Synchronous Systems

Overcoming Transmission Costs: 2-bit Communication

Any information can be transmitted using 2 BITS

Try to transmit the value 1.384.752.600 with 2 bits

A wants to send value X to B.

BITS: 2

Silence is expressive

The protocol

2-Party Communication

2-bits Communicators

A wants to send value X to B.

A wants to send value X to B.

•Sends b₁ at time t, where:

$$b_1 = \begin{cases} 0 \text{ si } x \text{ even} \\ 1 \text{ if } x \text{ odd} \end{cases}$$

•Waits $y = \lfloor x/4 \rfloor$

$$b_2 = \begin{cases} 0 \text{ si } \lfloor x/2 \rfloor \text{ even} \\ 1 \text{ if } \lfloor x/2 \rfloor \text{ odd} \end{cases}$$

BITS 2 [X/4]

• Receives b₁ at time t₁

.....b₂

Receives b₂ at time t₂

$$X = 2 \bullet (2 \bullet (t_2 - t_1) + b_2) + b_1$$

BIT	TIME
2	X
2	[X/2]
2	[X/2] [X/4]
3	?
4	?
	•••

3-Bit Communicators

How much to wait so that X can be efficiently reconstructed from (t"-t") and (t"'-t")?

To communicate X with 3 bits

3-Bit Communicators

The receiver, to decode the information must compute:

$$(t''-t')^2-(t'''-t'')$$

In the example:

$$(7)^2 - (9) = 49-9 = 40$$

BITS	TIME
3	O([√ <i>X</i>])

Another Example:

$$X = 23 \qquad \left\lceil \sqrt{X} \right\rceil$$

$$q_0 = \left\lceil \sqrt{23} \right\rceil = 5$$

$$q_1 = 25-23 = 2$$

$$t = 0$$
 send b_0 receive b_0 $t_0 = 1$
wait 5
send b_1 receive b_1 $t_1 = 6$
wait 2
send b_2 receive b_2 $t_2 = 8$

$$(t_1 - t_0)^2 - (t_2 - t_0)$$

$$25 - 2 = 23$$

k-bits Communicators

BITS	TIME
k	$O(\lceil k X^{1/k} \rceil)$

With communicators we achieve communication between neighbours

PIPELINE technique

To communicate at a distance

Example: With communicators

communicate: "30"

With PIPELINE

communicate: "30"

PIPELINE

Example: communicate the maximum

Min-finding and Election

overcoming the lower bound by "Speeding"

General Idea: Messages travel at different speed

- Knowledge of n is not necessary
- unidirectional version
- synchronous

We assume simultaneous start, but it is not necessary

Two ways of eliminating Ids:

- Like in AS FAR, large Ids are stopped by smaller Ids
- -Small Ids travel **faster** so to catch up with larger Ids and eliminate them.

Each message travels at a speed which depends on the identity it contains.

Identity i travel at some speed f(i)

Speed is assumed to be unitary, the same for every message. How can we change it?

By introducing appropriate **DELAYS**

When a node receives a message containing *i*, it waits f(i) ticks.

When a node receives its own id, it becomes the leader and send a notification message around the ring. This message will not be delayed.

E.g.,
$$f(i) = 2^{i}$$

When a node receives a message containing i, it waits 2^{i} ticks.

When a node receives its own id, it becomes the leader and send a notification message around the ring. This message will not be delayed.

In time $2^{i}n + n$ the smallest Id *i* traverses the ring

Let the second smallest be i+1 (with waiting time 2^{i+1}). How many links does it have the time to traverse (at most) while the smallest Id goes around?

 $(2^{i}n+n)/2^{i+1}$

roughly n/2 links

Complexity

The smallest identity *i* is the quickest to go around the ring

Messages: n O(n)

Time: $2^{i}n + n$ units $O(2^{i}n)$

The second smallest id: i + 1

in time: $2^{i}n + n$ has traversed $(2^{i}n + n)/(2^{i+1} - (n/2))$ links

The third smallest id: i + 2

in time: $2^{i}n + n$ has traversed $(2^{i}n + n)/(2^{i+2} - \cdots (n/4))$ links

• • •

The jth id

in time: $2^{i}n + n$ has traversed $2^{i}n+n$ / 2^{i+j} --- $(n/2^{j})$ links

Total number of messages

$$\sum_{i=1}^{n-1} n/2^{i} = n \sum_{i=1}^{n} 1/2^{i} = O(n)$$

Total Time

j = 1

 $O(2^i n)$

BITS	TIME
O(n log ld)	O(2 ⁱ n)

i : smallest id

Id : biggest id

Min-finding and Election

The cost of election can be reduced by using different techniques:

waiting and guessing

Waiting

Idea: The entities wait for some condition to happen before doing something

synchronous ring

- Knowledge of n
- Identities are integers
- In this example the ring is unidirectional but it could be done in the bidirectional

Waiting

With Simultaneous Initiation

- 1. Each awake entity waits a certain amount of time
- 2. If nothing happens it becomes the leader and notifies the others.

