
Computing Without Communicating:

Ring Exploration by Asynchronous Oblivious Robots∗

Paola Flocchini † David Ilcinkas ‡ Andrzej Pelc § Nicola Santoro ¶

Abstract

We consider the problem of exploring an anonymous unoriented ring by a team of k identical,
oblivious, asynchronous mobile robots that can view the environment but cannot communicate.
This weak scenario is standard when the spatial universe in which the robots operate is the two-
dimensional plane, but (with one exception) has not been investigated before for networks. Our
results imply that, although these weak capabilities of robots render the problem considerably
more difficult, ring exploration by a small team of robots is still possible.

We first show that, when k and n are not co-prime, the problem is not solvable in general,
e.g., if k divides n there are initial placements of the robots for which gathering is impossible.
We then prove that the problem is always solvable provided that n and k are co-prime, for
k ≥ 17, by giving an exploration algorithm that always terminates, starting from arbitrary
initial configurations. Finally, we consider the minimum number ρ(n) of robots that can explore
a ring of size n. As a consequence of our positive result we show that ρ(n) is O(log n). We
additionally prove that Ω(log n) robots are necessary for infinitely many n.

Keywords: mobile robots, asynchronous, oblivious, exploration, ring.

Corresponding Author: David Ilcinkas

LaBRI, bât A30, Université Bordeaux I

351 cours de la Libération

F-33405 TALENCE Cedex

FRANCE

Phone: +33 540 006 912

Fax: +33 540 006 669

∗A preliminary version of this paper appeared in [27].
†School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.

E-mail: flocchin@eecs.uottawa.ca
‡LaBRI, CNRS & Université de Bordeaux, France. E-mail: david.ilcinkas@labri.fr.
§Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-mail:

pelc@uqo.ca.
¶School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.

E-mail: santoro@scs.carleton.ca

1

1 Introduction

1.1 Framework

Recently a lot of attention has been devoted to the computational and complexity issues arising in

systems of autonomous mobile entities located in a spatial universe U . The entities have storage

and processing capabilities, exhibit the same behavior (i.e., execute the same protocol), can move

in U (their movement is constrained by the nature of U), and are asynchronous in their actions.

Depending on the context, the entities are sometimes called agents, other times robots; in the

following, we use the latter. The research concern is on determining what tasks can be performed

by such entities, under what conditions, and at what cost. In particular, a central question is to

determine what minimal hypotheses allow a given problem to be solved.

Depending on the nature of U , there are two basic settings in which autonomous mobile entities are

being investigated. The first setting, called sometimes the continuous universe, is when U is the

two-dimensional plane (e.g., [1, 11, 12, 13, 30, 39, 29, 41, 42]). The second setting, sometimes called

the graph world or the discrete universe, is when U is a simple graph (e.g., [4, 5, 8, 17, 31, 32]).

In both settings, each robot operates in a Look - Compute - Move cycle. The robot observes and

interacts with the environment (Look), then, based on this observation and interaction, it decides

to stay idle or to move (Compute), and in the latter case it moves towards its destination (Move).

Interestingly, in spite of the common features of the two settings, the researchers investigating them

usually operate under two radically different assumptions on the robots’ capabilities.

(1) Communication vs Vision - In the investigations in the graph world, the robots are assumed to

communicate with each other directly; e.g., by means of tokens [7, 8, 28], or whiteboards [17, 31],

or when they meet [14, 16]. Instead, in the studies on the continuous universe, the robots do not

communicate in any explicit way; however, they see the position of the other robots and can acquire

knowledge from this information (e.g., see [1, 11, 12, 13, 30, 39, 29, 41, 42]).

(2) Persistency vs Obliviousness - In addition to its program, each robot has a local memory

(sometimes called notebook or workspace), used for computations and to store information obtained

during the cycles. In all the investigations in the graph world, the local memory is possibly limited

(e.g., each robot is a finite-state automaton) but almost always persistent: unless explicitly erased

by the robot, all the information contained in the workspace will persist throughout the robot’s

cycles. Instead, in the majority of the studies on the continuous universe, the robots are oblivious:

all the information contained in the workspace is cleared at the end of each cycle. In other words,

the robots have no memory of past actions and computations, and the computation is based solely

on what has been determined in the current cycle. The importance of obliviousness comes from its

link to self-stabilization and fault-tolerance.

Let us point out that there is nothing inherent in the nature of U that forces these differences

in the assumptions. In other words, there is no reason why robots in a graph should not be

oblivious; on the contrary, an oblivious solution would be highly desirable ensuring fault-tolerance

and self-stabilization. Similarly, there is nothing in the continuous domain that forbids robots from

communicating explicitly; indeed, in the recent investigations on mobile sensor networks, the robots

2

do communicate wirelessly [37].

Surprisingly, nobody has investigated how to solve problems in the discrete universe if the robots

have the capabilities and limitations standard in the continuous one. In fact, with one exception,

there were no previous studies on how a collection of asynchronous oblivious robots endowed with

vision can perform a non-trivial task without any communication. The only exception is the recent

investigation of the gathering problem in the ring [34].

In this paper, we continue this investigation and focus on a basic problem in the graph world,

exploration, that is the process by which every node of the graph is visited by at least one robot,

and we study this problem in a ring.

1.2 Our results

We consider the problem of exploring an anonymous ring of size n by k oblivious anonymous

asynchronous robots scattered in the ring. The robots are endowed with vision but they are unable

to communicate. Within finite time and regardless of the initial placement of the robots, each node

must be visited by at least one robot and the robots must be in a configuration in which they all

remain idle.

We first show that this problem is in general unsolvable if k|n (i.e., there are initial configurations

for which the exploration cannot be done). We then prove that, whenever gcd(n, k) = 1, for k ≥ 17,

the robots can explore the ring terminating within finite time. The proof is constructive: we present

a terminating protocol that explores the ring starting from an arbitrary initial configuration, and

prove its correctness.

Finally, we consider the minimum number ρ(n) of robots that can explore a ring of size n. As a

consequence of our positive result we show that ρ(n) is O(logn). We also prove that ρ(n) = Ω(log n)

for infinitely many n. More precisely, there exists a constant c such that, for infinitely many n, we

have ρ(n) ≥ c logn. Interestingly, for some specific values of n, the number ρ(n) is constant. This

is the case, for example, of any prime n greater than 17, in which case 17 robots can always explore

the ring.

1.3 Related Work

Algorithms for graph exploration by mobile entities (robots) have been intensly studied in recent

literature. Several scenarios have been considered. Most of the research is concerned with the case

of a single robot exploring the graph. In [2, 7, 8, 19, 25] the robot explores strongly connected

directed graphs and it can move only in the direction from head to tail of an edge, not vice-versa.

In particular, [19] investigates the minimum time of exploration of directed graphs, and [2, 25] give

improved algorithms for this problem in terms of the deficiency of the graph (i.e., the minimum

number of edges to be added to make the graph Eulerian). Many papers, e.g., [20, 23, 24, 3, 38]

study the scenario where the explored graph is undirected and the robot can traverse edges in both

directions. In [20] the authors investigate the problem of how the availability of a map influences

3

the efficiency of exploration. In [38] it is shown that a graph with n nodes and e edges can be

explored in time e + O(n). In some papers, additional restrictions on the moves of the robot are

imposed. It is assumed that the robot has either a restricted tank [6, 9], forcing it to periodically

return to the base for refueling, or that it is tethered, i.e., attached to the base by a rope or cable

of restricted length [24].

