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Abstract

In this paper we consider a dangerous process located
at a node of a network (called Black Hole ) and a team of
mobile agents deployed to locate that node. The nature of
the danger is such that when an agent enters the dangerous
node, it is trapped there leaving no trace of its destruction.
The goal is to deploy as few agents as possible and to locate
the black hole in as few moves as possible.

We present a simple algorithm that works on any topol-
ogy (a-priori known by the agents). Our algorithm, based
on the pre-computation of an open vertex cover by cycles
of the network, uses the optimal number of agents (two); its
cost (number of moves) depends on the choice of the cover
and it is optimal for several classes of networks.

Keywords: Mobile Agents, Malicious Host, Undetectable
Failure, Black Hole Search
Technical Area: Algorithms and Theory

1 Introduction

1.1 The Problem

In networked environments that supports mobile agents,
security is an important issue of difficult solution (e.g., see
[1, 8, 11, 14, 16]). We consider a particular security prob-
lem known as host attacks; that is, the presence in a site
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of a stationary process that harm incoming agents (e.g., see
[7, 9, 10, 13, 15, 18]). A first step in solving such a prob-
lem should be to determine and report the location of the
harmful process, so to avoid the node in the future, or to
neutralize the process restoring a safe environment. The
task to identify the harmful host is clearly dangerous for the
searching agents and, depending on the nature of the harm,
it might be impossible to perform.

In this paper, we consider a highly harmful process that
disposes of visiting agents upon their arrival, leaving no ob-
servable trace of such a destruction. Due to its nature, the
site where such a process is located is called a black hole
(e.g., [2, 3, 5, 4, 6, 12]).

The goal is to deploy the team of agents to locate the
black hole (black hole location problem BLACK HOLE

SEARCH). The agents start from the same node (the home-
base), have limited memory, and move asynchronously
from node to neighbouring node; each agent has a labeled
map of the graph with the indication of the homebase. Each
network site has a limited amount of storage, called white-
board that the agents use to communicate to each other. The
black hole location problem is solved if at least one agent
survives, and all surviving agents know the location of the
black hole.

The performance of a solution is measured in terms of
number of agents deployed (the size of the team) and num-
ber of moves performed by the agents (the cost).

It is known that, with a map of the network, a team of
two agents suffice, and the number of moves is in the worst
case O(n log n) [4], where n is the number of nodes. Such
a cost is optimal in the sense that there exist topologies



where Ω(n log n) moves are necessary (e.g., the ring [5]),
but might be unnecessarily high for other topologies. For
instance, there are networks in which two agents can locate
the black hole with just Θ(n) moves [3].

This leads to the problem of designing a solution strat-
egy enabling two agents to locate a black hole with at most
O(n log n) moves in any network, and in O(n) moves in
many networks.

A step in this direction is the recent result of [6] showing
how two agents with a map can locate the black hole per-
forming O(n + d log d) moves (where d is the diameter of
the graph), yielding an O(n) bound for most interconnec-
tion networks.

The main drawback of this result is that the approach
used is extremely complex. Furthermore, because its cost
depends on the value of d, it fails to achieve an O(n) cost in
networks with Ω(n) diameter, requiring instead O(n log n)
moves. However, there exist networks with Ω(n) diameter
in which the black hole might be found using O(n) moves
(a simple example is a 2× n

2
mesh).

1.2 Our Result

In this paper we consider an asynchronous environment
and we present a simple algorithm that works on an ar-
bitrary network, provided that the agents have a map of
the network. Our algorithm employs the optimal number
of agents (two), and the number of moves depends on the
topology of the network.

Let C be a set of simple cycles such that each vertex of
G is covered by a cycle from C and the connectivity graph
of these cycles (where each cycle is represented by a vertex,
and two vertices are connected if the corresponding cycles
share an edge) is connected. Such a set of cycle will be
formally defined later and is called Open Vertex Cover by
cycles. The algorithm is based on the pre-computation of
such an open vertex cover by cycles of a graph. The idea is
to explore the graph G by exploring the cycles of C. As we
will see, if an agent becomes stuck on an edge e (because
either the transmission delay on e is very high, or it leads to
the BH), the other agent will be able to bypass it, using the
cycle containing e, and continue the exploration.
Our main result is:

Theorem 1.1. (Main Result)
Let G be a 2-connected graph and let C =
{C1, C2, . . . , Ck} be an open vertex cover by cycles
of G. Then, it is possible for 2 agents to locate the black
hole in G using O(

∑k

i=1
|Ci| log |Ci|) moves.