Entity with identity i must wait an appropriate amount of time f(i,n).

(let us assume that they start all simultaneously for the moment)

Let x be the minimum

Let d(x, y) be the distance between x and y (x < y). Function f(.,.) must be such that $\forall y$:

$$f(x,n) + d(x,y) < f(y,n)$$

Function f(.,.) must be such that, if x is the minimum, $\forall y$:

$$f(x,n) + d(x,y) < f(y,n)$$

This must be true in the worst case, i.e., when

$$y = x + 1$$
 and $d(x, x + 1) = n - 1$.

$$\begin{cases}
f(0,1) = 0 \\
f(x+1,n) - f(x,n) > n-1
\end{cases}$$

A solution is f(x,n) = xn

$$(x+1)n - xn = xn-n-xm = n > n-1$$

Example:

$$f(x,n) = xn$$

Complexity

Bits: Only the smallest entity send messages

n bits

Time:

 $Id_{\min} \bullet n + n$

BITS	TIME
O(n)	O(<i>Id</i> _{min} •n)

Compare with "Speed"

BITS	TIME
O(n log I _{max})	O(2 ^{Idmin} n)

Without Simultaneous Initiation

1) WAKE UP

when I spontaneously start, I wake up my neighbour before starting the waiting process. An inactive entity: receiving the wake-up msg, forwards it and start the waiting process.

t(x): time when x becomes awake

It is easy to see that

We have id(x) < id(y)

x must finish waiting before any y and its message should reach y while still waiting, so we want:

$$t(x) + f(x,n) + d(x, y) < t(y) + f(y,n)$$

Easy to see that: f(x,n) = 2 n xguarantees the inequality

Universal Waiting

- 1) Wake-up (Start messages) are sent around
- 2) As soon as an entity becomes ACTIVE, it starts waiting f(x) time units
- 3) If, while waiting, nothing happens, x decides it is the minimum and send a Stop message around
- 4) If an entity receives Stop while waiting, determines it is not the minimum and forwards the Stop messgae

$$f(x) = 2 x n$$

would still be ok

Guessing

Used to compute a function of the input values without transmitting the actual values.

Search Process

- 1. Try to guess the result
- 2. Verify your guess
- 3. If it's correct, ok
- 4. Otherwise go-to 1

Example: Find the minimum value in a ring of known size.

- The Ids are not necessarily distinct
- *n* is known
- The entities start at the same time

If the entities predefine a sequence of guesses:

$$g_1, g_2, ... g_k$$

For each guess g_i , they collectively verify

Verification function

DECIDE (g)

Every entity compares its value ID with g

If ID $\leq g$, send a message.

Otherwise (ID > g) only forward arriving messages

Example

DECIDE (g)

Every entity compares its value with g
if value ≤ g send a message.
else forward any received message

Example

DECIDE (g)

Every entity compares its value with g if value $\leq g$ send a message.

else forward any received message

all values > g

SILENCE

at least one value ≤ g:

MESSAGES

Everybody finds out within n time units

DECIDE (g)

Every entity compares its value with g if value $\leq g$ send a message.

else forward any received message

After n time units

i) Nothing happens

All the Ids are bigger than g

ii) A message is received

There is at least one Id smaller then or equal to g

GUESSING GAME: Our guess is g

silence overestimate overestimate

GUESSING GAME: Our guess is g

underestimate

overestimate

0 bits n bits

n time units n time units

At the end everybody is DECIDED The decision could be low or high

Sequence of guesses:

$$g_1, g_2, ... g_k$$

 $DECIDE(g_i)$

 $choose(g_{i+1})$

 $\mathsf{DECIDE}(g_{i+1})$

• • • •

DECIDE(g)

GUESSING GAME: how about **g**?

Every question costs

n time units

0 bits

underestimate

n bits

overestimate

GOAL: $\Theta(n)$ BITS

O(1) overestimates

We would like a strategy that

MINIMIZES the number of overestimates

Question: What can I do with ONE over-estimate only ????

What can I do with TWO over-estimate only ????

ONE over-estimate allowed

Assumption: the number to guess is **between 1 and M**

Try: 1,2,3,4

Until you get an overestimate
You found the value to guess

TIME BITS $O(n id_{min})$ O(n) W.C. O(M)

ONE over-estimate allowed

- **Q** # of guesses (worst case)
- K # overestimates

Linear Search:

1 M

sequential search

TWO over-estimates allowed

Q # of guesses (worst case)

K # overestimates

<u>M</u>

K=2

TWO over-estimates allowed

Q # of guesses (worst case)

K # overestimates

$$K=2 \longrightarrow Q = 2 M^{1/2} - 2$$

sequential search on

κ=1 sequential search on

In general, complexity:

TIME BITS
$$O(n \text{ M id}^{1/k})$$
 $O(k \text{ n})$ K constant