Exploration of anonymous graphs presents different difficulties. In this case it is impossible to

explore arbitrary graphs by a single robot if no marking of nodes is allowed. Hence the scenario

adopted in [7, 8] allows the use of pebbles which the robot can drop on nodes to recognize already

visited ones, and then remove them and drop in other places. The authors concentrate attention on

the minimum number of pebbles allowing efficient exploration and mapping of arbitrary directed

n-node graphs. (In the case of undirected graphs, one pebble suffices for efficient exploration.) In

[8] the authors compare exploration power of one robot with a constant number of pebbles to that

of two cooperating robots, and give an efficient exploration algorithm for the latter scenario. In [7]

it is shown that one pebble is enough if the robot knows an upper bound on the size of the graph,

and Θ(log logn) pebbles are necessary and sufficient otherwise.

In all the above papers, except [8], exploration is performed by a single robot. Exploration by

many robots has been investigated mostly in the context when moves of the robots are centrally

coordinated. In [32], approximation algorithms are given for the collective exploration problem

in arbitrary graphs. In [4, 5] the authors construct approximation algorithms for the collective

exploration problem in weighted trees. On the other hand, in [31] the authors study the problem

of distributed collective exploration of trees of unknown topology. However, the robots performing

exploration have memory and can directly communicate with each other. Exploration of arbitrary

anonymous graphs by a team of robots communicating through whiteboards has been studied in

[17].

The very weak assumption of asynchronous identical robots that cannot send any messages and

that communicate with the environment only by observing it, has not been used in the context of

graph exploration prior to the announcement of the preliminary results of this paper [27].

It has been used quite extensively, however, in the case of robots moving freely in the plane (e.g.,

see [1, 11, 12, 13, 15, 18, 30, 39, 42]), where the robots were oblivious, i.e., it was assumed that

they do not have any memory of past observations. Oblivious robots operate in Look-Compute-

Move cycles, similar to those described in our scenario. The differences are in the amount of

synchrony assumed in the execution of the cycles. In [1, 18, 42] cycles were executed synchronously

in rounds by all active robots, and the adversary could only decide which robots are active in a

given cycle. In [11, 12, 13, 15, 30, 39] they were executed asynchronously: the adversary could

interleave operations arbitrarily, stop robots during the move, and schedule Look operations of

some robots while others were moving. Our scenario is very similar to the asynchronous model

used in [30, 39]. The only difference with respect to [30, 39] is in the execution of Move operations.

All possibilities of the adversary concerning interleaving operations performed by various robots as

well as the characteristics of the robots are the same as in the model from [30, 39].

This scenario has been introduced in the discrete context of graphs in [34] and used in [33, 36] to

4

study the gathering problem in the ring. After the conference version of this paper [27], the explo-

ration problem has been investigated also in this model. In particular, in [26] we have considered

the tree network showing that there are n-node trees where Ω(n) robots are necessary and that, if

the maximum degree is three, it is possible to explore the tree with an optimal team of O(logn
log logn)

robots. Exploration in the ring has been object of investigation in [21, 22, 35]. In particular, in [22]

the authors have shown that in a probabilistic setting four robots are necessary and sufficient to

perform exploration without any constraint on the relationship between number of nodes and num-

ber of robots and they have given an optimal algorithm for any ring size greater than eight. In [21]

an optimal algorithm for the probabilistic exploration of rings of size smaller than eight was given.

In [35], on the other hand, it has been shown that no deterministic exploration is feasible with less

than five robots whenever the size of the ring is even, and that five robots are sufficient for any n

that is co-prime with five. Finally, in [10] the authors investigated a similar but stronger model

with labeled edges and provided necessary and sufficient conditions for explorability of arbitrary

graphs for k = 3, 4 robots and k > 4 odd robots.

2 Preliminaries

2.1 Terminology and definitions

The network we consider is a ring of n nodes, u0, u1, . . . , un−1; i.e., ui is connected to both ui−1 and

ui+1. Here and in the following, all operations on the indices are modulo n. The indices are used

for notation purposes; in fact, the nodes are anonymous (i.e., identical) and the ring is unoriented.

Operating in the ring are k identical robots; initially, at time t = 0, there is at most one robot in

each node. During the exploration, robots move, and at any time they occupy some nodes of the

ring.

Notice that the assumption that in the initial configuration there is at most one robot in each

node cannot be removed. In the absence of this assumption any configuration could be initial, but

then no terminating exploration algorithm for any k < n would be possible. Indeed, consider any

hypothetical terminating exploration algorithm that works correctly for all initial configurations

for some parameters k < n. Suppose that starting from some initial configuration I it finishes

exploration in configuration I ′. Now suppose that the initial configuration is I ′. Since in the first

scenario this is a final configuration (in which no robots move), in the second scenario no robots

move either (i.e., they never move) and thus some nodes are never visited.

We shall indicate by di(t) the multiplicity of robots present at node ui at time t; more precisely

di(t) = 0 indicates that there are no robots, di(t) = 1 indicates that there is exactly one robot, and

di(t) = 2 indicates that there is more than one robot at ui at time t. If di(t) = 2, we will say that

there is a tower in ui at time t.

Let δ+j(t) denote the sequence δ+j(t) =< dj(t) dj+1(t) . . . dj+n−1(t) >, and let δ−j(t) denote the

sequence δ−j(t) =< dj(t) dj−1(t) . . . dj−(n−1)(t) >. The unordered∗ pair of sequences δ+j(t) and

∗Since the ring is unoriented, agreement on only one sequence might be impossible, and the pair cannot be ordered.

5

δ−j(t) describes the configuration of the system at time t viewed from node uj . Let ∆+(t) =

{δ+j(t) : 0 ≤ j < n} and ∆−(t) = {δ−j(t) : 0 ≤ j < n}.

We will denote by δmax(t) the ascending lexicographically maximum sequence in ∆+(t) ∪ ∆−(t).

Since the lexicographic order is total, there is at most one maximal sequence in each of ∆+(t) and

∆−(t). A configuration is said to be symmetric if the maximal sequences in ∆+(t) and ∆−(t) are

equal, and asymmetric otherwise.

As an example of the above definitions, consider a ring of 7 nodes, a time t and a node uj ,

for which δ+j(t) = 〈1201101〉 and δ−j(t) = 〈1101102〉. Thus ∆+(t) is composed of sequences

〈1201101〉, 〈2011011〉, 〈0110112〉, 〈1101120〉, 〈1011201〉, 〈0112011〉, 〈1120110〉, and ∆−(t) is com-

posed of sequences 〈1101102〉, 〈1011021〉, 〈0110211〉, 〈1102110〉, 〈1021101〉, 〈0211011〉, 〈2110110〉.

The maximal sequence in ∆+(t) is 〈2011011〉 and in ∆−(t) it is 〈2110110〉, hence the configuration

is asymmetric. We have δmax(t) = 〈2110110〉.

Each robot operates in Look-Compute-Move cycles described in section 1.1. Cycles are performed

asynchronously for each robot: the time between Look, Compute, and Move operations is finite

but unbounded, and is decided by the adversary for each action of each robot. The only constraint

is that moves are instantaneous, as in [34], and hence any robot performing a Look operation sees

all other robots at nodes of the ring and not on edges. However, a robot R may perform a Look

operation at some time t, perceiving robots at some nodes, then Compute a target neighbor at

some time t′ > t, and Move to this neighbor at some later time t′′ > t′ in which some robots are in

different nodes from those previously perceived by R because in the meantime they performed their

Move operations. Hence robots may move based on significantly outdated perceptions. We assume

that the robots can perceive, during the Look operation, if there is one or more robots in a given

location; this ability, called multiplicity detection is a standard assumption in the continuous model

[11, 34, 39]. We now describe formally what a robot perceives when performing a Look operation.