On a wide class of networks, such a cover can be pre-
computed so to obtain Θ(n) cost for locating the black hole.

This class includes all Abelian Cayley graphs (e.g., hy-
percubes, (multi-dimensional) tori, etc,) of degree three and

more, as well as many non-Abelian cube graphs (e.g., CCC,
butterfly, wrapped-butterfly networks, etc.). For some of
these networks, this is the only algorithm achieving such a
bound.

For other graphs, it produces topology-sensitive bounds
that are, in most cases the best available one; e.g., in 2× n

2

mesh.
When compared to existing approaches, our new ap-

proach has the additional advantage, to be quite robust with
respect to network changes: a local change in the network
changes only the cycles involved, and a new cover could be
easily constructed in such a case.

1.3 Related Work

The BLACK HOLE SEARCH problem has been investi-
gated in different contexts. In asynchronous settings, it has
been studied when the network is an anonymous ring, char-
acterizing the limits and presenting optimal solutions [5];
among other things, it has been shown that the black hole
can be located with 2 agents with Θ(n log n) moves. In
[4] the problem has been considered when the network is
arbitrary; optimal solutions have been given under different
assumptions on the level of topological knowledge available
to the agents. In particular, it has been shown that, for any
known arbitrary network, there exists an algorithm that em-
ploys 2 agents with Θ(n log n) moves, such a cost is opti-
mal in the sense that there exist topologies where Ω(n log n)
moves are necessary (e.g., the ring). In [3], a different algo-
rithm has been designed that achieves an optimal number of
moves (Θ(n)) for many interconnection networks. Finally,
the recent result of [6] achieves a bound that depends on the
topology; in fact the agents perform O(n + d log d) moves
(where d is the diameter of the graph) yielding an optimal
bound for most interconnection networks.

The BLACK HOLE SEARCH problem has been studied
also in synchronous settings, where the time for an agent to
traverse a link is assumed to be unitary; in this case, tight
bounds have been established for some classes of trees [2].
In the case of general networks, approximation algorithms
have been described in [2] and subsequently improved [12].

2 Model and Preliminaries

2.1 Model

Let G = (V,E) be a simple 2-(vertex)connected graph;
let n = |V | be the size of G, and let E(x) denote the links
incident on x ∈ V , d(x) = |E(x)| denote the degree of x,
and ∆ denote the maximum degree in G. If (x, y) ∈ E then
x and y are said to be neighbours.

Two distinct mobile agents a and b are operating in G.
The agents can move from node to neighbouring node in G,
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have computing capabilities and limited computational stor-
age∗, and obey the same set of behavioral rules (the “proto-
col”). The agents are asynchronous in the sense that every
action they perform (computing, moving, etc) takes a finite
but otherwise unpredictable amount of time. Both agents
start at the same node h, called home base. The agents know
the topology they are operating in, i.e. each agent has in its
local memory a labeled map of the graph, with the home
base marked on the map.

As in most mobile agents platforms, each node has avail-
able a limited amount of storage, called whiteboard. Agents
communicate by reading from and writing on the white-
boards; access to a whiteboard is gained fairly in mutual
exclusion.

A black hole (shortly BH) is a node where a stationary
process that destroys any agent arriving at that node resides;
no observable trace of such a destruction is evident to the
other agents. The location of the black hole is unknown to
the agents, however the agents know that there is one in the
network. The BLACK HOLE SEARCH (shortly BHS) prob-
lem is to find the location of the black hole. More precisely,
BHS is solved if at least one agent survives, and all sur-
viving agents know the location of the BH (by having its
location marked on their maps).

The complexity measure we are interested in is the cost
of the solution, that is the total number of moves performed
by the agents in the worst case.

2.2 Basic Tools

At any time during the search for the black hole, the ports
(corresponding to the incident links) of a node can be clas-
sified as unexplored – no agent has been sent/received via
this port, explored – an agent has been received via this port,
or dangerous – an agent has been sent through this port, but
no agent has been received from it. Clearly, an explored
port does not lead to a black hole; on the other hand, both
unexplored and dangerous ports might lead to it.

