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Sampling is a fundamental operation in all image communication
systems. A time-varying image, which is a function of three inde-
pendent variables, must be sampled in at least two dimensions for
transmission over a one-dimensional analog communication chan-
nel, and in three dimensions for digital processing and transmis-
sion. At the receiver, the sampled image must be interpolated to
reconstruct a continuous function of space and time. In imagery
destined for human viewing, the visual system forms an integral
part of the reconstruction process.

This paper presents an overview of the theory of sampling and
reconstruction of multidimensional signals. The concept of sam-
pling structures based on lattices is introduced. The important
problem of conversion between different sampling structures is
also treated. This theory is then applied to the sampling of time-
varying imagery, including the role of the camera and display
apertures, and the human visual system. Finally, a class of nonlinear
interpolation algorithms which adapt to the motion in the scene is
presented.

l.  INTRODUCTION

Any image transmission system requires an initial sam-
pling and reformatting operation which converts the origi-
nal signal, in general a function of three independent
variables (space and time), into a one-dimensional signal
suitable for transmission over a communication channel. At
the receiver an interpolation operation is carried out to
convert the sampled signal back into a physically displayed
image. In conventional analog television, the sampling is
carried out in two dimensions only (vertical and temporal),
by means of interlaced scanning. In digital processing and
transmission systems, a full three-dimensional sampling is
required.

A conceptual representation of an image sampling and
reconstruction system is shown in Fig. 1. A time-varying
scene is projected onto an image plane by an optical
system, and a component such as luminance or a tristimu-
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lus value is extracted to give a continuous function of space
and time u(x,, x,, t). This signal is filtered by a continuous
three-dimensional low-pass filter and then sampled on a
discrete set of points in space and time referred to as the
sampling structure. The prefilter is required to suitably
band-limit the input signal to avoid aliasing introduced by
the sampling process. The sampled signal can then be
digitally processed, stored, coded, etc. At the receiver, the
signal must be interpolated to restore a continuous func-
tion of space and time for display and viewing. As will be
seen, the operations in Fig. 1 cannot be neatly isolated in
most practical systems. The general goal of a sampling
system is to give the best possible rendition of the original
image for a given spatiotemporal sampling density by ap-
propriate choice of preprocessing, sampling structure, post-
processing, and interpolation. The response of the visual
system should be considered when evaluating the perfor-
mance of a system for the sampling and reconstruction of
imagery destined for human viewing. A related problem is
the conversion between different sampling structures in
systems where more than one structure is used, or in
interfacing different systems.

There has recently been intense activity in problems
related to the sampling process, in order to provide higher
quality pictures for the next generation of television sys-
tems. Examples are in high-definition television, extended-
definition television, and camera and receiver processing
for enhanced-quality television. At the opposite end of the
spectrum, subsampling is a key technique in coding systems
for very low data rates. These topics are all treated elsewhere
in this special issue.

The goal of this paper is to present a general framework
for the study of image sampling and interpolation, and to
relate it to the specific application areas cited above. in
Section 11, the mathematical theory of sampling and inter-
polation of multidimensional signals is presented. The con-
cept of sampling structure is introduced, and the Fourier
representation and processing of signals defined on these
structures is discussed. The multidimensional sampling the-
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orem is then presented, and finally processing for sampling
structure conversion is treated. Section IlI then specializes
this theory to the three-dimensional case of time-varying
imagery. The role of the camera and display apertures and
the human visual system in the sampling and reconstruction
process are considered. Then structures suitable for image
sampling are presented and evaluated. The sampling of
color imagery is also discussed in this section. Techniques
for interpolation are presented in Section V. In particular, a
special class of nonlinear interpolation schemes which adapt
to the motion in the scene is described. These techniques
recognize the special structure present in time-varying
imagery due to the motion of objects, and also the differing
resolution requirements of the human observer in moving
and stationary areas.

Il SAMPLING OF MULTIDIMENSIONAL SIGNALS VE

The basic operation is any image-sampling system is the
specification of the image intensity or color on some regu-
lar array of points in space and time. The concept of a
lattice, of importance in such areas as the geometry of
numbers [1] and solid-state physics [2], is the basic tool in
the study of image sampling. The theory of sampling multi-
dimensional signals on a lattice was presented by Petersen
and Middleton [3], and was later extended to periodically
weighted sampling on a lattice [4]. A special case of periodi-
cally weighted sampling is sampling on a superposition of
shifted lattices [5], [6]. This section presents the mathemati-
cal theory of sampled multidimensional signals, including
the necessary results from the theory of lattices, Fourier
transform representations, sampling of continuous signals,
and conversion between different sampling structures.
Image sampling has often been studied by representing it as
the multiplication of the continuous signal with a regular
array of Dirac delta functions. Although this is quite satis-
factory for characterizing the sampling process alone, it
makes the subsequent analysis of digital processing of the
sampled signal difficult. This approach has thus been virtu-
ally abandoned in one-dimensional signal processing. In
this paper, we adopt the approach that the sampled signat
is truly discrete in space and time, with values only defined
at the sample locations (7).

Although we are mainly concerned with the sampling of
three-dimensional functions (i.e., time-varying two-dimen-
sional images), the theory is easily developed for arbitrary
dimension. Thus the theory in this section will be presented
for the arbitrary multidimensional case, and will be equally
applicable to still two-dimensional images, still three-
dimensional images, and moving three-dimensional images,
which are two-, three-, and four-dimensional signals, re-
spectively. Section H-E presents a concise summary of the
main results on lattices and sampling of continuous func-
tions in three dimensions which is sufficient background
for a first reading of Sections Il and IV. Thus the applica-
tion-oriented reader may wish to proceed directly to Sec-
tion lI-E on first reading.
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Conceptual representation of an image sampling and reconstruction system.

A. lLattices

Definition [1]: let w,.--, v, be linearly independent
real vectors in D-dimensional Euclidean space RP. A lattice
A in RP is the set of all linear combinations of v,,---, vy
with integer coefficients

A= {my + 0¥+ - +npvpln; € Z;"=1,'>".D}.

M
The set of vectors v,,- - -, v, is called a basis for A. A lattice
is a discrete additive Abelian group. Fig. 2(a) shows an
example of a lattice in two dimensions.