Consider a robot R that, at time t is at node uj and performs a Look; the result of this operation,

called the view of R at time t, is precisely the unordered pair of sequences {δ+j(t), δ−j(t)}, that

is, the configuration of the system at time t viewed from node uj . We order all views as follows:

we use the ascending lexicographic order on the sequences and order the views according to the

order of the maximum of the two sequences forming them. From its view, the robot can determine

δmax(t), decide whether or not it is unique, and compute views of all other robots.

Let robot R perform in the same cycle a Look operation at time t′ and a Move operation at time

t′′ > t′. We will say that R is engaged to move (or, simply engaged) in the open interval (t′, t′′);

that is, R is engaged at any time t, where t′ < t < t′′.

One final precision has to be added, concerning the decisions of robots made during the Compute

action. Every such decision is based on the snapshot obtained during the last Look action. However,

it may happen that both edges incident to a node v currently occupied by the deciding robot look

identical in this snapshot, i.e., v lies on a symmetry axis of the configuration. In this case, if the

robot decides to take one of these edges, it may take any of the two. We assume the worst-case

decision in such cases, i.e., that the actual edge among the identically looking ones is chosen by an

adversary.

6

We say that exploration of an n-node ring is possible with k robots, if there exists an algorithm

which, starting from any initial configuration of the k robots without towers, allows the robots

to explore the entire ring and brings all robots to a configuration in which they all remain idle.

Obviously, if n = k, the exploration is already accomplished, hence we always assume that k < n.

2.2 Basic restriction

Lemma 2.1 Let k < n. If k|n then the exploration of an n-node ring with k robots is not possible.

Proof: By contradiction, let P be a solution protocol. Choose as the initial configuration an

equidistant placement of the k robots in the ring (it exists since k|n). Thus, initially the states of

all robots are identical, say σ(0). Clearly this state is not a terminal state. Otherwise, since k < n,

P would terminate without exploring the ring, thus contradicting the correctness of P . Consider

now an adversary that uses a synchronous scheduler and a consistent orientation of the ring. Then,

at each time step t, the states of all robots continue to be identical, say σ(t), and furthermore they

are the same as those of previous steps; i.e., σ(t) = σ(0) for all t. Hence the robots will never enter

a terminal state, contradicting the fact that P leads within finite time to a configuration in which

all robots remain idle. �

In the following we will consider the case when gcd(n, k) = 1, and design an algorithm that allows

k ≥ 17 robots to explore a n-node ring whenever gcd(n, k) = 1. Observe that if gcd(n, k) = 1, the

configuration is aperiodic and either asymmetric or it is symmetric with respect to a single axis

of symmetry. Therefore at most two robots can have a given view. In the symmetric case, the

adjective symmetric will be used with respect to this unique axis of symmetry. Note that symmetric

robots have the same view.

3 Exploration of a ring

3.1 Overview of the algorithm

The overall structure of the algorithm can be seen as a sequence of three distinct phases: Set-Up,

Tower-Creation, and Exploration.

The purpose of the Set-Up phase is to transform the (arbitrary) initial configuration into one from a

predetermined set of configurations (called no-towers-final) with special properties. More precisely,

in the Set-Up phase, the robots create a configuration where there is a single set of consecutive

nodes occupied by robots, or two such sets of the same size (called blocks). When the configuration

is no-towers-final, the next phase begins.

The purpose of the Tower-Creation phase is to transform the no-towers-final configuration created

in the previous phase, into one from a predetermined set of configurations (called towers-completed)

in which everything is prepared for exploration to begin. More precisely, in the Tower-Creation

7

phase, one or two towers are created inside each block (the number depending on the parity of the

size of the block); furthermore a number of robots become uniquely identified as explorers. As soon

as the configuration is towers-completed, the next phase begins.

During the Exploration phase, the ring is actually being explored. The configuration reached upon

exploration depends solely on the configuration at the beginning of this phase. The set of these

special terminal configurations is uniquely identified, and once in a configuration of this type, no

robots will make any further move.

Since the robots are oblivious (i.e., they have no recollection of actions and computations made in

previous cycles), there is no explicit way for them to record which phase is the current one. This

information is derived by a robot solely based on the configuration currently observed (i.e., the

one obtained as a result of the Look operation). Since the determination of the phase should be

non-ambiguous, each reachable configuration should be assigned to exactly one phase.

For any possible configuration we will identify a set of players, which are the robots deciding to

move, if they perform a Look operation in this configuration, and corresponding destinations, i.e.,

target neighbors. The exploration algorithm (which contains the rules describing the Compute

actions in the robot’s cycle) can be succinctly formulated as follows.

Algorithm Ring Exploration

If I am a player
move to my destination

3.2 Set-Up Phase

The first phase of the protocol is the Set-Up. The fact of being in this phase is easily recognizable

by the robots since, unlike those of the other phases, the configurations of this phase contain no

towers. Precisely because they contain no towers, any configuration of this phase can be an initial

configuration.

We define the interdistance of a configuration as the minimum distance taken over all pairs of

distinct robots in the configuration. Given an arbitrary configuration of interdistance d, a block is

a maximal set of robots, of size at least 2, forming a line with a robot every d nodes. The size of

a block is the number of robots it contains. The border of a block are the two nodes occupied by

the two extremal robots of the block. A robot not in a block is said to be isolated. A robot is said

to be a neighbor of a block/robot if in at least one direction there is no robot between itself and

the block/robot. A leader of a configuration is a robot from which the view is the maximal in the

configuration, with respect to the order defined in Section 2.1. A block containing a leader is called

a leading block. Otherwise it is called a non-leading block.

The Set-Up phase is described by identifying four types of configurations that form a partition of all

possible configurations without towers. For each type we indicate the players and their destinations.

8

Type A. A configuration of type A is a configuration of interdistance d ≥ 1 with at least one

isolated robot. Consider an arbitrary configuration of type A and let S be the maximum among

the sizes of the blocks that are neighbors of at least one isolated robot. Let I be the set of isolated

robots that are neighbors of a block of size S such that no other isolated robot is closer to a block

of size S. The players in a configuration of type A are all the robots in I. The destination of a

player is its adjacent node in the direction of the closest neighboring block of size S. If there are

two such blocks, the choice is arbitrary.

Type B. A configuration of type B is a configuration of interdistance d ≥ 1, without isolated

robots, and containing at least one non-leading block. More precisely, if all blocks have the same

size then the configuration is of type B1. Otherwise, it is of type B2.

Consider an arbitrary configuration of type B1. If there is only one leader, then the player is the

leader and its destination is its adjacent node outside the block it belongs to. From now on, we

assume that there are two leaders. This implies that the configuration is symmetric. There are two

cases. The first case is when the blocks are of size 2. Since k ≥ 17, there are at least 9 blocks and

hence there exist two symmetric blocks separated by at least three blocks on each side. (Observe

that this property does not hold for k = 16.) The players in such a configuration are the robots of

such two blocks, having the smallest view. The destination of a player is its adjacent node outside

the block it belongs to. We consider now the second case, that is when the blocks are of size larger

than 2. The players in such a configuration are the pair of symmetric robots that are the closest

to each other among the robots at the border of a block and such that these two robots are not

neighbors. Note that such a pair is unique, otherwise it would imply that both n and k are even,

which is impossible since gcd(n, k) = 1. The destination of a player is the adjacent node outside

the block it belongs to.

