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Abstract 

We describe and analyze the surprising evolution of an overflow error which has occurred 
during the simulation of a class of continuous complex systems called ‘fuzzy cellular automata’. 
This error not only perturbs the global behavior of the system but it generates its own interesting 
dynamics; in fact, it propagates over the original evolution as a binary cellular automaton in a 
structured, fractal-like way, regardless of the underlying system evolution. The analysis of the 
errors behavior suggests interesting observations about the difficulty of detecting errors and 
verifying results using computer simulations. 0 1997 Elsevier Science B.V. 
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1. Introduction 

Cellular automata (CA) have been introduced by Von Neumann and Ulam as models 
of self-organizing and self-reproducing behaviors [8]. Their versatility and simplicity 
have permitted their use in many disciplines, ranging from ecology and biology to 

theoretical computer science [5,7,9]. 
CA are discrete-time discrete-space models: the local space of each component is 

discrete and finite, the local function is defined by a look-up table. The global evolution 

is synchronous: at each step, all cells update their value according to their local 
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transition table and the values of their direct neighbors. Binary CA are such that the 
local state space of all cells is {O,ll. 

A continuous version of CA has been defined in [1,2] to classify complex CA 
behaviors, and it has been used to simulate and to study the interaction between 
knowledge and uncertainty, the influence of noise in distributed information, and the 
propagation of diseases in healthy organisms (e.g. [3,4]). This model is called fuzzy CA 
since its local transition function is obtained by ‘fuzzifying’ the local rule and states of a 
classical binary CA. 

Our interest in using this model was to observe how continuous values interact with 
binary ones. For example, in the context of evolutionary computing, this interaction can 
be interpreted as the effect of diseased cells in a healthy body: some organisms are 
self-healing, others are completely destroyed, and some others evolve symbiotically with 
the disease [3,4]. 

To study those behaviors, we have observed the space-time diagram of fuzzy CA, 
associating different colours to different states. At a certain time, an overflow error 
occurred in the calculation of a cell state. The presence of an error was visible in the 
evolution since one cell assumed a colour different from all the other cells, and, from 
that moment on, it fastly propagated forming very interesting and peculiar patterns. In 
fact, the error propagated with the same structure as a binary CA, regardless of and 
destroying the underlying system evolution. 

The error and its evolution are fully reproducible, and as shown in this paper, its 
behavior can be fully characterized. The error appears and behaves in a CA-like way, 
giving rise to a rich fractal-like dynamics. 

The paper is organized as follows. in Section 2, we present the model we use; in 
Section 3, we informally describe the phenomenon and illustrate it with some figures; in 
Section 4, we analyze the propagation structure of errors; in Section 5, we give an 
evolutionary interpretation of the analysis; and finally, in Section 6, we conclude by 
discussing the relevance of the reported phenomenon. 

2. Model 

A fuzzy CA is obtained by ‘fuzzification’ of the local evolution rule of a classical 
binary CA. An elementary fuzzy CA is thus a linear array of cells which evolves in 
time. Each cell of the array assumes a state in [O,l] and changes its state according to a 
local evolution function on its state and the states of its two neighbours. The global 

evolution results from the synchronous application of the local rule to all cells of the 
array. The model can thus be seen as a particular case of Coupled Map Lattice [61. 

The local rule of a binary CA is given by 8 binary tuples, corresponding to the 8 
possible local configurations a cell can detect in its direct neighborhood: 

(000,001,010,011,100,101,110,111)-+ ,,...,rs). 

Each triplet represents a local configuration of the left neighbour, the cell itself, and the 
right neighbour. In general, we convert the binary representation (I~,. . . r8) to the 
decimal one; the rule is then called Ci, ,,s2i- ’ ri. 
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Example 1. Let us consider rule 14 = 2 + 4 + 8: 

(000,001,010,011,100,101,110,111) +(0,1,1,1,0,0,0,0). 

The local rule is canonically expressed as a disjunctive normal form: 

f(x,,x*,+) = VilriZ, A ._ x+3 J-1.3 J 

where dij is the jth digit, from left to right, of the binary expression of i, and x0 
(respectively x’) stands for -I x (respectively x). 

Example 2. The canonical expression of rule 14 is: 

f*4(-v*J3) = (1 Xl * 7 xg A x3) v ( -I x1 A x.2 A 1 x3) v ( 1 x, A x2 A x3). 

The fuuiJication process works as follows: we replace (a V b) by (a + b), (a A b) by 
(ab), and ( 7 a) by (1 - a). The local rule becomes a real function simulating the 
original function on {0,1}3: 

f(xl’x2’x3) = c ri n l(xj*di,j) 
j=1:8 j=1:3 

where I(a,b) = 1 -a - b + 2ab. 