Let V be the matrix whose columns are the represen-
tation of the v with respect to the standard orthonormal
basis for RP. Then, the lattice is the set of all vectors Vn,
with n € Z°, The basis for a given lattice is not unique. If £
is_any matrix_of integers such that det £ = 11, then the
matrix V = provides another basis for A [1]. However,
|[det V] is unique and independent of the particular choice
of basis. This quantity, denoted d(A), is called the determi-
nant of the lattice A and physically represents the recipro-
cal of the sampling density.

We define a unit cell of a lattice A as a set 2 c RP (not
necessarily connected) such that RP is the disjoint union of
copies of P centered on each lattice point: (£ + x) N (P +
y)=0 for x,ye A, x#y, and U, ,(2@ + x) = RC. The
hypervolume of a unit cell of a lattice A is d(A). There are
many possible choices for the unit cell of a lattice. One that
is very convenient is the fundamental parallelepiped given
by

D
9={2“M|0<“i<1} 2

i=1 .
where v,,---, v, is a basis for the lattice A. Another unit

celt which is often useful is the Voronoi cell (also called
Dirichlet region, Brillouin zone, Wigner-Seitz cell), the set
of all points in RP closer to 0 than to any other lattice
point. Fig. 3 shows these two unit cells for the lattice of Fig.
2(a).

The concepts of sublattices and cosets of a lattice with
respect to a sublattice are of importance in the theory of
sampling on a superposition of shifted lattices, and conver-
sion between sampling lattices.

Definition: Let A and T be lattices. A is a sublattice of
T if every point of A is also a point of T'. If A is a sublattice
of T, then d(A) is an integer multiple of d(T'). The quo-
tient d(A)/d(T') is called the index of A in T [1] and is
denoted (T:A). The set

c+A={c+xjxeA} 3)

for any c €T is called a coset or class of A in T. Two
cosets are either identical or disjoint,and c + A = d+ A if
and only if ¢ — d € A. There are (I':A) distinct cosets of A
in T, and the lattice T is the disjoint union of these (I:A)
cosets. A coset is a shifted version of the lattice A, and the
set of cosets is the set of all shifted versions of A which are
a subset of T'.
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Fig. 2. Example of a lattice in two dimensions. (a) Basic
lattice A. (b) Reciprocal lattice A*.

The intersection A, N A, of two lattices is also a lattice,
although it is possible for the dimension of this lattice to be
less than D. A necessary and sufficient condition for A, N
A, to be of dimension D is that ¥ 'V, be a matrix of
rational numbers, where ¥, and V¥, are the matrices for the
lattices A, and A,. The sum of two lattices A, + A, is
defined as {x + yjx € A,,y € A, }. if A; N A, is alattice of
dimension D, then so is A, + A,, and (A; + AA) =
(A:A, N A,). The intersection A, N A, is the largest lattice
which is a sublattice of both A, and A,, while the sum
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Fig. 3. Unit cells for the lattice of Fig. 2(a). (a) Fundamental
parallelepiped. (b) Voronoi cell.

A, + A, is the smallest lattice which contains both A, and
A, as sublattices.

A final concept which is very useful in the frequency-
domain representation of signals sampled on a lattice is that
of the reciprocal lattice. '

Definition: Given a lattice A, the set of all vectors y
such that y'x is an integer for all x € A is called the
reciprocal lattice A* of the lattice A.

The lattice A* is also called the polar lattice in the
geometry of numbers. A basis for A* is the set of vectors
u,, -+, up determined by u'y, = 8,,i,j=1,---, D, or equiv-
alently by UV = I where [/ is a D by D identity matrix. The
reciprocal lattice for the lattice of Fig. 2(a) is shown in Fig.
2(b). If A is a sublattice of T, then it is easily seen that I'* is
a sublattice of A*. Also, if A, and A, are lattices, it can be
shown that A, + A, = (A% N A%)*. Thus an algorithm for
determining the intersection of lattices can also be used to
determine the sum of lattices.

B. Multidimensional Sampled Signals

A sampling structure ¥ is a discrete set of points in RP
over which the image function is specified. The most gen-
eral form of sampling structure considered in this paper is
the union of selected cosets of a sublattice A in a lattice T.
Thus we have

P
¥ = (c;+A) (4
=1
where ¢,,-- -, ¢;p is a set of vectors in T such that ¢; - GEA
for i # j. It is assumed that T is the smallest lattice contain-
ing ¥ and that there is no lattice T with d(T) < d(A) such
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that ¥ is a union of cosets of T in I'. By taking A =T and
P =1, (4) reduces to a standard lattice. Fig. 4 shows an
example of a sampling structure in two dimensions which

cannot be represented as a lattice, but can be represented
as the union of two shifted lattices. All sampling structures

x2

v2

€2

. - ° - L xq
Vi x'l

Fig. 4. Sampling structure in two dimensions which is the
union of two cosets of the lattice A in the lattice T

¥ =AU(c,+ A) vy and v, form a basis for A. ¥ is
denoted by large dots and T by small dots.

known to the author which have been considered for
image sampling can be represented in this way. Examples of
sampling structures which are not lattices but can be repre-
sented using (4) can be found in [5], [6}, {8].

The concept of a unit cell can usefully be extended to
such a sampling structure. The unit cell is defined as a set
P C RP such that 2N (P + x)=Q for xe€ ¥, x+0, and
U, (2 + x) = RP. For P =1 this reduces to the standard
definition.

We now consider the Fourier representation of signals
sampled on such a structure. From Fourier analysis, the
Fourier transform can be defined for any ' function de-
fined on a discrete Abelian group [9]. Since a lattice is an
Abelian group, we can define the Fourier transform over a
lattice A

u(f) = Y u(x)exp(—j2nfx)

xXEA

= ¥ u(vn)exp(-j2af"vn),

ne2®

feRP. (5)

The Fourier transform is a periodic function over RP with
periodicity lattice equal to the reciprocal lattice A*, that is

U(f)=U(f+r), VreA* (6)

This follows from the fact that r'x is an integer for x € A
and r € A*, by definition of the reciprocal lattice. Fig. 5

illustrates the periodicity of the Fourier transform for a -

signal defined on the lattice of Fig. 2. Because of this
periodicity, the Fourier transform need only be specified
over one unit cell 2 of the reciprocal lattice.

The inverse Fourier transform of the sampled signal is
given by

u(x) = d(A)j-;U( fyexp(j2nfx)df, xeA. (7)

50

"/l?}-‘. A
G T H ,,I‘ ‘ﬂ
3 ./,,;,},//;

Fig. 5. Periodicity of Fourier transform for a signal defined
on the lattice of Fig. 2(a). The periodicity is determined by
the reciprocal lattice shown in Fig. 2(b).