Consider an arbitrary configuration of type B2 and let s be the minimum size of a block in the

configuration. Let S be the maximum among the sizes of the blocks that are neighbors of a block

of size s and let d be the minimal distance between a block of size s and a block of size S. We

define T as the set of robots belonging to a block of size s, neighbors of a block of size S, and at

distance d from it. The players in a configuration of type B2 are the robots in T with the largest

view. The destination of a player is its adjacent node in the direction of its neighboring block of

size S.

Type C. A configuration of type C is a configuration of interdistance d ≥ 2, without isolated

robots, and such that each of its blocks is a leading block. Note that this implies that either all

robots are in the same block or the robots are divided into two blocks of the same size. Moreover,

there are exactly two leaders because the configuration is symmetric. The players in a configuration

of type C are the two leaders. The destination of a player is its adjacent node in the direction of

the block it belongs to. (This is not ambiguous because leaders are always located at the border of

a block.)

9

Type D. A configuration of type D is a configuration of interdistance d = 1, without isolated

robots, and such that each of its blocks is a leading block. Type D is the set of configurations no-

towers-final. When such a configuration is reached, the Set-Up phase ends and the Tower-Creation

phase begins.

Note that typesA,B,C andD form a partition of all possible initial configurations (when gcd(n, k) =

1).

The general idea of the Set-Up phase is to create few compact blocks (interdistance 1). Each

decrease of interdistance is accomplished by first decreasing the number of blocks. The following

lemmas show how this progress is achieved. Theorem 3.1 shows that a no-towers-final configuration

is always reached at the end.

Lemma 3.1 Assume that at some time t the configuration is of type A and that the only engaged

robots are isolated robots engaged to move toward a neighboring block. Then after finite time, the

configuration is of type B, C or D, of the same interdistance as in time t, and no robots are

engaged.

Proof: Assume that at some time t the configuration is of type A and that the only engaged robots

are isolated robots engaged to move toward a block. Starting at time t and until the first time when

the configuration changes to a type different from A, it remains true that the only engaged robots

are isolated robots that are neighbors of a block and are engaged to move toward this block. Thus

no blocks are created and the interdistance remains the same. Moreover, to prove the lemma, it is

sufficient to prove that there exists a time t′ > t where the number of isolated robots has decreased

by at least one. Let t′′ be the first time when all robots engaged at time t have moved. If at that

time, the number of isolated robots has decreased, we are done. Thus we may assume that no

isolated robots joined a block between time t and t′′. Starting at time t′′ and until some robot joins

a block, any isolated robot will always move toward the same block because the neighboring blocks

will keep their size unchanged and will not move. Hence an isolated robot will keep moving toward

the same neighboring block: the larger, or the closer if its neighboring blocks are of the same size.

Consequently, at least one isolated robot will join a block after finite time, which concludes the

proof of the lemma. �

Lemma 3.2 Assume that at some time t the configuration is asymmetric, of type B1, and that no

robots are engaged. Then after finite time, the configuration is of type B2, of the same interdistance

as in time t, no robots are engaged, and there is one block fewer than at time t.

Proof: Assume that at some time t the configuration is asymmetric, of type B1, with blocks of

size s, and that no robots are engaged. In such a configuration the unique player R is the leader.

Let b be the block of R and let b′ be the block neighbor of R. If s = 2, then b is dismantled

when R moves. After finite time, the two robots of the former block b join some other blocks. The

configuration is then of type B2 and no robots are engaged, which proves the lemma in this case.

If s > 2, then b is of size s− 1 when R moves. Therefore R joins block b′, now of size s+ 1. This

10

implies that the configuration is still asymmetric, but now of type B2. The new player is again

in block b, neighbor of b′. After finite time, all robots in b have moved to b′, and no robots are

engaged. �

Lemma 3.3 Assume that at some time t the configuration is symmetric, of type B1, with blocks

of size 2, and that no robots are engaged. Then after finite time, the configuration is of type C or

D, of the same interdistance as in time t, and no robots are engaged.

Proof: Assume that at some time t the configuration is symmetric (two leaders), of type B1, with

blocks of size 2, and that no robots are engaged. Let R1 and R2 be the two players, R1 being the

first of the two to move. Let R′
1, resp. R′

2, be the other robot in R1’s block, resp. R2’s block.

Finally let b1, resp. b2, b
′
1, b

′
2, be the neighboring block of R1, resp. R2, R

′
1, R

′
2. Note that b1

and b2, resp. b
′
1 and b′2, are different blocks since they are separated by at least one other block b3,

resp. b′3.

Let R1 move, at time t1. Hence R′
1 becomes isolated. Therefore the configuration changes to

type A. Before the configuration changes again to a type different from A, the only other possible

isolated robots are R2 and R′
2, which are separated from R1 and R′

1 by several blocks and thus

will not interfere with how these two robots will merge with the neighboring blocks. By definition

of the players in a configuration of type B1, we know that R1 is now closer to b1 than R′
1 is to b′1.

Thus by definition of the players in a configuration of type A, R1 goes toward block b1 and R′
1 will

not be a player before R1 merges with block b1. When this happens, b1 is larger than b′1 and thus

R′
1 also merges with b1, forming a block of size 4.

If R2 is not engaged at time t1, then, just after R1 and R′
1 have merged with b1, there is one

block of size 4, many blocks of size 2, and no isolated or engaged robots. Thus, after finite time,

all blocks of size 2 join the large block and no robots are engaged. This proves the lemma in this

case. Otherwise, let t2 be the time where R2 moves. Between time t1 and t2, engaged robots other

than R2 are necessarily neighbors of b1 and they are engaged to move toward b1. Indeed, this is

the case before R′
1 joins b1 and this is also the case after, because of the definition of the players

in configurations of types B2 and A.

Consider the first moment t3 ≥ t2 where the configuration is not of type A. At this time, b1 is of

size at least 4. Assume that there exists some other block than b1 of size larger than 2. Note that

this block b is formed by R2 and its neighbor other than R′
2 (that is the robot of the former block

b2 closer to R2), and by one or two robots among R′
2 and the other robot of the former block b2.

Assume further that one robot of b is engaged. Then from the discussion of the previous paragraph,

it is necessarily at the border of b, neighbor of b1 and engaged to move toward it. This implies that

either b3 or b′3 (or both) have merged with b1 and thus b1 is of size at least 6 (while b is of size at

most 4). At this point, there is a unique largest block and all engaged robots are neighbors of it and

engaged to move toward it. Thus after finite time all smaller blocks will join the largest one and

the configuration changes to type C or D (depending on the current interdistance), with no robots

engaged. This proves the lemma in this case. Consider now the remaining case, i.e. when there

are at most two blocks of size larger than 2 and none of them contains engaged robots. Moreover

11

all engaged robots are neighbors of one of these blocks and are engaged to move toward it. Thus

after finite time all blocks of size 2 join the block(s) of size larger than 2 and no robots are engaged.

If the configuration is not yet of type C or D, then the smaller block is progressively dismantled

(type B2) and all its robots join the largest block. This concludes the proof of the lemma. �

Lemma 3.4 Assume that at some time t the configuration is symmetric, of type B1, with blocks of

size s ≥ 3, and that no robots are engaged. Then after finite time, the configuration is of type B2,

C or D, of the same interdistance as in time t, no robots are engaged, and there are fewer blocks

than at time t.

