Synchronous Systems

O Ol O &

XN NN NN N
_. _ O

t=i+2 t=i+3

Overcoming Transmission Costs:
2-bit Communication

Any information can be transmitted using 2 BITS

Try to transmit the value 1.384.752.600 with 2 bits

A wants to send value X to B.

v

I I I
! t I ! t =t+1 I
| |

i ek - .

: /N ; : /N ;
| esends a bit at time t ! ! ereceives at time t+1 !
| I 1 "
| |

' ewaits X units E i E
| I 1 "
: t+ X ! vt =t !
:] ! : =~ !
: ! |
| 1 \
I 1 "
| 1 |

BITS:

TIME: X Silence is expressive

The protocol

[

Start counting
=~

Stop counting
=~

2-Party Communication

2-bits Communicators

A wants to send value X to B.

esends a bit b,, where:

t | | t :
¥ =Sl L=
N\ ; ; AN

esends a bit b, ! | ereceives a bit b, !
ewaits | X/2 | units : : :
tlx2 ! -t i

s : = |

=& O S -~ . !

_ {(zifxis even
ol _Wifxisodd ______; . l _____________

A wants to send value X to B.

eSends b, at time t, where:
o = {Cl) si x even
1 if x odd

eWaits y = | x/4]

eReceives b, at time t,

15

eSends b,, where:

_ JOsi|x/2] even
b, = {1 if | x/2] odd

TIME X/ 4] X=2e(2e(t,-t;)+b,)+b;

BIT

A W INDNNDN

3-Bit Communicators

To communicateX r--======-(B J----=---m---

with 3 bits

v

v

(am o
-
-
-

; O v-v

How much to wait so that X can be efficiently
reconstructed from (t”’-t’) and (t"’-t”’) ?

To communicate X
with 3 bits

3-Bit Communicators

(Ex: X=40)

Wait([vVX])
Wait(7)

Send another bit

Wait([vX]2-X)
Wait(49 - 40) = 9

attime 7+9=16

e m m mm m mm mm mm m m] Em Em Em -

(at time 1)

(at time 8)

Compute t” —

Receive at time t
(at time 17)

Compute t'”" —t”

Receive at time t’

Receive at time t”

tl

(=7)

(=9)

The receiver, to decode the information must compute:

(tII _ tl)z _ (tlll _ tll)

In the example:
(7)>—-(9) =49-9=40

BITS TIME

3 O([vX 1)

Another Example:

X =23 (VX] [VXT2-X
6= [V23] =5 G = 257237
t=0 send b, receive b, t,=1

wait 5
send b, receiveb, t;=6
wait
send b, receiveb, t,=8

(tl'to)2 - (tz_to)

25—-2=123

k-bits Communicators

BITS TIME

k O [k x¥1)

With communicators we achieve communication
between neighbours

2%
AN

PIPELINE technique
To communicate at a distance

r——X—X—x—2

Example: With communicators

communicate: “30”

(D ® O—O) —O—O

Start bit

O — 1
wait 30

wait 30

61 — 62— 63

With PIPELINE

communicate: “30”

C—O—O—0O—0O—~0
Start bit
0

wait 30

Endbit 39 ——* 31 —— 32 —>33 —> 3 — 35

PIPELINE

Example: communicate the maximum

Start bit
0 1 2 3 4 5
wait (2) (9)
+1 +1 +1 +1 +1
2 3 11 12 15 18
f f f f o f
Wait its own Wait 7= 9-2 No wait Wait 2= 11-9 Max =13 =18-5

value 2

Min-finding and Election

overcoming the lower bound by
“Speeding”

General Idea: Messages travel at different speed

e Knowledge of n is not necessary
e unidirectional version
e synchronous

We assume simultaneous start, but it is not necessary

Two ways of eliminating Ids:

- Like in AS FAR, large Ids are stopped by smaller Ids

-Small Ids travel faster so to catch up with larger Ids
and eliminate them.

Each message travels at a speed which depends on the identity it contains.

Identity i travel at some speed f(i)

Speed is assumed to be unitary, the same
for every message. How can we change it ?