For a sampling structure which is not a lattice, the Fourier
transform in the usual sense is not defined. However, for
the representation of the lattice as the union of certain
cosets in a lattice T, we can assume that the signal is
defined over the lattice T', with appropriate sample values
set to zero. Then, the usual Fourier transform over T be-
comes

u(f)y = Y u(x)exp(-j2nfx),

xe¥

fe R (8)
and the Fourier transform will have periodicity determined

by the reciprocal lattice T'*. For a sampling structure as
given in (4), the Fourier transform can be written

U =3 YT u(c;+x)exp(—j27fF(c; + x))

f=1 x€A
P

=Y exp(—j27fc;) ¥ u(c; + x)exp(—j2nfx)
fe= xX€EA
P

=2 exp(—j2nf'c;) U(f) (9
i=1

where U(f) is the Fourier transform of the function u(x) =
u(c; + x) defined on A.

In most cases, a sampled time-varying image cannot be
considered as a function in LY(¥), but rather may more
appropriately be considered as a sample from a discrete
random field. For signals defined on a lattice A we assume
in the usual way that the process is a homogeneous random
field with zero mean and autocovariance function

R,(x) = E[u(y)u(y + x)]. (10

The power density spectrum of the random-field is given by
the Fourier transform of the autocovariance function

D,(f)= 2 R, (x)exp(—j2nfx). ()

x€A

A random field defined on the more general sampling
structure of (4) cannot be homogeneous since the set of



points { x|y + x € ¥} varies with yand thus Eju(y)u(y + x)]
cannot be independent of y. However, it can be periodic in
y, with periodicity given by A, yielding a cyclostationary
field. Then in the usual fashion [10}, an autocovariance
averaged over a period can be defined

xeTl.

(12)

The autocovariance function will be nonzero on the set
2={x-yx,ye ¥}

=LPJ LPJ(C,-—CI-+A). (13)

im1 =1

Ru(x) = iy L Elule)ule; + 0],

f=

Clearly, not all of the P? cosets in this expression are
distinct. The power density spectrum is then given by

O, (=Y R,(x)exp(—j2nfx). (14)
X€ED
The theory of processing signals defined on a lattice has
been presented in [11]. Of main interest to us is the case of
linear filtering with finite-impulse response (FIR) filters. FIR
filters are generally preferred over infinite-impulse response
(IR) filters for image processing because they allow exact
linear phase response, and because stability is assured. For a
linear shift-invariant system whose input and output are
signals defined on a lattice A, the input and output are
related by the convolution

z(x) = X u(y)h(x-y),

YEA

xeA (15)

where h(x) is the unit sample response of the system. An
FIR filter is characterized by the fact that h(x) is nonzero
for only a finite number of points x € A. The frequency
response of the filter is given by the Fourier transform of
the unit sample response
H(f) = Y h(x)exp(—j27fx). (1)
x€A
As before, the frequency response is periodic, with peri-
odicity given by the reciprocal lattice A*. If the input to an
FIR filter is an [' function with Fourier transform U(f), then
the output is also an [' function with Fourier transform

Z(f) = H(HU(H). (17)

On the other hand, if the input to the filter is a homoge-
neous random field with power density spectrum ®@,(f),
then the output is also a homogeneous random field with
power density spectrum

Q,(f) = |H(HIPD,(). (18)

A number of techniques exist for designing multidimen-
sional FIR filters with frequency response approximating
some desired characteristic. An overview of many of these
is contained in [7]. The more general problem of linear
processing when the input and output are defined on
different lattices is considered in detail in Section II-D.

For signals not defined on a lattice, the ideas of shift
invariance and frequency response of a linear filter are not
straightforward, and this case is not considered here.

C. Sampling and Reconstruction

In general, multidimensional signals defined on a discrete
sampling structure are obtained by sampling a continuous
function over RZ. If this continuous function is denoted
u(x), x € RP, the operation of sampling on a structure ¥ is
given by

u(x) = u(x), xe V¥, (19

Note that while u. is defined over all of R?, u is only
defined on Y. The theory of sampling and reconstruction of
both deterministic and random signals on a lattice was
presented in [3]. In this section, we review this material,
with the extension to structures of the form of (4).

Sampling: Suppose that u. € ['(R?) has Fourier trans-
form

u.(n =fDuC(x) exp(—j2nf'x)dx, fe RP (20)
R
with the inverse Fourier transform relation
u.(x) =fkouc(f) exp(j2nfx) df, xeR°. (21)

Then, this integral evaluated for x € A can be written as a
sum of integrals over displaced versions of a unit cell 2 of
A*

u(x) =,/;DU"( f) exp (j2n fx) df

o>

reA*

-exp(j2m(f+ r)'x) df,

fUC(f+ r)

xeA. (22)

By the property of the reciprocal lattice, exp (j27r'x) = 1 so
that exchanging the order of summation and integration
gives

u( x) =j.;a[ Y u(f+r)

re A*

exp(j2afx) df. (23)
Taking the Fourier transform of this gives

1
=— (f+7r). 4
u(n = geay Z U+ (24)
Thus the Fourier transform of the sampled signal is the sum
of an infinite number of copies of the Fourier transform of
the continuous signal, shifted according to the reciprocal
lattice. This function has periodicity lattice A* as required.
Fig. 6 shows the effect of sampling with the lattice of Fig. 2
on the spectrum of a continuous band-limited signal. Exam-
ples where the shifted versions of the analog spectrum
overlap and do not overlap are given.