Proof: Assume that at some time t the configuration is symmetric (two leaders), of type B1, with

blocks of size s ≥ 3, and that no robots are engaged. Let us consider two cases.

Case 1. The players are in the same block b.

After the first player has moved, the block b is of size smaller than all the other blocks. Therefore

no isolated robot will ever go toward it and no robot in a block different from b can be a player,

and thus engaged, until the block b has been completely dismantled and all its robots have joined

other blocks. Thus after finite time the configuration is of type B2, C or D, no robots are engaged,

and there is one block less than at time t.

Case 2. The players R1 and R2 are in different blocks b1 and b2.

By definition of the players in such a configuration, the blocks b1 and b2 are neighbors but R1,

resp. R2, is not a neighbor of b2, resp. b1, but of another block b′1, resp. b′2. Note that it may be

possible that b′1 = b′2. Let R1 be the first player to move, at time t1. If the second player R2 is not

engaged at that time, then the situation is as in Case 1. Thus we may assume that R2 is engaged

at time t1. Let t2 be the time when R2 moves.

If block b1 is not completely dismantled at time t2, then any engaged robot must be either isolated

or in block b1, and in both cases engaged to move toward block b′1. Indeed in the period between

time t1 and time t2, the block b1 is the only block of size smaller than s. Moreover, if R1 is still

isolated then it is the only robot possibly engaged at time t2. Otherwise R1 joined block b′1, which

becomes larger than any other block, and thus any player between time t1 and time t2 must be

either isolated or in block b1, and in both cases engaged to move toward block b′1. Starting from

time t2, the isolated robots and the robots from blocks b1 and b2 get engaged (if not already) and

move toward blocks b′1 and b′2. When there are no more isolated robots nor blocks b1 and b2, the

configuration is of type B, C or D, no robots are engaged, and there are two blocks less than at

time t.

If block b1 is completely dismantled at time t2, then consider the first time t3 ≥ t2 when the

configuration is of a type different from A. At time t3 the block b′1 has size at least 2s because

all robots from b1 joined b′1 (they could not have joined b2, of size at most s). Moreover, no other

blocks than b′1 are of size larger than s + 1 and all engaged robots are neighbors of b′1 engaged to

move toward b′1. After finite time, all robots join block b′1. Thus the configuration is of type C or

D, no robots are engaged, and there are fewer blocks than at time t. �

12

Lemma 3.5 Assume that at some time t the configuration is of type B2 and that no robots are

engaged. Then after finite time, the configuration is of type B, C or D, of the same interdistance

as in time t, no robots are engaged, and there are fewer blocks than at time t.

Proof: Assume that at some time t the configuration is of type B2, with minimum block size s,

and that no robots are engaged. Consider the situation after time t but before the first time t′ > t

where there are no isolated robots and no blocks of size at most s, if such a time t′ exists.

During this period, any player in a configuration of type B2 is a robot in some block of size at

most s, neighbor of some block of size larger than s, and its destination is its adjacent node in the

direction of this large block. Indeed, either the smallest size of a block is s and then there must

exist a block of such a size that is a neighbor of a larger block, or the smallest size is smaller than

s and then any smallest block is a neighbor of a block larger than s since it shrank by having at

least one of its robots move to such a large block.

Similarly, between time t and t′, any player R in a configuration of type A is a robot neighbor of

some block of size larger than s, and its destination is its adjacent node in the direction of this

large block. Indeed, if this robot R got isolated by moving outside a block then it is a neighbor

of a block of size larger than s, by the previous argument. Otherwise it got isolated after another

robot R′ left the block of size 2 to which R belonged. In this case, R′ was a neighbor of a block

of size larger than s and R cannot be a player before R′ joins the large block and thus before R

becomes a neighbor of this large block, except if R is itself already a neighbor of a block of size

larger than s.

Since the configuration is necessarily of type A or B2 before time t′, we have that, while there is

at least one isolated robot or one block of size s, the only engaged robots are robots not belonging

to a block larger than s but neighbors of one of them and engaged to move toward it. Since there

is at least one player in each configuration of type A or B2, this implies that the above defined

time t′ exists and that no robots are engaged at that time. Moreover no blocks have been created

during the process and some (the ones of size at most s) have been dismantled. This concludes the

proof of the lemma. �

Lemma 3.6 Assume that at some time t the configuration is of type C, of interdistance d ≥ 2, and

that no robots are engaged. Then at some time t′ > t one of the two following situations occurs:

• The configuration is of type A, of interdistance d−1, and the only engaged robots are isolated

robots engaged to move toward a block.

• The configuration is of type B, of interdistance d− 1, and no robots are engaged.

Proof: Assume that at some time t the configuration is of type C, of interdistance d ≥ 2, and

no robots are engaged. The players are the two leaders. After finite time, at least one will move.

Consider the moment t1 where the first moves. At this moment the configuration changes to type A.

13

If the other player moved at the same time or is not engaged, we are done because the configuration

is of type A, of interdistance d− 1, and no robots are engaged.

Thus we assume that the other player R is engaged at time t1. By the definition of type C

configurations and the fact that k ≥ 17, it is engaged to move toward an isolated robot R′ that is

at distance exactly d. Note that until R moves, there is only one block (of interdistance d− 1) and

R is a neighbor of it (its other neighbor is R′). Moreover, R is isolated and no robots will move

toward it to make a block because no other robot is engaged at the moment and because a player

in a configuration of type A never moves toward an isolated robot. Therefore, the configuration

will remain of type A while R does not move.

Consider now the time t2 where R makes its move. If this move does not make it belong to a

block, then the configuration is of type A, of interdistance d− 1, and the only engaged robots are

isolated robots engaged to move toward a block. Assume now that the move of R makes it belong

to a block. Then necessarily it is a new block, of size two, and formed with robot R′. If R′ is not

engaged then we are at a time t′ satisfying the lemma. Indeed if there are isolated robots then the

first situation occurs, and if there are not then the other block is larger, of size k− 2, and thus the

second situation occurs. If R′ is engaged at time t2, then there are no isolated robots because there

is none between R and the other block (in the segment excluding R′) and there is none between

R′ and the other block (in the segment excluding R) since R′ got engaged as an isolated robot and

thus was engaged to move toward a block. Therefore, we are in the following situation: there are

two blocks of sizes k− 2 and 2, at distances at least d+1 (on both sides); exactly one robot of the

smaller block is engaged to move toward the other block, and no other robots are engaged. Thus

the configuration is of type B2 and after some finite time, one of the two robots of the smaller block

will move. At this moment, the first situation occurs, which concludes the proof of the lemma. �

Theorem 3.1 Any initial configuration is transformed after finite time into a configuration of type

D (i.e. no-towers-final) without engaged robots.

Proof: Let Φ be the property that the only engaged robots (if any) in a given configuration are

isolated ones and they are engaged to move toward a neighboring block. For any configuration c of

type A, B or C define the triple T (c) = (d, t, x), where d is the interdistance of c, t is the type of c,

i.e., t is A, B or C, and x is the number of blocks in c. Order all triples lexicographically, assuming

that C < B < A. Lemmas 3.1 – 3.6 imply that any configuration c of type A, B or C satisfying

property Φ is transformed after finite time either in a configuration c′ of type A, B or C satisfying

property Φ, such that T (c′) < T (c), or in a configuration of type D with no robots engaged. Since

any initial configuration satisfies property Φ, this concludes the proof.

Figure 1 illustrates the progress of configurations toward type D.