To minimize the number of agents lost, we employ a
technique called Cautious walk (from [5]). The main idea is
to avoid sending an agent over a dangerous link, while still
achieving progress. This is accomplished using the follow-
ing two rules: (1) No agent enters a dangerous link and (2)
whenever an agent a leaves a node u through an unexplored
port p (transforming it into dangerous), upon its arrival to
node v, and before proceeding somewhere else, a returns to
u (transforming that port into explored).

Similarly to the classification adopted for the ports, we
classify nodes as follows: at the beginning, all nodes except
the home base are unexplored; the first time a node is visited
by an agent, it becomes explored. Note that, by definition,

∗the agents need to store the map of the graph, other then that O(1)
counters of O(log n) bits suffice

the BH never becomes explored. Explored nodes and edges
are considered safe.

The following lemma summarizes some basic limitations
on the black hole search problem:

Observation 2.1. [4, 5]
1. It is not possible to verify whether there is a BH in the
system or not (due to asynchrony, a very slow node cannot
be distinguished from the BH).
2. Single agent is not sufficient to locate the BH (it may
enter the BH in its first move).
3. It is impossible to determine the location of the black
hole if the size of G is not known (two slow links might lead
to the BH, or to a whole new part of the graph).
4. If G has a cut vertex different from the home base, then
it is impossible to determine the location of the BH (cannot
distinguish between the cut vertex being very slow, and the
BH being located in the cut vertex).

As a consequence, we assume that the network is 2-
connected, that there are at least 2 agents and that the exis-
tence of the black hole is common knowledge to the agents.
Recall that we also assume that the agents have full map of
the network.

2.3 Covers and Cycles

We now introduce some definitions and properties that
will be needed later.

Definition 2.2. Cycle Graph
Let G = (V,E) be a 2-connected graph and let C =
{C1, C2, . . . , Ck} be a set of simple cycles in G. We will
call the Cycle Graph of C in G the graph C(G; C) = (Ṽ , Ẽ)
defined as follows:

• Ṽ = {ṽ1, ṽ2, . . . , ṽk} and

• (ṽi, ṽj) ∈ Ẽ if and only if Ci and Cj have a common
edge.

In other words, the cycle graph of a set of cycles in a
given graph captures the connectivity (and thus the reach-
ability) of the cycles in the original graph: Two cycles are
considered connected in the cycle graph if they share an
edge, while sharing a node does not make them connected
(the motivation comes from the fact that a BH in the shared
node can disconnect the cycles, but with a shared edge there
will always be a way to reach the neighbouring cycle). Cy-
cle graph is in fact well known concept (introduced in [17]),
mostly studied in planar graphs where it is closely related to
the dual graph.

The following definition describes a particular set of cy-
cles of a graph (Open Vertex Cover by Cycles) that will be
heavily used in our algorithm:
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Figure 1. The ordering of neighbouring ver-
tices in the cycle graph of G according to the
cycle positions in G

Definition 2.3. Open Vertex Cover
Let G = (V,E) be a 2-connected graph and let C =
{C1, C2, . . . , Ck} be a set of simple cycles in G. We say
that C is an Open Vertex Cover by Cycles of G (OVC for
short) if and only if:

1. ∀v ∈ V : v ∈
⋃k

i=1
Ci (each vertex of G is covered by

some cycle from C)

2. The cycle graph C(G; C) is connected.

Interestingly, an OVC can be constructed in every 2-
connected graph:

Lemma 2.4. Every 2-connected graph has an OVC.

Proof. It follows from the fact that every 2-connected graph
has an open ear decomposition E = {E1, E2, . . . , El} [19].
We can obtain C from E by completing each ear into a cycle.
The connectivity of C(G; C) follows from the fact that the
ear decomposition is open.

The basic idea of our algorithm is to explore G by ex-
ploring the cycles of its OVC, guided by depth-first-traversal
(DFT) order of C(G; C). For efficiency reasons, not any
DFT of C(G; C) will do. In particular, we want the neigh-
bours of a vertex vi ∈ C(G; C) to be considered in the same
order their corresponding cycles appear when traversing the
cycle Ci (see Figure 1). Note that this ordering depends
both on the direction of the traversal of Ci and on the start-
ing node (we will call it entry node) eni.

