even if the agents395

have some topological knowledge (n, m, k).396

Proof. LetK2` = (V2`, E2`) be the complete graph with 2` nodes where V2` = {v0, v1, . . . , v2`−1}.397

It is well known that the edges of K2` can be colored with 2` − 1 colors, that is, E2`398

can be partitioned into 2` − 1 disjoint independent edge sets (or complete matchings):399

E
(0)
2` , E

(1)
2` , . . . , E

(2`−2)
2` . For example, the following separation leads to disjoint independent400

edge sets: each E(i)
2` has ` edges, (vi, v2`−1), (vi−1, vi+1), (vi−2, vi+2), . . . , (vi−l+1, vi+l−1),401

see Figure 2 (for simplicity, mod 2` is omitted).402
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Figure 2 Example of coloring for the proof of Lemma 11. The bold lines are the edges of E(0)
8 .

The execution where v2l−1 remains unvisited is constructed as follows. For 0 ≤ i ≤ 2`− 1,403

the adversary places each agent ai on vi and for 0 ≤ j ≤ 2`− 1 assigns a label j to the port404

of vi corresponding to e, if e ∈ E(j)
2` . Note that, since agents and nodes are anonymous, all405

the agents select the port with the same label to move at each round. Thus, the adversary406

can prevent any agent from moving by deleting all the edges of E(i)
2` when the agent selects407

port i; as a consequence, none of the agents can move out of its current nodes. This means408

that v2`−1 remains unvisited forever.409

In this execution, the number of missing edges is always ` and the network is obviously410

kept connected. Thus, the theorem holds. J411

4.2.2 Bound on Exploration time412

Let G ∈ W(`). Since W(`) ⊂ H(`), we can clearly execute Algorithm 1 in graph G.413

Interestingly, when executed on G ∈ W(`), it can be shown that the time complexity of414

exploration can be bounded under the fully-synchronous scheduler. More specifically, we415

show that within ∆n(∆ + 1)k(n− 1)k rounds, all nodes of the graph have been visited at416

least once by a team of 2`+ 1 agents.417

We prove the theorem by a sequence of lemmas. First of all, we can easily show that418

2`+ 1 agents executing Algorithm 1 cannot be all prevented from moving at any given round.419

I Lemma 12. If 2`+1 agents activated fully-synchronously execute Algorithm 1 in `-bounded420

1-interval TVGs, at least one of them succeeds to move at every round.421

Proof. There exist two cases as in the proof of Lemma 4: at round t, (i) there exists a node422

v containing more than δv − 1 agents, and (ii) there does not exist such a node.423

In the first case, since there are more than δv − 1 agents at v, every port is occupied424

by one agent at t since every agent is activated. In addition to that, v has at least one425

adjacent edge present at t by the connectivity of the TVG. This implies that at least one426

agent succeeds to move at round t.427

In the second case, each agent occupies one port by assumption and by fully-synchronous428

activation, which means that 2` + 1 ports are occupied. Moreover, at most ` edges are429

missing at each round, which means that at most 2` ports are blocked at each round. It430

follows that at least one agent can move at round t also in this case.431

J432
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To show the upper-bound on time complexity, we introduce the notions of augmented433

configuration and augmented execution.434

In an augmented configuration Caug
t , a new variable visitedv written and read only by435

an external observer, is added to each node v. The initial value of visitedv is 0. When v is436

visited, visitedv is set to 1 by the external observer. An augmented configuration Caug
t is437

defined by configuration Ct and the value of visitedv of every node v at round t. We say that438

an augmented configuration is terminal when visitedv = 1 for any node v.439

An augmented execution Eaug = Caug
0 Caug

1 . . . Caug
r is a sequence of augmented configura-440

tions such that Caug
0 is an initial augmented configuration; Caug

t+1 is obtained from Caug
t by441

2`+ 1 agents executing one round of Algorithm 1 fully-synchronously, with the action of the442

adversary deciding which edges are missing; Caug
r is a unique terminal configuration in Eaug.443

Note that the agents keep executing Algorithm 1 after round r, but augmented configurations444

after round r are ignored in Eaug. For Eaug, the following lemma holds.445

I Lemma 13. In an augmented execution by 2`+1 agents, any two augmented configurations446

are different.447

Proof. First note that Lemma 12 precludes the same two consecutive augmented configura-448

tions Caug
t and Caug

t+1 in an augmented execution where no agents move between Caug
t and449

Caug
t+1. Suppose that there exist two augmented configurations Caug

t and Caug
t′ for t < t′ in an450

augmented execution Eaug. Let Eaugt,t′ = Caug
t Caug

t+1 · · ·C
aug
t′−1 be a subsequence of Eaug. In this451

case, the adversary can create an infinite augmented execution from Eaug by repeating Eaugt,t′ ,452

which means that the adversary can create an (augmented) execution where 2`+ 1 agents453

cannot complete the exploration forever. This contradicts Theorem 5. Thus, the lemma454

holds. J455

We are now ready to show an upper bound on the exploration time of Algorithm 1, which456

is obtained by calculating the maximum length among all the augmented executions.457