�

14

A

B C

D

Figure 1: Progress toward type D. Dashed arrows correspond to transitions where the interdistance
decreases. The loop (in bold) corresponds to a transition where the number of blocks decreases.

3.3 Tower-Creation Phase

In the following, as a slight abuse of notation, we will use “(a segment of) a consecutive robots”

with the meaning “a segment of a consecutive nodes, each occupied by a robot of multiplicity one,

i.e., a single robot”. Similarly, “a tower” may stand for “a node occupied by a tower”.

The second phase of the protocol is Tower-Creation. This phase begins with a configuration of

type D, i.e., one of the configurations no-towers-final which consists of either a single block of

consecutive robots or two such blocks of the same size. The goal of this phase is to create one

or two towers in each block (depending on the parity of the number of robots per block). More

precisely, in a block of odd size there will be one tower, and in a block of even size there will be

two towers. In a block of odd size the tower is formed by the central robot (the player) moving to

the neighbor (the destination) containing the robot with the larger view (in the case when both

have the same view, an arbitrary adjacent node is chosen by the adversary). In a block of even size

the two towers are formed by the two central robots (the players) moving to their other neighbors

(their destination). The obtained configuration is called towers-completed. More precisely:

• towers-completed: Four types of such configurations exist:

(1) a segment of a consecutive robots followed by an empty node, followed by a tower, followed

by a segment of a− 1 consecutive robots, with 2a+ 1 = k;

(2) a segment of a− 2 consecutive robots followed by a tower, followed by two empty nodes

followed by a tower, followed by a segment of a− 2 consecutive robots, with 2a = k;

(3) two occurrences of segments of type (2); that is: a segment of a − 2 consecutive robots

followed by a tower, followed by two empty nodes followed by a tower, followed by a segment

of a− 2 consecutive robots, followed by b1 empty nodes, again followed by a− 2 consecutive

robots, a tower, two empty nodes, a tower, a − 2 consecutive robots, and b2 empty nodes,

with 4a = k and k + b1 + b2 = n;

(4) two occurrences of segments of type (1); that is: a segment of a consecutive robots followed

by an empty node, followed by a tower, followed by a segment of a − 1 consecutive robots,

followed by b1 empty nodes, again followed by a consecutive robots, a tower, an empty node,

a− 1 consecutive robots, and b2 empty nodes, with 4a+ 2 = k and k + b1 + b2 = n.

15

Configurations towers-completed are easily recognizable as each block of a no-towers-final config-

uration is transformed as follows (see Figure 2). A single block or two blocks of odd size 2a + 1,

with a ≥ 2, are transformed into towers-completed of type (1). A single block or two blocks of even

size 2a each, with a ≥ 3, are transformed into towers-completed of type (2).

All intermediate configurations (e.g., an even block with one tower only, or a pair of even blocks

with a tower formed in one) are called uncompleted-towers. More precisely:

• uncompleted-towers (to be read either clockwise or counterclockwise):

(1) a segment of a − 2 consecutive robots followed by a tower, followed by one empty node,

followed by a segment of a− 1 consecutive robots, with 2a = k;

(2) a segment of 2a consecutive robots followed by b1 empty nodes, followed by a segment of

a − 2 consecutive robots, a tower, two empty nodes, a tower, a − 2 consecutive robots, and

finally b2 empty nodes, with 4a = k and k + b1 + b2 = n;

(3) a segment of a − 2 consecutive robots followed by a tower, followed by one empty node,

followed by a segment of a − 1 consecutive robots, followed by b1 empty nodes, followed by

a segment of a− 2 consecutive robots, a tower, two empty nodes, a tower, a− 2 consecutive

robots, and finally b2 empty nodes, with 4a = k and k + b1 + b2 = n;

(4) a segment of a− 1 consecutive robots followed by one empty node, a tower, a segment of

a− 2 consecutive robots, b1 empty nodes, a− 1 consecutive robots, one empty node, a tower,

a segment of a− 2 consecutive robots, b2 empty nodes, with 4a = k and k + b1 + b2 = n;

(5) a segment of a− 1 consecutive robots followed by one empty node, a tower, a segment of

a− 2 consecutive robots, b1 empty nodes, a− 2 consecutive robots, a tower, one empty node,

a− 1 consecutive robots, b2 empty nodes, with 4a = k and k + b1 + b2 = n;

(6) a segment of 2a consecutive robots followed by b1 empty nodes, followed by a segment of

a−2 consecutive robots, followed by a tower, one empty node, a segment of a−1 consecutive

robots, and b2 empty nodes, with 4a = k and k + b1 + b2 = n;

(7) a segment of 2a+1 consecutive robots followed by b1 empty nodes, followed by a segment

of a− 1 consecutive robots, followed by a tower, one empty node, a consecutive robots, and

b2 empty nodes, with 4a+ 2 = k and k + b1 + b2 = n.

Notice that the players and their destination are unambiguously determined both in no-towers-final

and in uncompleted-towers configurations.

empty node

node occupied by a single robot

node occupied by a tower

(a)

(b)

Figure 2: Transformed blocks (a) of odd size (b) of even size

Theorem 3.2 Let k ≥ 17. The Tower Creation phase transforms in finite time the system from

a no-towers-final configuration with no engaged robots to a towers-completed configuration with no

engaged robots.

16

Proof: Let the configuration become no-towers-final at time t and let no robot be engaged at that

time. First notice that, by definition, an even block of a towers-completed configuration requires

at least 6 robots (odd blocks require 5), and such a size is always guaranteed by the condition

k ≥ 17. By definition of players, the players and their destination are uniquely determined. Since

no robot is engaged at time t, only the players will be allowed to move. Let Play(t) denote the

set of players at time t′ ≥ t, and let Still(t′) denote the set of those that at time t′ ≥ t have not

reached their destination yet. Let t1 > t be the first time |Still(t1)| < |Play(t)|. First observe that if

|Still(t1)| = 0 (i.e., all players have reached their destination) the configuration is towers-completed,

otherwise it is uncompleted-towers and the robots that moved at this time have reached their

destination. Further notice that, if the configuration is uncompleted-towers, Play(t1) = Still(t1);

i.e., the set of players coincides with Still(t1) and their destination is unchanged. As a consequence,

all engaged robots at time t1 are a subset of Still(t1); in other words, only robots in Still(t1) will

move and their destination is the same as at time t. Hence, at some time t′′ > t all robots in

Play(t) will be in their final position forming a towers-completed configuration, with no engaged

robots. �

3.4 Exploration Phase

Exploration starts when towers in the preceding phase are created. Note that the empty nodes

adjacent to towers have already been explored, so the segments of empty nodes between the trans-

formed blocks are the only ones possibly not yet explored. Each of these segments is explored in

the current phase using one or two robots closest to the segment. If k is even, such a segment must

lie between two segments of consecutive robots of equal size, and it is explored by the two border

robots that meet in the middle of the segment (either at the extremities of the central edge, or in

the central node). The obtained configuration is called terminal. More precisely:

• terminal (to be read either clockwise or counterclockwise): There are several types of such

configurations:

(EC1) a+ 1 consecutive robots followed by an empty node, followed by a tower, followed by

a segment of a− 2 consecutive robots, with 2a+ 1 = k;

(EC2) a− 3 consecutive robots, followed by a tower, two empty nodes, a tower, a− 3 consec-

utive robots, x empty nodes, a tower, x empty nodes, with 2a = k and k + 2x− 1 = n;

(EC3) a − 3 consecutive robots, followed by a tower, two empty nodes, a tower, a − 3 con-

secutive robots, x empty nodes, a tower, x empty nodes, a − 3 consecutive robots, a tower,

two empty nodes, a tower, a− 3 consecutive robots, y empty nodes, two consecutive robots,

y empty nodes, with 4a = k and k + 2x+ 2y − 1 = n;

(EC4) a − 1 consecutive robots, followed by one empty node, a tower, a − 2 consecutive

robots, x empty nodes, a tower, x empty nodes, a− 2 consecutive robots, a tower, one empty

node, a− 1 consecutive robots, y empty nodes, two consecutive robots, y empty nodes, with

4a+ 2 = k and k + 2x+ 2y − 1 = n;

(EC5) a − 2 consecutive robots, followed by a tower, one empty node, a − 1 consecutive

robots, x empty nodes, a tower, x empty nodes, a− 1 consecutive robots, one empty node, a

17

tower, a− 2 consecutive robots, y empty nodes, two consecutive robots, y empty nodes, with

4a+ 2 = k and k + 2x+ 2y − 1 = n.