If a homogeneous random field with autocovariance
function R, .(x) and power density spectrum @, _(f) is sam-
pled on a lattice A, the autocovariance of the sampled
signal is R, (x) = R,.(x),x € A so that the above develop-
ment gives

‘] -
9 ’EL;“PUC(H r). (25)

The situation for the sampling on a union of shifted
lattices can be analyzed by combining the above results

2,(f) =
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Fig. 6. Sampling of continuous signals. (a) Region of support of spectrum of continuous
signal. (b) Spectrum of signal in (a) sampled with lattice of Fig. 2(a), showing overlap in
repeated versions of basic spectrum. (c) Spectrum of continuous signal with smaller region
of support than (a). (d) Spectrum of signal in (c) sampled with lattice of Fig. 2(a), showing
no overlap in repeated versions of basic spectrum.
with (9) define ¥* to be the union of cosets of T* in A* for which
1 P g(r) is nonzero. Fig. 7 shows the reciprocal structure ¥* for
U(f) =——- 2 exp(—j2afic;) T U(f+7r) the structure ¥ of Fig. 4.
d( A) = reA*
-exp (/'217(! +r) Tc,~) f
4 L] [ ]
1 P )
=—— Y | ¥ exp(j2nric;) |U(f+ 7) . .
d(A) ,em(m
1
=—— L g(nu(f+r). (26) . .
d( A) reA*
[ ] [ ]
The function
[ ] [ ]
P
8(r) = T exp(j2nr'c,)
= ® ®
is constant over cosets of T'* in A*, and may be equal to ]
zero for some of these cosets, so that the corresponding 1
shifted versions of the basic spectrum are not present. It is * .
such a cancellation which would make this pattern of Fig. 7. Reciprocal structure to the sampling structure of
interest, rather than the less dense lattice A. Thus we Fig. 4.
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Reconstruction: The final stage in an image communica-
tion system involves the reconstruction of the time-varying
image as a continuous function of space and time for
viewing. This reconstruction is an interpolation process
which must fill in the missing values from the existing
samples. Exact reconstruction of a continuous function from
its samples on a structure ¥ is possible if the image spec-
trum is confined to a region # & R? such that the regions
# + r for r € ¥* do not overlap with #7, i.e., there exists a
unit cell # of ¥* such that #'c 2. This is illustrated in
Fig. 6(d). If the above conditions are satisfied, then

u(x) = foc( f) exp (27 fx) df

= g(—P‘-‘—) fru( fexp(j2ufx)df.  (27)
Substituting the definition for U(f) gives
u(x) =X u(s)t(x-s) (28)
se¥
where
t(s) = i1(75\2_/:Vexp(jz'rrf's) df. (29)

if the smallest region of support of U.(f) is not a unit cell of
the reciprocal structure, then the interpolating formula for
u.(x) is not unique, since ¥ can be chosen as any subset of
a unit cell which contains the region of support. Equation
(28) is a hybrid linear filtering, where the input is sampled
and the output is continuous. The corresponding frequency
response is

1, few
T(f)={0, fe #+r,re¥* -{0) (30)
arbitrary, otherwise.

This can in general be interpreted as an ideal low-pass filter.
For homogeneous random fields, exact reconstruction (in
the sense of vanishing mean-square error) is also obtained
using (28) if the power density spectrum is limited to a unit
cell of A* [3].

If the signal is not band-limited to a unit cell, then a
phenomenon known as aliasing occurs, whereby high fre-
quencies in the original signal are mapped to lower fre-
quencies. The most familiar examples are Moiré patterns,
staircase effects on contours, and wagon wheels rotating
backwards. A detailed discussion of the different types of
aliasing effects which occur for a variety of sampling struc-
tures can be found in [6). Petersen and Middleton [3]
showed that if the original signal is not band-limited to a
unit cell of the reciprocal lattice of the desired sampling
lattice, the mean-square reconstruction error averaged over
a cell of the sampling lattice can be minimized by prefilter-
ing with a filter having unit gain over a suitably chosen unit
cell, and zero gain elsewhere, again an ideal low-pass filter.

Partial Sampling: To date, all time-varying image record-
ing or transmission systems use sampling in at least one

If ¥ is not a lattice, exact reconstruction may be possible, even if
the translated spectra overlap, by using a different interpolation
function for each coset. See [12, p. 194] for a one-dimensional
example.
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dimension. Conventional analog tefevision and cinema use
only partial sampling, that is sampling in only one or two
dimensions. Specifically, in analog television the signal is
sampled in only two dimensions (essentially vertical and
temporal), while in cinema the signal is sampled in the
temporal direction only. We consider here the case of
partially sampled signals, i.e., signals defined on a subset of
RP which is the direct sum of a lattice of dimension less
than D and its orthogonal complement in RP,

Let A be a C-dimensional lattice in R®, generated by C
linearly independent vectors v,,- -+, v in RZ, where C < D.
Let S, be the C-dimensional subspace of RP spanned by
v, -+, ¥%, and let §, be the orthogonal complement of §, in
RP. A partially sampled signal defined on the set ¥ = A +
S, is discrete in the dimensions determined by A and
continuous in the dimensions determined by §,. The set
A + S, is an Abelian group, and the Fourier transform can
be defined as

U(f1,f2)= Z

(f u( x,s) exp(—j2nf]s) ds)
x€A\"S:
-exp ( -j2nflx) (31)

where f, € S, and £, € §,. If u(x) is obtained by sampling a
continuous signal u.(x) with Fourier transform U.(f), then

T u(r+o. (32)

reA*

a1

U = 30ay

As an example, consider the following approximation to
2:1 interlaced scanning used in television. The lattice A is
defined by the vectors (0,2X,,0)" and (0, X,, X;)" and is
simply a hexagonal lattice in the vertical-temporal plane
given by x, = 0. The sampling structure is

R+ A ={(x,20,X, + nX;,nX;) x, € R,n;,n, € Z}.

D. Sampling Structure Conversion

It is often necessary to interface image communication
systems which use different sampling structures. Some ex-
amples are conversion between the European and North
American scanning standards, or conversion between differ-
ent sampling structures used in video codecs. Another
application of importance is in scan conversion between
transmission and display scanning standards [13]. A com-
plete treatment of sampling rate conversion for one-dimen-
sional signals is given in [14], and a brief introduction to the
problem of sampling structure conversion for multidimen-
sional signals is found in [11}. This section presents the
theory of linear filters with input and output defined on
different sampling structures, as illustrated in Fig. 8. We
assume that these sampling structures are lattices A, and
A,, and that the input and output signals are in ['(A,) and

Linear velqlAg)
System ———

T

uelq{Aq}

Fig. 8. Linear filter with input and output defined on differ-
ent sampling lattices.
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['(A),), respectively. The generalization to random fields is
straightforward, but the generalization to nonlattice sam-
pling structures is less so.

Let J be a linear system mapping functions defined on
A, to functions on A,, i.e., T:L(A,) = [(A,). By linearity,
we mean that 7 {a,u, + a,u,) = 8,7 [u)] + 3,7 [u,] for any
real numbers a, and a, and for any u,,u, € ['(A)). Define
the unit sample functions on a lattice by

_f1, X=S$s
s(={y I (33)
and the unit sample responses h, € I'(A,)
h,=7[8,]. (34

In the usual way, an arbitrary function can be written as a
superposition of unit samples

u= Y u(s)3,

SEA,

(35)

and by linearity, the output of the filter is given by

Tlu]= L u(s)7[4]

SEA,

Y u(s)h,.