Example 3. Again, in the case of rule 14, simplifying the expression, we have: 

The function 1 correctly implements the previous logical exponentiation: I(a,O) = 1 - a 

and I(a,l> = a. However, we will see that its expression strongly influences the error 
propagation structure. 

3. Experiment 

We fix a CA rule that we fuzzify to obtain a fuzzy CA, the lattice of which contains 
1500 cells. The initial configuration is randomly chosen: cells l-700 and 801-1500 are 
set to binary values; cells 701-800 take real values in [O,l]. We observe the evolution of 
the 500 central cells during 500 steps, which makes the boundary condition unimportant. 
We now consider what happens when, during the global evolution, an overflow error 
occurs locally, due to some faulty computation. 

A single error propagates in a structured fractal-like way, and the introduction of 
more errors leads to the formation of complex patterns, following the natural evolution 
of a binary CA. These strong errors let the system change its dynamics, as genetic 
mutations in organisms. The original system is progressively destroyed, giving its place 
to the new evolving system. Let us illustrate the phenomenon with some figures. Each 
one of them shows the evolution of a one-dimensional fuzzy CA in which the vertical 
axis represents time going downwards, and the horizontal axis represents space. 

* The first example in Fig. 1 shows the effect of one error on the global evolution of 
rule 184. The error propagates in a structured way, developing fractal-like patterns. 
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Fig. I. Effect of one error in the evolution of rule 184 

Moreover, the error region is perfectly symmetric, whatever the local rule is. 

* In Fig. 2, we have four occurrences of the error at different times in the evolution of 

rule 105. Before any interaction happens, the evolution is as structured as in the first 
case. When the error regions collapse, the structure progressively disappears, though 

the underlying order of the error is preserved. Note the error region very resembles 

the normal evolution (see Section 4). 
* In Fig. 3, we observe the propagation of two consecutive blocks of random errors in 

the evolution of rule 18, and their interaction; each block contains 50 errors. At the 
beginning, there is no apparent structure but some small patterns are generated as the 
system proceeds, as if the order was present under the original disorder. 

Note that the pattern generated by the interaction of only four independent errors 

(Fig. 2) is more complex than the one generated by the interaction of one hundred errors 

grouped into two segments (Fig. 3). 
In each situation, the errors cover more and more cells, eventually invading the whole 

lattice, in a predatory way. 

4. Structural analysis: CA-like behavior 

The occurring error does not come from nowhere, it results from an error in the 
object code of a simulation program, from the treatment of overflow errors by the 
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Fig. 2. Effect of separate errors in the evolution of rule 105. 

compiler, and from the way the local rule is implemented. In this case, the function I 

presented hereabove (Section 2) plays a very important role. 

The error (let us call it E) is fully reproducible. By simulation, it is easy to verify 
that its inverse exists, -E, and -(-El = E. Moreover, its effect on simple computa- 
tions is the following: Vx E [O,l], y E [0, l] lJ (E), 

E(-E) = -E, Ex=E, +E_+y= +E. 

Then we note that its effect on I is a kind of negation: 1( f E, . > = T E. 
The local function of fuzzy CA is implemented as follows: 

If at least one argument is erroneous, the second argument of 1 does not matter anymore; 
FIj,,l(xj,dij) does not depend on i and is erroneous for all i. Since Vx E [O,l], 
Ex = E, the coefficients ri can be removed, and by the third observation, i.e. E f y = E, 
the first term of Cy= , Ilj=, I( Xjt * ) determines the result: 
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Fig. 3. Effect of two groups of errors in the evolution of rule 18. 

Remark that the ordering of the arguments does not influence the result; 

determines the propagation direction of the error: in this sense, 

it 

f(-,E;) = +E#f(.;,E) = +E. 

Using these facts, we are able to compute the effect of E on the local functior 

model; since only additions and multiplications are required, we can find out tl 
which describe the propagation of the error. 

IO 

ne 
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arguments of the local function. In Fig. 4, the evolution starts at the top with one er 
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Fig. 4. Space-time propagation structure of errors. 



P. Flocchini et al. / Parallel Computing 23 (1997) 1673-1682 1679 

Different shades of gray correspond to different kinds of configurations, from no errors 
(NNN) to three &AA). In the following, x and y are normal, viz. healthy, values of the 
interval [O,l], and ei, e2, es E A = {E, - E} are abnormal, viz. erroneous, values. 

Case NNN. If all arguments are normal, the cell behaves as prescribed by the normal (or 
healthy) local rule. 

Case N*A. In case of one error and two normal arguments, we have an inverter: 

f(e,,.~y) = -q. 