A DFT for a given graph can be unambiguously deter-
mined by specifying (1) the starting node and (2) ordering
of neighbours for each node. This leads to the following
definition:

en6

homebase=en1

en3en5

en2

en4

C6

C4C1

C2
C5

C3

Figure 2. Example of Cycle-DFT Sequence for
graph G and C = {C1, C2, C3, C4, C5, C6}.
The cycle directions are shown, as well
as the resulting entry nodes for each cy-
cle. The resulting Cycle-DFT Sequence: L =
{1, 2, 5, 3, 6, 3, 4}.

Definition 2.5. We say that a sequence of integers L =
{u1, u2, . . . , us} is a Cycle-DFT Sequence for G and OVC
C = {C1, C2, . . . , Ck} if the following conditions are satis-
fied:

• Cu1
contains the home base

• L corresponds to a DFT of C(G; C) with the starting
node vu1

and the following ordering of neighbours:

– For each cycle Ci ∈ C choose arbitrary, but fixed
direction to be considered clockwise.

– The neighbours of vi are ordered in the order
their corresponding cycles are encountered in a
clockwise traversal of Ci, starting from the entry
node eni of Ci defined as follows:

∗ enu1
is the home base

∗ Let l be the first occurrence of ul in L (cor-
responding to visiting vul

for the first time
in the DFT of C(G; C)), then enul

is the
first node of Cul−1

∩Cul
encountered in the

clockwise traversal of Cul−1
starting from

enul−1
.

The sequence L can be constructed for any 2-connected
graph G and its OVC C simply by performing the DFT ac-
cording to the definition. See Figure 2 for an example of a
Cycle-DFT Sequence for a given graph.
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Figure 3. The cycle graph corresponding to
the graph from Figure 2.

3 Algorithm EXPLORE

3.1 High Level Description

Let C(G; C) be the cycle graph corresponding to an OVC
C of graph G and let L = {u1, u2, . . . , us} be a Cycle-DFT
Sequence for G and C. (Precomputed by the agents since G
is known.)

The goal of Algorithm EXPLORE is to collaboratively
explore G until only one node, the black hole, is left un-
explored. To do so, the agents explore G by using the se-
quence L: Exploring a node ui ∈ L means exploring the
corresponding cycle Cui

.
The basic step of Algorithm EXPLORE consists of ex-

ploring a cycle Ci ∈ C (described in Algorithm EXPLORE-
CYCLE). Since Ci may contain the BH, exploring it means
exploring all of its nodes, or all but one. Moreover, Ci has
to be explored in a way ensuring that at least one agent sur-
vives. Two basic techniques are used to ensure that: Cau-
tious walk and avoiding the dangerous node (DN). The dan-
gerous node for an agent a is a node where agent b has gone,
but from which, to a’s knowledge, b has not returned yet.
During the algorithm, we will make sure that an agent never
enters the node that it considers dangerous. To do so, each
agent carries a variable DN , initially empty, which con-
tains the id of the current dangerous node. Note that using
full topological knowledge, the DN can indeed be avoided,
even if it is on the other side of an unexplored link.

A cycle can be explored in two modes: Alone and To-
gether. In the Alone mode single agent (w.l.o.g. assume a)
explores Ci using cautious walk and avoiding the DN if nec-
essary until either the whole Ci (possibly except the DN) is
explored or a message from b is found that it came to help.
In the latter case, the exploration of Ci proceeds in the To-
gether mode using the divide-the-unexplored part technique
from [5] until a single node remains unsafe (and considered
the new DN). Once a cycle Ci has been explored, its parts
might need to be traversed several more times (if i has sev-
eral occurrences in L), we will call that the Transit mode.

At the beginning, both agents start exploring Cu1
from

the home base in the Together mode. Eventually, one of
then (e.g. a) will finish exploring Cu1

and will proceed to
explore Cu2

in the Alone mode, avoiding the last unexplored
node of Cu1

(where b was heading to) which is now the DN
for a. Agent a will continue its solo exploration (possibly
proceeding to Cui+1

after finishing Cui
) until eventually b

catches up at some cycle Cj , at which moment the DN is
reset to empty and they start cooperatively exploring Cj in
mode Together. The process is repeated until all cycles have
been explored, at which moment the DN contains the BH.
While going from one cycle to another, an agent always
makes sure that it moves on safe links. Notice that, since ui

and ui+1 are neighbours in C(G; C), Cui
and Cui+1

share
an edge. Therefore Cui+1

can always be reached from Cui
,

even while avoiding the DN.
The high level description of Algorithm EXPLORE is

given below.