SEA,

(36)

A general property of interest in digital filters is shift
invariance: if the input signal is shifted by p, the output
signal is also shifted by p. In our case this is only possible if
PpE€ A NA, Thus we assume here that A, N A, is a
D-dimensional lattice, i.e., that ¥;™'V, is a matrix of rational
numbers, This is an extension of the condition that the ratio
of sampling frequencies be a rational number in one-
dimensional multirate systems {14]. Define the shift oper-
ator &, on L'(A) by

Fpu(s) = u(s - p). (37)
Then the required shift invariance property is
T[Su] =%,T(u), peA NA, (38)
or written out explicitly
Y u(s—p)h, =%, % u(s)h,
sEA, s€A,
= X u(s)&h,. (39
SEA,
A simple change of variables on the left side gives
T u)h.,= L u(s)Sh,. (40)
seA, sSEA,
This equality will hold for arbitrary v if and only if
herp =Fphs, Vpe A NA,. (41

From this equation we see that the unit sample responses
over cosets of A; N A, in A, are translated versions of each
other. Thus the maximum number of such unit sample
responses required to completely specify the filter is equal
to the index of A, N A, in A,.

Let the index of A, N A, in A, be Q, and iét b,,---, by
be representatives for the cosets. If y=J[u), then the
function y restricted to the ith coset can be written

12

y(b + p) = L u(s)h,(b + p)

sEA,
= L u(p-s)h,_,(b+p)
SEA,
= 2 u(p-s)h_(b), PEANA,.
SEA,
(42)

This can be written in the more familiar convolution form

y(b+p)= ¥ u(p-s)f(s) (43)
SEA,
where we define f(s) = h_(b) for i=1,---,Q. This can
be interpreted for each i as a linear filtering of u by the
shift-invariant filter with impulse response f; followed by a
subsampling of the result to A, N A,. The output y is
obtained by multiplexing the output of the Q filters.

It is possible to represent this structure by a linear shift-
invariant filter operating on a lattice which contains both
A, and A,. This is particularly useful for the application of
frequency-domain filter design methods. Recall that A, +
A, is the smallest lattice containing both A, and A,.
Define the upsampling operator #:['(A,) - L'(A, + A,) by

u(x) = { u(x), (44)

0,
and the downsampling operator 2:I'(A, + A;) = I'(A))
by

x € A,

X A, x€A +A,

Dv(x) = v(x), XEA,. (45)
Then the overall filter can be expressed
T=2T U (46)

where JH:0NA, + Ay)) = (A, + Ay) is a linear shift-
invariant filter. This is illustrated in Fig. 9. The filtering
operation is described by

)= ¥

s€EA, +A,

w(s)h(x - s) (47)

where h is the unit sample response of 7. However, since

uelyiAq) weLq(Ay+A) veLy(A+Ag) veLyiAQ)

Linear Shift -

Down
Invariant Filter
T+

LV
o Conversion

Conversion

Fig. 9. Decomposition of sampling structure conversion
system,

w(x) = u(x) for x € A,, and is zero otherwise

v(x) = Y u(s)h(x—s), x€ A, + A, (48
sEA,
Finally, the downsampling operation gives
v(x) = 3 u(s)h(x—5s), =x€A,. (49)
seA,
Comparing this with (36) gives
h(x - s) = h(x). (50)



It can easily be verified that this is a well-defined assign-
ment. The functions f; are obtained from h by
f(x) = h_,(b) = h(b, + x). (51)

A development very similar to that of Section 1I-8 can be
used to obtain the frequency-domain representation of the
subsampling operation. Let r,---, 7y be coset representa-
tives for the cosets of (A, + A,)* in A%, where N = (A;:A,
N A,). Then

0= L+ ). (52)

i=1

The overall filter is thus described by

Y(f)-=-lN£H(f+ B)UCE+ ). (53)

i=1

When the change in sampling structure is such that overlap
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in the replicated spectra is introduced (as in downsampling),
part of the role of the filter I* is to eliminate high-
frequency signal components which contribute to this over-
lap. When the sampling density is increased, the filter
serves to attenuate repeat spectra in a process of interpola-
tion.

As an example of these ideas, consider a two-dimen-
sional filter whose input and output are defined on the
lattices A, and A, shown in Fig. 10(a) and (b). These
lattices can be represented by the matrices

X, 0
X, 2X,

X, 0
2X, 4X,

and

x2
° °
[ ° °
° °
X3
+ & @ 11
x1‘
(b)
x2
° °
[ ° °
Xz 4
+ xq
X1
(d)
f2
° °
[ ] ®
° °
r--—-{b———-——‘ ®
¢ {
e
$ %/ %
| DD WU |

Fig. 10. Example of sampling structure conversion. (a) Input lattice A,. (b) Output lattice
Ay (© Ay + Ay (d) AN A, (e) Spectrum of input signal with periodicity AY. (f)
Passband of filter, equal to Voronoi cell of A%. The dashed rectangle shows a basic period

of the filter frequency response.
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with d(A)) = 2X,X, and d(A,) = 4X,X,. The sum A, + A,
and intersection A, N A, of these lattices are shown in Fig.
10(c) and (d), respectively, and can be represented by the

matrices
X, 0
(VD &

2X, O
0 4x,|
Here, Q = (A; + A,iA) = (A;:A, N A,) = 2. Suppose that
the input signal has the spectrum shown in Fig. 10(e), with

periodicity given by the reciprocal lattice A%, whose matrix
is

and

a1

X, 2X,
1

(4] —_—
2X,

The filter h defined on A, + A, has a frequency response
which is periodic with respect to (A, + A,)*, and to avoid
aliasing, should have a nonzero response only on a unit cell
of A%, as illustrated in Fig. 10(f). One period of H(f) is
indicated by the dashed rectangle in Fig. 10(e) and (f).

