Traversal
Depth First Search

Assumptions

Single initiator
Bidirectional links
No faults
G connected

S = {INITIATOR, SLEEPING, ACTIVE, DONE}

DF

1) When receiving the token: if it is the first time, remember who sent (my parent),
forward the token to one of the unvisited neighbours, become viISITED
wait for the return token i:u

A A&

2) When receiving a token: if already visited, ﬂ back

send the token back saying itis a back edge /\

3) When receiving a return token: send the token to an unvisited neighbour (if any)

1A

DF

4) When receiving a return token: If there are no more unvisited neighbours,
return the token to the parent

R

=

FUN 2012

Complexity

Message Complexity:

Type of messages: token, back, return

k/ ! 2m = O(m)

either
X return (if IDLE when received the token first)
oback

Time Complexity:

i i Totally sequential
(ideal time) 2m = 0(m) y seq

Q2(m) is also a lower bound

Note:
most messages are on Back Edges

---> most time is spent on Back Edges

Idea: avoid sending messages on back edges

How ?

DF+ Improving Time

After being visited, | tell my neighbours so that
they know that | already received the token !!!

DF+ Improving Time

After being visited, | tell my neighbours so that
they know that | already received the token !!!

| wait for their reply to be sure that they know

DF+ Improving Time

Then | send the token to an unvisited neighbour

DF+ Improving Time

DF+ Improving Time

At any time anyone knows who, among its neighbours,
has been already visited and who has not !!!!

DF+ Improving Time

At any time anyone knows who, among its neighbours,
has been already visited and who has not !!!!

DF+ Improving Time

R
P

At any time anyone knows who, among its neighbours,
has been already visited and who has not !!!!

DF+ Improving Time

At any time anyone knows who, among its neighbours,
has been already visited and who has not !!!!

DF+ Improving Time

At any time anyone knows who, among its neighbours,
has been already visited and who has not !!!!

DF+ Improving Time

| know where
to send the token
To find an unvisited neighbour

DF+ Improving Time

DF+ Complexity Message

Messages: Token, Return, Visited, Ack (ok)

Each entity (except init): receives 1 Token, sends 1 Return:

2(n-1)
Each entity:
1 Visited to all neighbours except the sender
Let s be
the initiator

IN(s)| + 2 (IN(x)]-1)

X#S

2m - (n-1)

(same for Ack)

TOT: 4m

DF+ Complexity Time (ideal time)

Token and Return are sent sequentially: 2(n-1)

Visited and Ack are done in parallel: 2n

TOT: 4n -2

Summarizing:

DF Traversal

Messages Ideal Time

DF: 2m 2m

DF+: 4m 4n -2

DF++

Do not send the Ack
What happens ?

DF++

Do not send the Ack
What happens ?

DF++

Do not send the Ack
What happens ?

DF++

Do not send the Ack
What happens ?

DF++

Do not send the Ack
What happens ?

DF++

Do not send the Ack
What happens ?

Mistake: A token is sent to an already visited node (= back edge)

DF++

Do not send the Ack
What happens ?

Mistake: A token is sent to an already visited node (= back edge)

Both nodes will eventually understand the “mistake”

DF++

Do not send the Ack
What happens ?

Mistake: A token is sent to an already visited node (= back edge)

Both nodes will eventually understand the “mistake”

and pretend nothing happened

DF++

Do not send the Ack
What happens ?

Both nodes will eventually understand the “mistake”
pretend nothing happened

and continue with the algorithm

DF++ Complexity Message

Messages: Token, Return, Visited,

Each entity (except init): receives 1 Token, sends 1 Return:

2(n-1)
Each entity:
1 Visited to all neighbours except the sender
2m - (n-1)

In the worst case there are two “mistake-token”
on each link except for the tree links 2(m-n+1)

TOT: <4m —n +1

DF++ Complexity Time

BUT when we measure ideal time:

“mistakes” will not happen

Time = 2(n-1)

Summary

Messages Ideal Time
DF: 2m 2m
DF+: 4m 4n -2
DF++ 4m-n+1 2n-1

Observations

Time ...

Termination ...

An application:
access permission problems, e.g., Mutual Exclusion

Any Traversal does a Broadcast (not very efficient)
The reverse is not true.

Another Traversal: Smart Traversal

1- Build a Spanning Tree with SHOUT+

Messages = 2m

2- Perform DF Traversal

Messages = 2(n-1)

Total Messages = 2(m+n-1)

Another Traversal: Smart Traversal

1- Build a Spanning Tree with SHOUT+

Time < d+1 d: diameter

2- Perform DF Traversal

Time = 2(n-1)

Total Time < 2n+d-1

Summary

Messages Ideal Time
DF: 2m 2m
DF+: 4m 4n -2
DF++ dm-n+1 2n-1
Smart 2m+2n-2 2n+d-1

Computations with Multiple initiator: WAKE-UP

©
O O 0° o

00 O m o0 O
O @ ®e

FLOOD solves the problem.

General FLOOD algorithm: O(m)

i ?
More precisely: 2m -n +k* WHY

M

n. of initiators
1 init = broadcast = 2m -n+1 All init = 2m

Computations with Multiple initiator: WAKE-UP

In special topologies ?

Flood is optimal n+k*-2

Computations with Multiple initiator: WAKE-UP

Broadcast

Flood Specific
Om = O(n)

Wakeup
Flood Specific

C2(n2)

Need additional assumptions
to reduce the complexity

Broadcast

Flood Specific
O(n log n) O(n)

Wakeup

Flood Specific

Q(n log n)