In the case of odd k, the configuration starting the Exploration phase is a single block of odd size

with one tower, with a = (k− 1)/2 (hence in particular a ≥ 3), see Figure 2 (a). The unique player

is the robot in the segment of a − 1 consecutive robots, farthest from the tower. The destination

of this robot is its unique empty neighbor node. In a resulting configuration with a single isolated

robot, the player is this robot and its destination is the neighbor node toward the segment of a

consecutive robots. When the configuration contains a+1 consecutive robots followed by an empty

node, followed by a tower, followed by a segment of a−2 consecutive robots, all robots remain idle.

At this point we reach terminal configuration (EC1) and the exploration is completed.

In the case of even k, the configuration starting the Exploration phase is composed by either a single

block or two blocks with towers, see Figure 2. In this case two players are identified at the border

of each transformed block and their destination is their neighbor node towards the center of the

empty segment towards the neighboring block (or towards the other side of the same block). The

players keep being isolated robots until they either become neighbors in the middle of the segment

(configurations (EC3), (EC4) and (EC5) in the case of two blocks) or they form another tower

(configuration (EC2) in the case of a single block, and configurations (EC3), (EC4) and (EC5) in

the case of two blocks). In all these cases they form a terminal configuration and the exploration

is completed.

Theorem 3.3 The Exploration phase transforms the system from a towers-completed configuration

with no engaged robots to a terminal configuration with no engaged robots.

Proof: Let the configuration become completed-towers at time t and let no robot be engaged at

that time. By definition, the players and their destination are uniquely determined. Since no

robot is engaged at time t, only the players will be allowed to move. Let Play(t′) denote the set

of players at time t′ ≥ t, and let Still(t′) denote the set of those that at time t′ ≥ t have not

reached their destination yet. Let t′1 > t be the first time |Still(t1)| < |Play(t)|. First observe

that if |Still(t1)| = 0 (i.e., all players have reached their destination) the configuration is terminal,

otherwise the robots that moved at this time are closer to their destination and the players are still

unambiguously determined. Further notice that, if the exploration is not terminated, Play(t1) =

Still(t1); i.e., the set of players coincides with Still(t1) and their destination is unchanged. As a

consequence, all engaged robots at time t1 are a subset of Still(t1); in other words, only robots in

Still(t1) will move and their destination is the same as at time t. Hence, at some time t′′ > t all

robots in Play(t) will be in their final position forming a terminal configuration, with no engaged

robots. �

From Theorem 3.1 describing the conclusion of the Set-Up phase, from Theorem 3.2 guaranteeing

the termination of the Tower-Creation phase and from Theorem 3.3, we get the following result.

Theorem 3.4 Let 17 ≤ k < n. Algorithm Ring Exploration allows a team of k robots to

explore an n-node ring and enter a terminal state within finite time, provided gcd(n, k) = 1.

18

4 On the size of the minimum team

In this section we show that the minimum number of robots that can explore an n-node ring

regardless of their initial position, is logarithmic in n. More precisely, we have the following result.

Theorem 4.1 The minimum number ρ(n) of robots that can explore an n-node ring has the fol-

lowing properties:

1. ρ(n) ∈ O(logn);

2. there exists a constant c such that, for infinitely many n, we have ρ(n) ≥ c logn.

Proof: Let pj denote the j-th prime, and let pj# denote the pj-primorial, that is

pj# = Πj
i=1 pi (1)

An important property of the primorial is the following [40]:

lim
j→∞

(pj#)
1

pj = e . (2)

We will now prove each part of the theorem separately.

Part 1.

Let f(n) be the smallest integer coprime with n and larger than 16. Thus, by Theorem 3.4,

exploration is possible with f(n) agents. Hence, ρ(n) ≤ f(n).

Take j such that
pj#
13# ≤ n <

pj+1#
13# . We have f(n) ≤ pj+1. (Otherwise, all primes in {17, . . . , pj+1}

divide n and hence n ≥
pj+1#
13# , contradiction.) By property (2) we have 2 ≤ (pj#)

1

pj , for sufficiently

large j. Hence 2pj ≤ pj#, and thus pj ≤ log(pj#). Hence pj+1 ≤ log(pj+1#) = log(pj#)+log pj+1.

Since pj+1 ≤ pj#+ 1 ≤ 2 · 13# · n, we have ρ(n) ≤ f(n) ≤ pj+1 ≤ logn+ log(2 · 13# · n), which is

at most 3 log n, for sufficiently large n.

Part 2.

Let n be the least common multiple of integers 1, 2, . . . ,m. Let g(n) be the smallest integer not

dividing n. By Lemma 2.1 we have ρ(n) ≥ g(n). We have g(n) ≥ m + 1. The Prime Number

Theorem implies lnn
m

→ 1. Hence lnn ≤ 2m, for sufficiently large m. This implies the existence of

a constant c such that ρ(n) ≥ g(n) ≥ m+ 1 > m ≥ lnn
2 ≥ c logn. �

It should be noted that for some specific values of n, the number ρ(n) is constant. For example,

if n > 17 is prime, then Theorem 3.4 shows that 17 robots can explore the n-node ring, hence

ρ(n) ≤ 17.

19

5 Conclusions

In this paper we have analyzed the exploration problem in rings by asynchronous oblivious robots

that can see the environment but cannot communicate. This is a further step in the understanding

of how these robots’ capabilities, standard in continuous universes, can be exploited in the discrete

ones. Our results open several interesting problems.

First, the complete characterization of couples (n, k) for which exploration of the ring is solvable

remains open. In particular, what happens if the number k of robots is less than 17 ? A partial

answer has been given in [35], where it has been shown that no deterministic exploration is feasible

with fewer than five robots, whenever the size of the ring is even, and that five robots are sufficient

for any n that is co-prime with five.

Next, the problem of exploring other topologies and arbitrary graphs is a natural extension of

this work. Moreover, since the robots cannot communicate, they have to be able to observe the

environment; an immediate question is what happens if the robots can only see within a fixed

distance. Accuracy of vision as well as fault-tolerance are issues that should be also addressed by

future research.

Acknowledgment. This work was done during the stay of David Ilcinkas at the Research Chair

in Distributed Computing at the Université du Québec en Outaouais and at the University of

Ottawa, as a postdoctoral fellow. Andrzej Pelc was partially supported by the Research Chair in

Distributed Computing at the Université du Québec en Outaouais, Paola Flocchini was partially

supported by the University Research Chair of the University of Ottawa. This work was supported

in part by the Natural Sciences and Engineering Research Council of Canada under Discovery

grants.