E. Summary of Three-Dimensional Sampling

This section highlights the main ideas of Section 1, in
particular as applied to three-dimensional sampling. A sam-
pling lattice A for time-varying imagery is a discrete set of
points in R? given by

A= {nv, + ny + nyvy|n,,n,, ny € z)

(54
where v,, v,, and v; are linearly independent vectors. The
matrix V = [v]|v,|v;] is called the sampling matrix, and
d(A) = |det V| is the reciprocal of the sampling density. The
lattice determined by the vectors u,, u,, and u;, where
U = [u)Jujju;} = (V7)) is called the reciprocal lattice A*.
Fig. 2 shows an example of a lattice and its reciprocal
lattice.
The Fourier transform of a discrete signal defined on a
lattice A is
u(f) =

Y u(x)exp(—j27fx), feR.

x€A

The Fourier transform is periodic with respect to the re-
ciprocal lattice

U(f) = U(f+7), reA*

One period of U(f) is called a unit cell of the reciprocal
lattice; there are many possible ways to define a unit cell
(see Fig. 3 for two possible unit cells for a given lattice). If a
continuous signal u (x) with Fourier transform U.(f) is
sampled on a lattice A

u(x) = u(x),

the Fourier transform of the sampled signal is

d(A) ’EZI:\'U({+ ).

The spectrum of the sampled signal is thus the superposi-
tion of shifted versions of the original spectrum. Recon-

xe A

u(f =

14

struction of the continuous signal is in general possible if
these do not overlap. The reconstruction filter is an ideal
low-pass filter which passes the basic spectrum and
eliminates the replicates. If overlap occurs, aliasing is said to
take place; see Fig. 6 for an example. The total mean-square
error can be minimized by prefiltering the input before
sampling, to limit its spectrum to a unit cell of the recipro-
cal lattice.

1. SAMPLING AND RECONSTRUCTION OF TIME-VARYING
IMAGERY

The previous section has presented the mathematical
theory of sampling of multidimensional signals. The trans-
mission of a time-varying image over a one-dimensional
channel requires the sampling of the image in at least two
dimensions. If the original image is band-limited such that
the sampling does not cause overlap of the repeated spec-
tra, perfect reconstruction from the samples is possible.
However, this is not the case in current television practice.
There is aliasing in the sampling process, the reconstruction
is far from perfect, and the human visual system is called
upon to perform some of the interpolating postfiltering.
This section discusses the issues retated to sampling and
reconstruction of time-varying imagery in television sys-
tems, including scanning, sampling structures, and the role
of the visual system.

A time-varying image is a function of three independent
variables: horizontal and vertical spatial dimensions and
time. This will be denoted u.(x) = u.(x,;, x,, x3) where x,
and x, are the horizontal and vertical coordinates, mea-
sured in some convenient unit of length, and x; is time in
seconds. The ultimate spatial unit of interest in imagery
destined for human viewing is distance on the retina (or
angle subtended at the eye) of the observer. However, for a
given image, this depends on the size of the image display,
and the distance of the viewer from the display. Since these
quantities cannot in general be controlled, a unit of spatial
distance related to the image size is usually used. In this
paper the basic unit of spatial distance is the picture height
(ph) with the corresponding spatial frequency unit of cycles
per picture height (c/ph). If the distance from the viewer to
the display in picture heights is known, these can be
converted to degrees and cycles per degree subtended at
the eye, respectively.

The sampling theory described in the previous section
involves the use of ideal point sampling and ideal low-pass
prefilters and interpolators. Real image sampling and dis-
play involves the use of finite scanning apertures in the
camera and display devices. The theory of scanning and
display of still pictures with such apertures was first pre-
sented by Mertz and Gray [15]. The extension of these ideas
to three dimensions, using more convenient mathematical
tools, has appeared more recently [16]-[19]). The following
two sections develop these ideas within the framework we
have established. Structures suitable for sampling time-vary-
ing imagery are then discussed. Fmally, the sampling of
color video signals is treated.

A. Sampling

The process of ideal sampling as discussed in Section 11-C
requires the measurement of the image intensity at discrete




points or lines in space-time. This is not physically possi-
ble; a real sampling device measures the integral of the
image intensity over a neighborhood of the desired point,
weighted by an aperture function a, which may in general
be space-variant. The sampled signal is thus

u(x) = ];Juc(x+ s)a(x,s) ds,

Under the assumption that the aperture is space-invariant,
(55) becomes

u(x) =j;3uc(x + s)a(s) ds,

It is clear from (56) that this is equivalent to the ideal
sampling of the function

xe¥. (55)

xe¥, (56)

v( x) =j;3uc(x - s)h,(s)ds, xe€R® (57)

where

hi(s) = a(=s). (s8)

In other words, this real sampling process is equivalent to
the ideal sampling of the original image filtered by a linear
continuous three-dimensional filter with frequency re-
sponse

H,(f) = _/;Jha(s) exp( —j2n f's) ds. (59)

The magnitude of H,(f) for £, =0 is referred to as the
modutation transfer function (MTF) of the camera.

The aperture function can normally be assumed to be
separable in space and time. Although the spatial aperture
is generally asymmetric and space-variant, it can be con-
sidered to a first approximation to be Gaussian. Fig. 11
shows a contour plot of the MTF for a circularly symmetric
Gaussian aperture having a response of 0.5 at 400 TV lines
(i.e., 200 ¢/ph), H,(f,, ) = exp(—(f + £2)/(240)%). Miller
[20] has given the MTF of several camera tubes, measured
using the RCA P-300 test chart; Fig. 11 is typical of the

300

200

c/ph

fe

-30-0300 -200 -100 0 100 200 300

f1 c/ph

Fig. 11. Contour plot of frequency response of typical spa-
tial Gaussian aperture. The response is 0.5 at 200 c¢/ph.
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camera tubes described in [20]. The characteristics of the
many camera types available are discussed elsewhere in this
issue.

To get an idea of the temporal aperture of a camera,
consider a tube which exactly integrates the light intensity
over a time T and then is completely erased. The temporal
aperture in this case is given by

h,(r)={1/r' O<tsT

60
0, elsewhere. (60)

Taking the Fourier transform of this gives the temporal
response

. sin(w T
H(8) = on(-msn B (e

Fig. 12 shows a vertical-temporal slice (at £, = 0) of the
magnitude frequency response of the resulting separable
three-dimensional aperture for 7= 1/60s.
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Fig. 12. Frequency response of typical vertical-temporal
aperture. (a) Perspective view. (b) Contour plot.
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The prefiltering provided by the camera aperture does
not allow a good approximation to the ideal prefilter de-
scribed in Section [I-C, which passes all frequencies within
a unit cell of the reciprocal lattice, and eliminates all fre-
quencies outside the unit cell. There is a delicate balance
between leaving high frequencies which will cause aliasing,
and excessive attenuation of frequencies within the unit
cell, which will compromise system resolution. For exam-
ple, Schade [21] recommends that the camera MTF be no
more than about 0.35 at half the vertical sampling rate to
keep aliasing distortion at an acceptable level. However,
this still results in significant attenuation of signal compo-
nents below half the sampling rate, which could in princi-
ple be accurately maintained.