Algorithm 1 Algorithm EXPLORE

1: Set i← 1, set DN to empty.
2: while i 6= s do
3: Execute Algorithm EXPLORE-CYCLE for Cui

.
4: repeat
5: Go to a node w ∈ Cui

∩Cui+1
using the edges of

Cui
and avoiding the DN and set i← i + 1.

6: until Cui
is unexplored or i = s

7: end while
8: // The last cycle has been explored.
9: The black hole is in DN. Terminate.

3.2 Algorithm EXPLORE-CYCLE in Detail

The Alone mode of Algorithm EXPLORE-CYCLE uses
Cautious walk to explore the current cycle Ci while avoid-
ing the DN (see Figure 4) and terminates either when the
full cycle has been explored, or when only DN remains un-
explored, or when a message (Workload; Ua, Ub) left by the
other agent is found.

In the Transit mode (corresponding to line 5. of Algo-
rithm EXPLORE) the agent simply proceeds clockwise or
counterclockwise (if the DN is in the clockwise-way) until
it arrives to its destination. Note that cautious walk is not
necessary, as Ci has already been explored.

The Together mode (lines 7 . . . 19, with line 7 including
also the last/following part of the Alone mode) starts with
one agent (say a) leaving message (Workload: Ua, Ub), and
proceeding to explore its part using cautious walk. The cru-
cial property is that Ua ∪ Ub contains all unexplored nodes
of Ci, Ua ∩ Ub = ∅, ||Ua| − |Ub|| ≤ 1 and both Ua and
Ub are contiguous segments of Ci. The idea is that since
Ua ∩ Ub = ∅, the BH can be in at most one of the parts and
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dangerous node

entry node

entry node 
of the next cycle

Figure 4. The way alone agent explores a cy-
cle. The dashed path is explored using Cau-
tious walk, the dotted path is a simple traver-
sal of already safe edges.

therefore at least one of the agents (say a) will explore its
part. a will then come to the last safe node explored by the
other agent and evaluate the currently unexplored part U of
Ci:

• If U is empty, Ci has been explored and a proceeds by
following the safe links explored by b until catching up
with b (b might have explored alone several cycles).

• If U contains a single node x, then x may be the BH

and it does not make sense to wait for b. Instead, a
remembers x as DN and proceeds to explore the re-
maining cycles alone.

• If |U | ≥ 2, a splits U into two disjoint connected (al-
most) equal-sized partitions Ua and Ub (with Ub con-
taining the node b is currently headed to), leaves a mes-
sage (Workload: Ua, Ub) for b and proceeds to explore
the new Ua. When (if) b returns, it will notice the
workload message and update its workload.

The basic idea here is that every time the workload is re-
computed, the unexplored area is at least halved, therefore
log |Ci| iterations are sufficient to explore Ci. Each itera-
tion costs O(|Ci|) moves, for the resulting complexity of
O(|Ci| log |Ci|), which is optimal for a ring [5].

3.3 Correctness and Complexity

Because of cautious walk, avoiding the DN, and Ua ∩
Ub = ∅, there will never be the case of both agents heading
for the same unexplored node while executing Algorithm
EXPLORE-CYCLE. This immediately yields the liveness
lemma:

Lemma 3.1. At most one agent will enter the black hole.

We now prove the progress lemma:

Algorithm 2 Algorithm EXPLORE-CYCLE for a cycle Ci

1: // Executed by the first agent (say a) that starts explor-
ing Ci.

2: Agent a explores Ci using cautious walk and avoiding
DN until either the whole Ci has been explored (ex-
cept the DN), or a message (Workload: Ua, Ub) has
been found.

3: if whole Ci has been explored then
4: return // Proceed to the next cycle.
5: end if
6: // A message (Workload: Ua, Ub) from the other agent

has been found. Clear the DN as b has returned
from there.

7: Set DN ← ε.
8: Explore Ua using cautious walk.
9: repeat

10: // The second agent joining exploration of Ci starts
here.

11: Follow the safe links explored by the other agent
until the last safe node v is reached or you learn
that the whole Ci has been explored.

12: if the whole Ci has been explored then
13: return // Proceed to the next cycle.
14: end if
15: Let U be the smallest contiguous segment of Ci

containing all nodes of Ci that are still unex-
plored.