I Lemma 14. The length of any possible augmented execution by k = 2` + 1 agents is458

bounded by ∆n(∆ + 1)k(n− 1)k.459

Proof. Let α be the maximum length among all the possible augmented executions. By460

Lemma 13, α is bounded by the number of possible augmented configurations in an execution.461

The number of possible configurations on a fixed node set V ′ ⊆ V is bounded by462

∆|V ′|(|V ′|(∆ + 1))k, which corresponds to all the combinations of the directions of pointers463

(i.e., ∆|V ′|) and all of the the agents’ locations (i.e., (|V ′|(∆+1))k). Notice that only pointerv464

of each node v is used as a variable in Algorithm 1. Since the number of visited nodes is465

not decreasing during the exploration, the exploration time is smaller than or equal to the466

sum of ∆|V ′|(|V ′|(∆ + 1))k for 1 ≤ |V ′| ≤ n − 1, i.e., α ≤ Σn−1
|V ′|=1∆|V ′|(|V ′|(∆ + 1))k ≤467

∆n(∆ + 1)k(n− 1)k rounds. J468

It then follows that:469

I Theorem 15. Under a fully-synchronous scheduler, Algorithm 1 executed by k = 2`+ 1470

anonymous agents explores any `-bounded 1-interval connected TVG within ∆n(∆+1)k(n−1)k
471

rounds.472

Note that, as a consequence, we obtain a terminating exploration algorithm for `-bouned473

1-interval connected TVGs.474

I Theorem 16. With knowledge of n and k, exploration with termination of an arbitrary `-475

bounded 1-interval connected temporal graphW(`) can be achieved in ∆n(∆+1)2`+1(n−1)2`+1
476

rounds by 2`+ 1 agents under the fully synchronous scheduler.477
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4.2.3 Exploration by 2` agents478

The result of the previous section can be used to obtain a perpetual exploration algorithm of479

`-bounded 1-interval connected graphs by 2` agents (which know n and k). The solution480

(Algorithm 2 below) is obtained by applying Algorithm 1 bounding the waiting time of an481

agent blocked on a missing edge.482

In fact, while an agent keeps waiting for a missing edge forever in Algorithm 1, in483

Algorithm 2, an agent waits for a missing edge up to kT rounds where T is calculated on the484

basis of the results of Section 4.2.2.485

Apart from the waiting time, the rest of the algorithm is the same as in Algorithm 1:486

each node has pointerv pointing to a port. When a visits v, a checks each port in ascending487

order from the port pointed by pointerv. If a finds some unoccupied port p, a moves to the488

port and sets pointerv to p+ 1. If a finishes to check all the ports and they all are occupied,489

a does nothing.490

Variable Waiting of an agent represents the elapsed time since the last round when the491

agent moved to the port.492

Algorithm 2 Computation at node v
1: if on a port then
2: Waiting←Waiting + 1
3: if Waiting > kT then
4: exit the current port
5: if not on a port then
6: Waiting← 0
7: i← 0
8: p← pointerv

9: while i < δv∧ port p is occupied do
10: p← (p+ 1) mod δv

11: i← i+ 1
12: if i < δv then
13: pointerv ← (p+ 1) mod δv

14: move to the port p

I Lemma 17. Let 2` agents execute Algorithm 2. If an agent waits at u for a missing edge493

e = (u, v) for kT rounds, during this time either another agent starts to wait for e at v, or494

the other 2`− 1 agents complete the exploration.495

Proof. Suppose that an agent a at u starts to wait for a missing edge (u, v) at round t and496

(u, v) is kept missing for the next kT rounds (including t).497

We first show that there exist T successive rounds in [t, t + kT ) during which all the498

agents but a keep waiting without satisfying predicate Waiting > kT at its chosen edge, if it499

remains missing.500

We show the claim by contradiction. We assume that in any interval of T successive501

rounds in [t, t+ kT ), there is an agent that satisfies Waiting > kT .502

By assumption, at least k agents other than a must satisfy Waiting > kT , since kT/T ≥ k.503

This means that at least one agent (different from a) satisfies the predicate twice since the504

number of the agents (excluding a) is k−1. However, once an agent satisfies Waiting > kT at505

round t′ ∈ [t, t+ kT ), the agent never satisfies the predicate in [t, t+ kT ) since the length of506

the interval is kT . This is a contradiction. Thus, there exist T successive rounds in [t, t+ kT )507