Although it is possible that better prefiltering could be
obtained by electrooptical means, an alternative approach
is to initially scan the image at a high sampling density,
such that aliasing is negligible. The signal can then be
converted to the desired sampling structure, performing the
prefiltering digitally. 1t is also possible with this filter to
compensate for the in-band signal attenuation due to the
scanning aperture, a process known as aperture correction.
With the use of digital prefilters, an arbitrarily sharp cutoff
can be obtained. Although an infinitely sharp cutoff filter
gives optimal results in terms of mean-square error, such a
filter will cause ringing at sharp transitions, the well-known
Gibbs’ effect, which can be visually disturbing. A compro-
mise must thus be struck between aliasing, loss of resolu-
tion, and ringing, to give optimal picture quality. A good
illustration of these tradeoffs can be found in [22].

B. Reconstruction

The sampled image must be converted back to a continu-
ous function of space and time for viewing on some display
device such as a cathode-ray tube (CRT). The interpolation
process given in (28) and (29) represents an ideal low-pass
filtering. For human viewing, it is not necessary to perform
perfect reconstruction, even in the ideal case. This is be-
cause signal distortions which are below the threshold of
visibility can be allowed. In particular, since the visual
system has a low-pass characteristic in spatial and temporal
frequencies, the reconstruction processing need only re-
duce the magnitude of the high-order repeat spectra so that
they are below threshold. However, since viewing condi-
tions cannot generally be controlled, these thresholds
should be based on the worst case viewing distance. Fig. 13
shows a perspective view of the threshold surface of the
visual system as a function of spatial and temporal
frequency, for particular viewing conditions [23]. Since the
visual system is a nonlinear system, this figure can only
serve as general indication as to the response to spatio-
temporal patterns. A more complete model which accounts
for the nonlinearity of the response and masking effects,
such as that proposed by Lukas and Budrikis [24]), would be
required to fully predict the visibility of distortions. Note
that the frequencies in Fig. 13 are at the retina, and may not
correspond in a simple fashion to the spatiotemporal fre-
quencies present in the imagery, if there is relative motion
between the eye and the scene, as when objects are tracked.
The relationship when the relative motion is uniform trans-
lation is derived in {6].
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Fig. 13. Perspective view of portion of spatiotemporal
threshold surface of human visua! system [23]. Spatial
frequency in c/deg, temporal frequency in Hz.

As in the camera, it is not easy to manipulate the display
aperture to obtain a good approximation to the desired
interpolating aperture. The reconstructed signal is given by

u(x) = ¥ u(s)d(x-s) (62)

sev¥

where d(x) is the display aperture (impulse response). For a
CRT display, the aperture is often assumed to be Gaussian,
although more accurate approximations exist [21). The tem-
poral characteristic (phosphor decay) is usually exponential
or logarithmic. The P22 phosphors used in color television
decay to less than 10 percent of peak response in 10 ps to 1
ms [25]. Thus virtually no temporal filtering, and very little
spatial filtering, is performed, in order to minimize loss of
spatiotemporal resolution.

As a result of this imperfect interpolation, the viewer
must be placed at a great enough distance for the visual
filter to sufficiently attenuate the low-order repeat spectra.
This may be at 6 to 8 times the picture height, as compared
with a distance of 2 to 4 times which the viewer would
naturally choose if no sampling artifacts were present [26].
This effect is illustrated by a rather extreme example of
18:1 subsampling shown in Fig. 14. At a normal reading
distance of about 30 cm, the sampling structure obscures
the text in Fig. 14(b), making reading difficult. By observing
the figure from a greater distance (e.g., 1.5 m), the sampling
structure is filtered by the visual system, and the text is
more easily read. Fig. 14(c) shows the result of applying a
two-dimensional interpolation filter, which attenuates the
repeat spectra, making the text readable at 30 cm.

An approach to obtain an improved display aperture,
similar to that described in Section HlI-A for the sampling
aperture, can be taken. Digital interpolation to a higher
scanning rate is performed, strongly attenuating the lowest
order repeat spectra. The remaining repeat spectra are now
in bands of lower visibility, and the gentle filtering of the
display aperture is adequate to render them below
threshold. . )

With current television practice, the combination of the
camera aperture and the display aperture result in a maxi-
mum vertical resolution of only about 0.7 of the theoretical
limit. This factor is sometimes referred to as the Kell factor,
although there is no precise and universally accepted defi-
nition. An excellent discussion of the parameters of an
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Fig. 14.

imaging systerm which can intluence the Kell factor has
been given by Tonge [27]. By the approaches described
above, significant improvement is possible, and Kell factors
rmuch closer to unity may be possible, This topic is dis-
cussed in more detail elsowhere in this issuc.

C. Sampling Struclures

Scanming:  Scannmiag s the two-dimensional sampling
process currently used in television, whoereby the scene is
sampled in the vertical and temporal directions, but s
continuous in the horizontal direction. The resulting lines
are then abutted to form a one-dimensional signa! referred
to as the wideo signal. Two ventical-temporal sampling
structures are of interest: the orthogonal and the hexagonal
structures shown in Fig, 15(a). These correspond o sequen-
tial and 2:7 interlaced scanning, respectively, The recipro-
cal lattices corresponding te these structures are shown in
Fig. 15(b). As shown in Section HI-C, the specitum of the
original image is replicated in the vertical-temporal fre-
quency plane according 10 the reciprocal lattice.

The scanning hines are usually assumed to be perpendicu-
lar Lo the vertical-temporal planc. This is not precisely true;
the lines have both a vertical and temporsal till. For a
525-line sequential image with a 4:3 aspect ratio, this
corresponds to redating the image by about 16°. The
temporal tlt means that the bottom of the image is scanned
X, seconds after the top of the image, which could have
some minor efiect on large rapidly moving objects. How-
ever, as argued in [6] and [28], these effects are penerally
insignificant. We will ignore the tilt of the scarnning lines in
the remainder of this paper, and assume that they are
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Example of sampled text (a) Original image. (b} Subsampled by 2 factor of 18
with hexagonal lattice and recanstructed with very narrgw Gaussian agerure. {¢) Recan-
strucled with bwo-dimensicnal interpofation lilter

porpendicular to the vertical-temporal plane. The set of
samples taken at a given time ¢ constitute a field.