References

[1] N. Agmon, D. Peleg, Fault-tolerant gathering algorithms for autonomous mobile robots, SIAM

Journal on Computing 36 (2006), 56–82.

[2] S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM Journal on Comput-

ing 29 (2000), 1164–1188.

[3] C. Ambühl, L. Gasieniec, A. Pelc, T. Radzik, X. Zhang, Tree exploration with logarithmic

memory, ACM Transactions on Algorithms 7 (2011), article 17.

[4] I. Averbakh and O. Berman, A heuristic with worst-case analysis for minimax routing of two

traveling salesmen on a tree, Discrete Applied Mathematics 68 (1996), 17–32.

[5] I. Averbakh and O. Berman, (p− 1)/(p+ 1)-approximate algorithms for p-traveling salesmen

problems on a tree with minmax objective, Discrete Applied Mathematics 75 (1997), 201–216.

20

[6] B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeal graph learning by a mobile robot,

Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT 1995),

321–328.

[7] M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a pebble: exploring

and mapping directed graphs, Proceedings of the 30th Annual ACM Symposium on the Theory

of Computing (STOC 1998), 269–278.

[8] M.A. Bender and D. Slonim, The power of team exploration: Two robots can learn unlabeled

directed graphs, Proceedings of the 35th Annual Symposium on Foundations of Computer

Science (FOCS 1994), 75–85.

[9] M. Betke, R. Rivest and M. Singh, Piecemeal learning of an unknown environment, Machine

Learning 18 (1995), 231–254.

[10] J. Chalopin, P. Flocchini, B. Mans, and N. Santoro, Network exploration by silent and oblivious

robots, Proceedings of the 36th Int. Workshop on Graph Theoretic Concepts in Computer

Science (WG 2010), LNCS 6410, 208–219.

[11] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Solving the robots gathering problem,

Proceedings of the 30th International Colloquium on Automata, Languages and Programming

(ICALP 2003), LNCS 2719, 1181–1196.

[12] R. Cohen, D. Peleg, Convergence properties of the gravitational algorithm in asynchronous

robot systems. SIAM Journal on Computing 34 (2005), 1516–1528.

[13] R. Cohen, D. Peleg, Robot convergence via center-of-gravity algorithms, Proceedings of the

11th International Colloquium on Structural Information and Communication Complexity

(SIROCCO 2004), LNCS 3104, 79–88.

[14] C. Cooper, R. Klasing, and T. Radzik, Searching for black-hole faults in a network using

multiple agents. Proceedings of the 10th International Conference on Principles of Distributed

Systems (OPODIS 2006), LNCS 4288, 320–332.

[15] J. Czyzowicz, L. Gasieniec, A. Pelc, Gathering few fat mobile robots in the plane, Theoretical

Computer Science 410 (2009), 481–499.

[16] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc, Searching for a black hole in synchronous

tree networks. Combinatorics, Probability & Computing 16 (2007), 595–619.

[17] S. Das, P. Flocchini, S. Kutten, A. Nayak, N. Santoro, Map construction of unknown graphs

by multiple agents, Theoretical Computer Science 385 (2007), 34–48.

[18] X. Défago and S. Souissi. Non-uniform circle formation algorithm for oblivious mobile robots

with convergence toward uniformity. Theoretical Computer Science 396 (2008), 97–112.

[19] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of Graph Theory 32

(1999), 265–297.

21

[20] A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Theoretical Com-

puter Science 326 (2004), 343–362.

[21] S. Devismes, Optimal exploration of small rings, Proceedings of the 3rd International ACM

SIGOPS/SIGACT Workshop on Reliability, Availability, and Security (WRAS 2010), pages

9:1–9:6.

[22] S. Devismes, F. Petit, and S. Tixeuil, Optimal probabilistic ring exploration by semi-

synchronous oblivious robots, Proceedings of the 16th International Colloquium on Structural

Information and Communication Complexity (SIROCCO 2009), LNCS 5869, 195–208.

[23] K. Diks, P. Fraigniaud, E. Kranakis and A. Pelc, Tree exploration with little memory, Journal

of Algorithms 51 (2004), 38–63.

[24] C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Optimal constrained graph exploration,

Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001),

807–814.

[25] R. Fleischer, G. Trippen, Exploring an unknown graph efficiently, Proceedings of the 13th

European Symposium on Algorithms (ESA 2005), LNCS 3669, 11–22.

[26] P. Flocchini, D. Ilcinkas, A. Pelc, N. Santoro, Remembering without memory: tree exploration

by asynchronous oblivious robots, Theoretical Computer Science 411 (2010), 1544–1557.

[27] P. Flocchini, D. Ilcinkas, A. Pelc, N. Santoro, Computing without communicating: ring explo-

ration by asynchronous oblivious robots, Proceedings of the 11th International Conference on

Principles of Distributed Systems (OPODIS 2007), LNCS 4878, 105–118.

[28] P. Flocchini, D. Ilcinkas, N. Santoro, Ping-Pong in dangerous graphs: Optimal black hole

search with pure tokens, Algorithmica (2011), in press.

[29] P. Flocchini, G. Prencipe, N. Santoro, Computing by Mobile Robotic Sensors, Chapter 3 of

[37], 2011.

[30] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Arbitrary pattern formation by asyn-

chronous, anonymous, oblivious robots, Theoretical Computer Science 407 (2008), 412–447.

[31] P. Fraigniaud, L. Gasieniec, D. Kowalski, A. Pelc, Collective tree exploration, Networks 48

(2006), 166–177.

[32] G. N. Frederickson, M. S. Hecht and C. E. Kim, Approximation algorithms for some routing

problems. SIAM Journal on Computing 7 (1978), 178–193.

[33] R. Klasing, A. Kosowski, A. Navarra, Taking advantage of symmetries: Gathering of many

asynchronous oblivious robots on a ring. Theoretical Computer Science 411 (2010), 3235–3246.

[34] R. Klasing, E. Markou, A. Pelc, Gathering asynchronous oblivious mobile robots in a ring,

Theoretical Computer Science 390 (2008), 27–39.

22

[35] A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil, Optimal deterministic ring explo-

ration with oblivious asynchronous robots, Proceedings of the 17th International Colloquium

on Structural Information and Communication Complexity (SIROCCO 2010), LNCS 6058,

183–196.

[36] S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil, Asynchronous mobile robot gathering from

symmetric configurations without global multiplicity detection, Proceedings of the 18th Inter-

national Colloquium on Structural Information and Communication Complexity (SIROCCO

2011), LNCS 6796, 150–161.

[37] S. Nikoletseas and J. Rolim (Editors), Theoretical Aspects of Distributed Computing in Sensor

Networks, Springer, 2011.

[38] P. Panaite and A. Pelc, Exploring unknown undirected graphs, Journal of Algorithms 33

(1999), 281–295.

[39] G. Prencipe, Impossibility of gathering by a set of autonomous mobile robots. Theoretical

Computer Science 384 (2007), 222–231.

[40] S.M. Ruiz, A result on prime numbers, The Mathematical Gazette 81 (1997), 269.

[41] S. Souissi, X. Défago and M. Yamashita, Gathering asynchronous mobile robots with inaccu-

rate compasses. Proceedings of the 10th International Conference on Principles of Distributed

Systems (OPODIS 2006), LNCS 4305, 333–349.

[42] I. Suzuki, M. Yamashita, Distributed anonymous mobile robots: formation of geometric pat-

terns. SIAM Journal on Computing 28 (1999), 1347-1363.

23