By introducing appropriate DELAYS

When a node receives a message containing /, it waits f(i) ticks.

When a node receives its own id, it becomes the leader and send a
notification message around the ring. This message will not be delayed.

NOTIFICATION

E.g., f(i) =2

When a node receives a message containing i, it waits 2’ ticks.

When a node receives its own id, it becomes the leader and send a
notification message around the ring. This message will not be delayed.

NOTIFICATION

In time 2'n + n the smallest Id i traverses the ring

Let the second smallest be i+1 (with waiting time 2*1).
How many links does it have the time to traverse (at most) while
the smallest Id goes around ?

(2/n+n) / 2i+1]
roughly n/2 links

Wait 21(i.e., leave at t=5)

Wait 21(i.e., leave at t=5)

Wait 21(i.e., leave at t=5)

3 Wait 23

5 Wait2°

8 Wait 28

ait 22 (i.e., leave at t=9)

1 Wait 2, (i.e.,leave at t=8)

ait 22 (i.e., leave at t=9)

ait 22 (i.e., leave at t=9)

1 Wait 2
l.e., leave at t=11)

ait 22 (i.e., leave at t=9)

2N
@ t=10

1 Wait 2
l.e., leave at t=11)

2 Wait 22 (i.e., leave at t=14)

2 Wait 22 (i.e., leave at t=14)

2
@ t=11

1 Wait2
(i.e., leave at t=14)

2 Wait 22 (i.e., leave at t=14)

2-2
@ t=15

Wait 22
(i.e., leave at t=19)

Wait 2
(i.e., leave at t=17)

-
@ t=17

Wait 22
(i.e., leave at t=19)

Complexity

The smallest identity / is the quickest to go around the ring

Messages: n O(n)
Time: 2'n +n units 0O(2'n)

The second smallest id: i+ 1

in time: 2’n +n has traversed (2'n +n)/ 2"*1 - (n / 2) links

The third smallest id: i + 2 | |
intime: 2n+n has traversed (2'n +n)/ 272 -—- (n / 4) links

The jthid

intime: 2n +n has traversed 2'n+n) [2" - (n /2)) links

Total number of messages

n-1

Z n/2 = n21/2=0(n)

Total Time

O(2'n)

BITS TIME
O(n log Id) O(2'n)
i : smallest id

Id

: biggest id

Min-finding and Election

The cost of election can be reduced
by using different techniques:
waiting and guessing

Waiting

Idea: The entities wait for some condition to happen before
doing something

synchronous ring
e Knowledge of n
e |dentities are integers
e |n this example the ring is unidirectional but it could be done
in the bidirectional

Waiting

With Simultaneous Initiation

1. Each awake entity waits a certain amount of time
2. If nothing happens it becomes the leader and
notifies the others.

| —

Entity with identity i must wait an appropriate amount of time

Ai;n).

(let us assume that they start all simultaneously for the
moment) Let x be the minimum
Let d(x, y) be the distance between x and y (x <).
Function f(.,.) must be such that Vy:

f(x,n) + d(x, y) < f(y,n)

Function f{(.,.) must be such that, if x is the minimum,
Vy:

f(x,n) + d(x, y) < f(y,n)

XS
/>
&2,
TN\
>
o 72
- K
/)
(&
8

- </
o g va
\Vl
A 7

> o
o",""f?» ’

This must be true in the worst case, i.e., when

y=x+1and d(x,x+1)=n-1.

f(0,1) =0
f(x+1,n) - f(x,n) > n-1

A solution is f(x,n) = xn

(x+1)n - Xxn = xn-n-xm =n > n-1

Example:

'

f(x,n) = xn

n =

X =3
nx =21
X+1 =4
n(x+1l) =28

Complexity

Bits: Only the smallest entity send messages n bits
Time: Id_ .. ®n+n
BITS TIME
O(n) O(/d,.,*n)

Compare with “Speed”

BITS TIME

O(nlog!,,) O(2/dmin)

Without Simultaneous Initiation

1) WAKE UP

when | spontaneously start, | wake up my neighbour
before starting the waiting process.