16: if U contains single node x then
17: // Proceed to the next cycle.
18: Set DN ← x. return
19: else
20: Decompose U into two connected subsegments

Ua and Ub such that (1) Ua ∩ Ub = ∅, (2)
Ua∪ Ub = U and (3) ||Ua| − |Ub|| ≤ 1.

21: Leave message (Workload: Ua, Ub) at v and ex-
plore your part using cautious walk. Make
sure to reach the edge of your workload area
using only safe links.

22: end if
23: until false
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Lemma 3.2. Every cycle Ci for 1 ≤ i ≤ k will eventually
be explored.

Proof. There is no waiting specified in the algorithm, there-
fore the only way the execution of the agent can be perma-
nently stopped before finishing Algorithm EXPLORE is by
entering the BH. According to Lemma 3.1 this can hap-
pen to at most one agent, therefore there will be an agent
completing Algorithm EXPLORE. Since L is a traversal se-
quence, ∀i ∈ {1, 2, . . . , k} there is uj ∈ L such that i = uj ,
i.e. each cycle has been explored.

We are now ready for the main correctness theorem:

Theorem 3.3. Algorithm EXPLORE correctly locates the
black hole.

Proof. From the construction of Algorithm EXPLORE it
follows that the only node (if any) remaining unexplored
after the exploration of a cycle is DN. From Lemma 3.2 we
know that eventually all cycles will be explored. Since at
every moment there is at most one DN, at the end there will
be at most one unexplored node left. Since the BH is indeed
present, at the end there will be exactly one unexplored node
(DN) left and the black hole is located there.

Let us now proceed to the complexity analysis.

Lemma 3.4. The total number of moves spent in Algorithm
EXPLORE-CYCLE for Ci is
O(|Ci| log |Ci|).

Proof. Note that the total number of moves before the first
(Workload: Ua, Ub) message is placed is O(|Ci|) (see Fig-
ure 4). Afterwards, in each round (delimited by placing
(Workload: Ua, Ub) messages) the size of the unexplored
area is at least halved, while O(|Ci|) moves are spent by
both agents. Thus, the number of rounds is O(log |Ci|) and
the total number of moves is O(|Ci| log |Ci|).

As each cycle of C is explored only once, from
Lemma 3.4 we get that the total number of moves
by the agents executing Algorithm EXPLORE-CYCLE is
O(

∑
Ci∈C

|Ci| log |Ci|).
The only other place where agent’s moves are specified

is line 5. of Algorithm EXPLORE, in order to reach the next
cycle in L. A cycle Ci may be involved several times, as
it may appear many times in L, with each of those tran-
sits being either clockwise or counterclockwise. However,
all segments traversed clockwise are edge disjoint (from the
definition of L - that was our goal in defining Cycle-DFT
Sequence). Moreover, the DN cannot move from one node
of the cycle to another node of the same cycle, as only the
last unexplored node of the cycle can become DN. That
means that Ci can be transited counterclockwise at most
once (when the DN is located between the entry points of

neighbouring child cycles in the DFT) and both clockwise
and counterclockwise cost of transiting Ci are O(|Ci|). We
get:

Lemma 3.5. The total number of moves corresponding to
executing line 5. of Algorithm EXPLORE on a cycle Ci ∈ C
is O(|Ci|)

Combining Lemmas 3.5 and 3.4 we obtain:

Theorem 3.6. The complexity of Algorithm EXPLORE is
O(

∑k

i=1
|Ci| log |Ci|).

From Theorem 3.3, Theorem 3.6 and from the fact that
every 2-connected graph has an OVC (Lemma 2.4) we now
get the main theorem:

Theorem 1.1 (Main Result)
Let G be a 2-connected graph and let C =
{C1, C2, . . . , Ck} be an open vertex cover by cycles
of G. Then, it is possible for 2 agents to locate the black
hole in G using O(

∑k

i=1
|Ci| log |Ci|) moves.

4 BH Location in Specific Networks

In this section we show that Algorithm EXPLORE can
be applied to a wide variety of common networks, in many
cases obtaining optimal results.

The OVC constructed by Lemma 2.4 (using ear decom-
position) contains all edges of G. This means that simply
applying Theorem 1.1 using this OVC might not result in ac-
ceptable complexity, especially for dense graphs. However,
since OVC needs to cover only the vertices, not the edges,
for many graphs we might be able to find much sparser
OVC, possibly with small cycles as well.