The rule table describing this behavior is the following, independently of the location of 
the error in the neighborhood: 

If the arguments are disposed as NNA, a left shift effect is added. A right shift comes 
from the symmetric disposition ANN. In case of a single error introduced in the lattice, 
the configuration NAN is observed once, and it inverts the error without any shift. When 
several errors are introduced. this last situation never occurs. 

Case NA*. If we have two errors and one normal argument, the result is essentially a 
multiplication of signs: 

f(e,,er,x) =e, .q. 

Again, the location of the error in the neighborhood do not influence the behavior. The 
local rule table is the following: 
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Interpreting E as 0 and -E as 1, this table describes an exclusive disjunction. In case of 

NAA, we have a left shift, and a right shift in the symmetric case AAN. 

Case A3. When all arguments are erroneous, which happens in the central part of the 

error pattern, the local function is slightly more complex: 

f(e,,q,e,) = -e, *e2.e3. 

Its rule table reads: 

Nbd f 

E E E -E 

E E-E E 

E-E E E 

E-E-E -E 

-E E E E 

-E E-E -E 

-E-E E -E 

-E-E -E E 

Interpreting E as a 0 (respectively 1) and -E as a 1 (respectively 01, the behavior of the 

error between the two borders is described by rule 105. 

In summary, the error follows three different types of CA-rules. At the external 
border between the error and the ‘normal’ evolution of the fuzzy CA, the behavior of the 
error is described by a precise CA-rule for the configurations of the form (x, y, f E) and 

( + E, y,z), and by another CA-rule for the configurations of the form (x, + E, + E) and 
(+ E, f E, z), where x, y, z E [O,l]; finally, inside the error region, the error propagates 

following the local rule of an elementary binary CA with states E and -E. We can thus 

explain how these nicely structured patterns can arise from the propagation of overflow 
errors. The evolution law of the error is increasingly richer from outside to inside the 
error region. We have a shifting inverter on {E, - Ej, a shifting exclusive disjunction on 
{E,- E)2, and a CA rule 105 on {E,- E13. 

Remark. The symmetric pattern created by the error in Fig. 1 cannot be generated by a 

classical CA rule 105 alone. The boundaries imposed by the external behaviors N2A and 
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Fig. 5. One-dimensional organism growing in another organism. 

NA2 play a very important role in the resulting global regularity, as they strongly destroy 
and replace the original underlying dynamics. 

More precisely, suppose (x0, . . . , x,,) is a given initial configuration of a CA and f is 
the local rule; the dynamics of the evolution of the overflow error can be seen as a 
binary CA with the following border conditions: 

f(X_2,X_~J~) = -x09 f(%%l+1J,+2) = -xn, 

f(x_,,x,,x,)=&J@x,, KG-,J*7%+*) =x,-t @x,7 

where 8 is the binary exclusive-or. 

5. Evolutionary interpretation 

Once the error occurs, it behaves like a growing body enclosed in a destructive 
expanding membrane (see Fig. 5). 

This membrane has two layers. The external membrane replaces one normal cell at 
each step by an error, alternating in time positive and negative values. The infernal 
membrane follows the external one and computes its next state using an exclusive 
disjunction between itself and the previous external membrane state. 

Inside the developing organism, the evolution is very close to the behavior of a 
classical binary CA, computing a next state according to the value of a direct 
neighborhood. 

The structure present in Fig. 1 depends on the combination of these factors, plus the 
fact that it originates from a single error. As shown in the other figures, the structure 
resulting from a collapse of two membranes is richer and apparently less ordered. 
However, the order progressively appears when the growing organism has enough time 
to impose its own structure onto the underlying structure. 

The interaction between error and fuzzy CA can be easily summarized in evolution- 
ary terms. A complex organism A (the fuzzy CA) is penetrated by a strongly destructive 
organism B (the error), which develops itself inside A, and uses an impermeable 
membrane to attack A’s body and propagate. The behaviors of A and B are different. 
Their evolutions are independent. Eventually, A totally disappears, leaving B alive in its 
body. This behavior is typical of a predator-prey interaction. 

6. Concluding remark on simulation 

Simulation is very useful to understand the evolution of complex systems. It serves as 
intuitive guide to more formal results. Very often, experiments are the base of statistical 
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results. It is thus very important to know the influence errors can have on such results. 
In this paper, we have described a surprising phenomenon illustrating the way 

computing errors can behave in the evolution of complex systems like coupled map 
lattices (CML) and, more specifically, fuzzy CA. We have observed that a single error 
not only perturbs the global behavior of the system, which weakens the consequences of 
simulation results, but it generates a very interesting dynamics by itself. If the error is 
not detected, its patterns can be mistaken for the evolution of a classical CA. 

One error propagates in a structured fractal-like way, and the introduction of more 
errors leads to the formation of complex patterns, following the natural evolution of a 
binary CA. 
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