OPODIS 2019



23:14 Tight Bounds on Distributed Exploration of Temporal Graphs

during which all the agents (except for a) keep waiting their chosen edge without satisfying508

Waiting > kT if the edge is kept missing.509

Now, we show the lemma, i.e., show that another agent at v starts to wait for e = (u, v)510

or the exploration is completed. Suppose that no agent at v starts to wait for e in these T511

rounds. Since e is missing during these T rounds, during that time the network (without512

e) can be considered as a (` − 1)-bounded 1-interval connected TVG. By Theorem 15,513

2(l − 1) + 1 = 2`− 1 agents complete the exploration of the (`− 1)-bounded TVGs in these514

T rounds. This means that the 2`− 1 agents other than a complete the exploration of the515

network without e during those T rounds, because none of them starts to wait for e at v516

during that time by assumption. Thus, the lemma holds. J517

I Theorem 18. Any `-bounded 1-interval connected temporal graph G ∈ W(`) can be explored518

by k = 2` anonymous agents with knowledge of n and k, under a fully-synchronous scheduler.519

Proof. The proof follows the same lines of Theorem 5. We first show that, executing520

Algorithm 2 , there exists at least one node v which is visited infinitely often, and we then521

show that all the nodes are visited infinitely often. Let x(t) be the sum of the number of522

visits over all the node from the beginning of the execution up to time t and V (t)
A be a node523

set such that there exists at least one agent on every w ∈ V (t)
A at round t.524

We show that x(t) goes to infinity (for t→∞), which leads to the existence of a node525

v visited infinitely often. We consider the configuration at round t and show that after t526

rounds, x(t) eventually increases. Two cases are considered: Case 1) there exists a node527

v̂ ∈ V (t)
A with δv or more agents and Case 2) there does not exist such a node.528

Case 1) Suppose that there exists a node v̂ with δv̂ or more agents at round t. Note that529

at least one of the edges incident to v̂ exists at round t because the network is 1-interval530

connected. In this case, at least one of the agents on v̂ succeeds to move because all the531

ports of v̂ are occupied. Therefore, x(t) increases.532

Case 2) Suppose that there does not exist a node v̂ with δv̂ or more agents. We show533

that x(t) increases within finite rounds from t by contradiction. We assume that no agent534

moves out of its current node after t. Clearly, there exists a node ṽ ∈ V (t)
A which has a535

neighbor ũ with no agent (otherwise, the exploration would have been completed). An agent536

changes its port if it is blocked by the same missing edge for kT rounds by Algorithm 2;537

an agent ã on ṽ eventually chooses (ṽ, ũ) to move from ṽ. At this round, the adversary538

must prevent ã from moving by deleting (ṽ, ũ). This means that the adversary must prevent539

2(`− 1) + 1 = 2`− 1 agents from moving by deleting `− 1 edges, which is impossible. This540

leads to a contradiction. Therefore, x(t) increases and goes to infinity for t→∞, and thus a541

node (say v) visited infinitely often exists.542

We now show that all the neighbors of v are also visited by agents infinitely often. We543

prove it by contradiction. Suppose that a neighbor u of v is visited only a finite number of544

times and let t′ be the last round when u is visited. Since v is visited infinitely often and the545

agents execute Algorithm 2, some agent a visiting v eventually chooses (v, u) as the edge546

from which a moves after t′. If (v, u) appears by the kT -th round since a chose it, a visits u547

as soon as (v, u) appears. Otherwise, another agent visits u by Lemma 17. It follows that u548

is eventually visited after t′ rounds, which is a contradiction.549

By the connectivity assumption, we can apply inductively the claim (e.g., the neighbors550

of a neighbor of v are also visited infinitely often) to all the nodes, proving the theorem. J551

From Theorems 11 and 18, we have:552

I Theorem 19. Under the fully-synchronous scheduler, with knowledge of n and k, the553

exploration of all `-bounded 1-interval connected TVGs is possible iff k ≥ 2`.554
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5 Conclusion555

In this paper, we considered perpetual exploration of temporal graphs with arbitrary topology,556

focusing on the number of agents that are necessary and sufficient to perform the task. We557

considered two common dynamic models: temporally connected networks, and 1-interval558

connected (or always connected) networks with a bounded number of missing edges at559

each round. We derived tight bounds for both models under fully synchronous and semi-560

synchronous settings.561

This is the first study on distributed exploration of temporal graphs with arbitrary562

topology and it has considered only temporally connected and 1-interval connected networks:563

the investigation of other connectivity classes of temporal graphs with arbitrary topology is564

the main research direction left open.565

In this paper the focus was exclusively on feasibility of exploration; clearly, an important566

avenue of investigation is also the design of efficent solutions, whenever they exist.567
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