That is exactly what we do in this section – showing ex-
plicit OVC construction for several commonly used classes
of graphs, resulting in optimal BH location algorithms.

Perhaps the simplest construction is for 2-connected pla-
nar graphs:

Theorem 4.1. There is a BH location algorithm for 2-
connected planar graphs of complexity O(n log f), where
f is the size of the second largest face in the graph.

Proof. Since the graph is 2-connected, the faces of the
graph themselves form an OVC, even after removing an ar-
bitrary one of them. Applying Theorem 1.1 after removing
the largest face, and using the fact that planar graphs have
O(n) edges (each of which is used in at most two retained
faces) we get the theorem.

A stronger result can be proven for Abelian Cayley graph
of degree at least three, even though they include also dense
graphs:
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Figure 5. Short cycles in Abelian Cayley
graphs, allowing to bypass node v if it is dan-
gerous.

Theorem 4.2. There is a BH location algorithm for Abelian
Cayley graphs of degree ≥ 3 of cost O(n).

Proof. We show that there is an OVC with cycles of size 4
or 6. The theorem then follows directly from Theorem 1.1.

Consider an arbitrary spanning tree T of G and its Euler
tour L. Let (u, v) and (v, w) be any two consecutive edges
of L such that u 6= w. We show how to construct a cycle of
length 4 or 6 which passes through (u, v) and (v, w). The
union of these cycles over all such consecutive edges of L
is then the sought OVC.

Let v = αu and w = βv, i.e. we get from u to v by
applying generator α and from v to w by applying β. If
α 6= β, the cycle containing (u, v) and (v, w) is simply
{u, v = αu,w = βv,w′ = α−1w, u = β−1w′}. If α =
β, let γ be a generator different from α, α−1 and (α−1)2

(such γ must exist, as the graph is of degree at least 3). The
cycle containing (u, v) and (v, w) is: {u, v = αu,w =
αv,w′ = γw, v′ = α−1w′, u′ = α−1v′, u = γ−1u′} - see
Figure 5.

Several frequently studied topologies are Abelian Cayley
graphs:

Corollary 4.3. The BH can be located with O(n) moves in
hypercubes and (multi-dimensional) tori.

While the following hypercube-related networks are not
Abelian Cayley graphs, all of them have short (O(1)) cycles
(roughly corresponding to some of the hypercube faces);
these cycles together form OVC even without including the
longer (O(log n)) cycles. Thus, also for them we can sim-
ilarly derive a linear bound on the number of moves using
Algorithm EXPLORE:

Theorem 4.4. The BH can be located with O(n) moves in
CCC, butterfly and wrapped-butterfly networks.

The above results might suggest that a regular, highly
symmetric structure is needed to locate the BH efficiently.
That is not the case, though. In fact, the main advantage

of out approach is that it applies equally well to less struc-
tured networks, which are nevertheless frequently used in
practice.

Consider, for example a 2-dimensional mesh/torus net-
work with several failed/missing nodes. The missing nodes
create “holes” that disrupt the regular structure of the net-
work. Nevertheless, such failures do not thwart BH location
too much: The “holes” are treated as new faces and as long
as the resulting graph remains 2-connected and the holes are
not too big, Theorem 1.1 can be applied successfully:

Theorem 4.5. Let G be a 2-connected 2-dimensional
mesh/torus with holes of size at most f . Then the BH can
be located in G using O(n log f) moves.

5 Conclusions

We have presented a simple algorithm for locating BH

using an OVC of the graph and we have shown that for many
frequently studied topologies this approach results in opti-
mal BH location algorithm.

The two main contributions of our technique are simplic-
ity and robustness. The previous approaches were either
fairly complex ([6]) or fragile ([3] – the task of finding tra-
versal pairs for a given network is often non-trivial, and the
result can change dramatically with a small change in the
network). Moreover, there are classes of graphs (e.g. O(n)-
diameter tori with small irregularities/holes) for which Al-
gorithm EXPLORE is optimal, but neither of the previous
approaches is.

Although we have not discussed in this paper the exten-
sion of Algorithm EXPLORE to dynamic networks (topic
that we will leave for future work), it is foreseeable that this
approach could scale well: in fact, a change in the topology
involves local changes only in the Open Vertex Cover.

We have been able to construct “good” OVC for a rela-
tively small class of graphs. In this regard, many intriguing
problems are open; in particular:

Given a graph G, find an OVC C such that∑
Ci∈C

|Ci| log |Ci| is minimized.