An inactive entity: receiving the wake-up msg,
forwards it and start the waiting process.

t(x): time when x becomes awake

It is easy to see that

forall y
t(x) - t(y) <n

We have id(x) < id(y)

X must finish waiting before any y and its message
should reach y while still waiting, so we want:

t(x) + f(x,n) + d(x, y) < t(y) +f(y ,n)

Easy to see that: f(x,n) =2 nx
guarantees the inequality

Universal Waiting

1) Wake-up (Start messages) are sent around

2) As soon as an entity becomes ACTIVE, it starts

waiting f(x) time units

3) If, while waiting, nothing happens, x decides it is
the minimum and send a Stop message around

4) If an entity receives Stop while waiting, determines

it is not the minimum and forwards the Stop messgae

f(x)=2xn
would still be ok

Guessing

Used to compute a function of the input values without
transmitting the actual values.

Search Process

1. Try to guess the result
2. Verify your guess

3. If it’ s correct, ok

4. Otherwise go-to 1

Example: Find the minimum value in a ring of known size.

e The lds are not necessarily distinct
e nisknown
e The entities start at the same time

If the entities predefine a sequence of guesses:

di1, 95, --- G

For each guess g, they collectively verify

Verification function

DECIDE (g)
Every entity compares 1ts value ID with g
If ID = g, send a message.

Otherwise (ID > g) only forward arriving
messages

Example
-/m

DECIDE (g)

Every entity compares its value with g
if value = g send a message.
else forward any received message

Example

DECIDE (qg)
Every entity compares its value with g
if value = g send a message.
else forward any received message

all values > g —S{LENCE

at least one value < g: —MESSAGES

DECIDE (qg)
Every entity compares 1ts value with g
if value = g send a message.
else forward any received message

After n time units
i) Nothing happens

All the Ids are bigger than g
ii) A message is received

There is at least one Id smaller then or equal to g

silence messages

GUESSING GAME: Ourguessisg

underestimate

silence messages

GUESSING GAME: Ourguessisg

underestimate

O bits n bits

n time units n time units

START We call this an overestimate (but could be correct)

Spontaneously
set alarm = c(x)+n
If id(x) < g then

decision = high
send(high) to right
become(DECIDED)
Else
become(UNDECIDED) UNDECIDED

receiving(high)
decision=high
send(high)

become(DECIDED)
| don’ t know When c(x)=alarm

decision=low

become(DECIDED)

At the end everybody is DECIDED
The decision could be low or high

Sequence of guesses:

gl’ g2' gk
DECIDE(g,)
choose(g,,,)
DECIDE(g.,,) DECIDE(qg)
TIME BITS
/\
0 n

(under-estimate)

(over-estimate)

GUESSING GAME: how about g ?

Every question costs n time units

n bits

GOAL: ©(n)BITS - =—> O(1) overestimates

We would like a strategy that
MINIMIZES the number of overestimates

Question: What can | do with
ONE over-estimate only ??7?7?

What can | do with
TWO over-estimate only ????

ONE over-estimate allowed

Assumption: the number to guess is between 1 and M

1 Linear Search:

H e

Try:1,2,3,4

Until you get an overestimate
You found the value to guess

TIME BITS
O(nid.;,)

O(n)
W.C. O(M)

ONE over-estimate allowed

Q # of guesses (worst case)
K # overestimates

Linear Search:

1

sequential search
K=1 — Q=M-1

TWO over-estimates allowed

Q # of guesses (worst case)
K # overestimates

K

=2

TWO over-estimates allowed

Q # of guesses (worst case)
K # overestimates

SR S A A

+—>

M1/2

K=2 — Q=2M"-2

sequential searchon e e e @

K=1 sequential search on

TWO over-estimate allowed

VM M Um

194

o—0—0 oo
seq 2 VM underestimates

2 overestimates

W.C.

In the T TmE BITS
last interval O(n M2) 0(2 n)
In general, complexity:

TIME BITS
O(n M id/k) O(k n)
K constant

Is this the optimal strategy ?