This, in turn, poses many intriguing questions: What is the
complexity of finding such optimal OVC? How can it be
found? What about approximate solutions? Clearly, the
same questions can be asked on more restricted instances,
such as on OVC for graphs of given diameter, girth, etc.

One might hope that for every graph there is an OVC re-
sulting in a asymptotically optimal algorithm. This is not
so, unfortunately: Consider a ring of log n nodes, a cen-
tral node and log n paths of length n/logn each connect-
ing the central node with the ring nodes. As there are logn
cycles of size O(n/ log n) each, our algorithm would cost
O(log n × n/ log n × log(n/ log n)) = O(n log n), while
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the algorithm from [6] will locate the BH in O(n) as the
diameter is O(n/ log n).

References

[1] D. M. Chess. Security issues in mobile code systems.
In Proc. Conf. on Mobile Agent Security, LNCS 1419,
pages 1–14, 1998.

[2] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc.
Searching for a black hole in tree networks. In Proc.
8th Int. Conference on Principle of Distributed Sys-
tems (OPODIS’04), pages 35–45, 2004.

[3] S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe,
P. Ruzicka, and N. Santoro. Black hole search in in
common interconnection networks. Networks, 2005.
To appear.

[4] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro.
Finding a black hole in an arbitrary network: optimal
mobile agents protocols. In Proc. of 21st ACM Sympo-
sium on Principles of Distributed Computing (PODC
2002), pages 153–162, 2002.

[5] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro.
Mobile search for a black hole in an anonymous ring.
Algorithmica, 2005. To appear.

[6] S. Dobrev, P. Flocchini, and N. Santoro. Improved
bounds for optimal black hole search in a network.
In Proc. of 10th International Colloquium on Struc-
tural Information and Communication Complexity
(SIROCCO 2004), pages 111–122, 2004.

[7] O. Esparza, M. Soriano, J.J. Munoz, and J. Forne.
Host revocation authority: A way of protecting mo-
bile agents from malicious hosts. In Proc. Int. Conf.
onWeb Engineering (ICWE’03), LNCS 2722, 2003.

[8] M.S. Greenberg, J.C. Byington, and D. G. Harper.
Mobile agents and security. IEEE Commun. Mag.,
36(7):76 – 85, 1998.

[9] F. Hohl. Time limited blackbox security: Protecting
mobile agents from malicious hosts. In Proc. of Conf
on Mobile Agent Security, LNCS 1419, pages 92–113,
1998.

[10] F. Hohl. A framework to protect mobile agents by
using reference states. In Proc. of the 20th Int. Conf.
on Distr. Computing Systems (ICDCS 2000), 2000.

[11] N. R. Jennings. On agent-based software engineering.
Artificial Intelligence, 117(2):277–296, 2000.

[12] R. Klasing, E. Markou, T. Radzik, and F. Sarracco.
Hardness and approximation results for black hole
search in arbitrary graphs. In Proc. 12th Int. Collo-
quium on Structural Information and Communication
Complexity (SIROCCO’05), pages 200–215, 2005.

[13] S.K. Ng and K.W. Cheung. Protecting mobile agents
against malicious hosts by intention spreading. In
Proc. 1999 Int. Conf. on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99),
pages 725–729, 1999.

[14] R. Oppliger. Security issues related to mobile code
and agent-based systems. Computer Communications,
22(12):1165 – 1170, 1999.

[15] T. Sander and C. F. Tschudin. Protecting mobile
agents against malicious hosts. In Proc. of Conf on
Mobile Agent Security, LNCS 1419, pages 44–60,
1998.

[16] K. Schelderup and J. Ones. Mobile agent security -
issues and directions. In Proc. 6th Int. Conf. on Intel-
ligence and Services in Networks, LNCS 1597, pages
155–167, 1999.

[17] M.M. Syslo. An efficient cycle vector space algorithm
for listing all cycles of a planar graph. SIAM Journal
on Computing, 10(4):797–808, 1981.

[18] Jan Vitek and Giuseppe Castagna. Mobile computa-
tions and hostile hosts. In D. Tsichritzis, editor, Mo-
bile Objects, pages 241–261. University of Geneva,
1999.

[19] H. Whitney. Non-separable and planar graphs. Trans.
Amer. Math. Soc., 34:339–362, 1932.

9