Both scanning patterns shown in Fig. 15 have the same
number of lines per picture (counting both fields for the
interlaced casg) and the same sampling density, Exarnining
the recrprocal lattices, we see thal the coesest replicated
spectra to the origin for sequential scanning  are  at
(0,1/%,,007,¢0,0,1 72X}, and (0,1 /%,,1/2X,}. Tor inter-
laced scanning, the dosest replicated spectaa to the origin
are at (0,1/X,,007, (0,0,1/X), and (0, 1/2X,,1/2X,)". As
mentioncd previously, these replicated spectra are al-
tenuated very little by the display aperture. The main de-
gradation associaled with the replicated specirum  at
(0,1,/X,,0)"is visibility of the scanning lines; it 1s the same
with both patterns. The rnain artifact asscciated with a
component at (0,0, F)" is large-area flicker at £ hertz, With
seguential scanning, large-area flicker is at 1/2X, hertz,
while for interlaced scanning, it is at 1/X; hertz, If Xy -
1/60 s (1/50 s), sequential scanning pives 30-Hz (25-Hz)
large-area flicker, which is visually unacceptable. Interlaced
scanning gives 60-Hz (50-Hz) large-arca flicker which is
significanily less visible, being almost imperceptible at
0 Hz, but perhaps slightly annoying at 50 Hz The main
distartions associated with the third components  at
(01/%,,1/X30r (0,1/2%,,1/5,) are interline flicker and
line crawl. These distortions are, of course, more visible
with interlaced scanning than with sequential scanning, and
are generally the most annoying defects in an interlaced
display. However, they are still much less visible than the
large-area flicker for which they have been traded. In gen-
eral, 2:1 interlaced scanning dispiay is preferable to
sequential scanning for a given scanning density [26], [29).
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Fig. 15.
time-varying imagery. (b) Reciprocal lattices.

The spectrum of the one-dimensional video signal ob-
tained by scanning can be related to the three-dimensional
spectrum of the time-varying image. It can be shown that
the one-dimensional spectrum is basically obtained by
scanning the three-dimensional spectrum, giving the familiar
comb-type spectrum. A detailed derivation can be found in
[18].

Three-Dimensional Sampling Structures: For digital
processing, coding, and transmission, the image signal must
be sampled in three dimensions. This is usually done by
horizontally sampling a signal which has already been
scanned in the vertical-temporal dimension. However, with
some solid-state sensors, the signal may be inherently sam-
pled in three dimensions. Numerous sampling structures
have been proposed for three-dimensional image sampling.
A number of these will be presented in this section, and
their relative merits discussed.

One of the earliest applications of a sampling lattice to
television transmission was described by Gouriet [30] in
1952, in the context of dot-interlaced television. In the
mid-1960s, Brainard et al. [31] carried out experiments with
replenishment patterns for low-resolution TV; some were
lattices while the rest were the union of two shifted lattices.
In this work, no explicit interpolation was carried out,
leaving this to the visual system. Further work on sampling
structures came with the advent of digital television. Saba-
tier and Kretz [32) compared several structures for sampling
of line-interlaced television signals and later presented an
in-depth study of the performance of these sampling struc-

18

x2
. . [ . .
] ° [ . .
. . . [ .
[ ® ° ° .
Xz o ° [} [} [ ]
L P ® L x3
X3
(a1
12
[ [ .
. . .
W L] °
. . .
[ ° .
. . .
'I/XZ L [ [ ]
. [ .
*- > f3
1/%3
(b-1)

(a) Two-dimensional sampling patterns for sequential and interlaced scanning of

tures [6]). This work also emphasized interpolation by the
human visual system. Tonge has described at length the
design of three-dimensional digital filters for prefiltering
and interpolation in two IBA research reports [28], [33).

Figs. 16—22 show a number of structures which have been
proposed for image sampling. Also shown on these figures
are the reciprocal structures and the lattice matrices. Sam-
pling structures have often been illustrated by means of
perspective drawings, as in [6] and [28]. However, for some
of the more complex structures, these figures can be dif-
ficult to interpret, so we have chosen to show the spatial
and spatial-frequency projections of the structures. All
points in the structure occurring at the same time or tem-
poral frequency carry the same number. The spacing in
the temporal or temporal-frequency dimension between
successive numbers is equal to the (3,3) element of the
associated lattice matrix. For convenience, all the matrices
are given in upper triangular form, so that the U matrices
are not the inverse transposed of the V matrices, although
the product UV is an integer matrix of determinant one.
Fig. 23 shows a perspective view of the lattice and recipro-
cal lattice of fig. 18, with the same numbering of the lattice
points. Also shown is a Voronoi unit cell of the reciprocal
lattice. ‘

The closest lattice points to the origin in the reciprocal
lattices indicate which frequencies in the input signal are
most likely to cause aliasing problems. Kretz and Sabatier
[6] have shown that the most critical structures for the
sampling process are periodic structures and contours or
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Fig. 17. (a) Lattice obtained by vertically aligned sampling of 2:1 line-interlaced signal
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(QT). (b) Reciprocal lattice.

edges. The distortion for a periodic structure is worst when
any of its significant frequency components are near one of
the lattice points of the reciprocal lattice. The distortion
appears as a beat frequency at the difference between the
structure frequency and the frequency of the closest re-
ciprocal lattice point. When the aliasing is mainly spatial,
this phenomenon is referred to as a Moiré pattern. For
contours, the distortion appears as a phase perturbation
along the length of the contour. This distortion is worst
when the Fourier spectrum of the contour is oriented
towards one of the points of the reciprocal lattice.

A good indication of the efficiency of a sampling lattice is
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(a) Body-centered orthorhombic lattice (BCO). Also known as field-quincunx

the ability to pack spheres densely without overlap on the
points of the reciprocal lattice. This indicates the sampling
density required to sample without aliasing a signal whose
spectrum is confined to a spherical region in frequency
space. Table 1 gives the minimum sampling density, and the
corresponding values of X,, X,, and X,, for each of the
sampling structures in Figs. 16-22. The sampling density
C = 8W3 of the simple cubic lattice is used as a reference
against which the others are compared. The optimum sam-
pling density is 0.707C, which can be obtained with the
lattices BCO, FCO, and HEX3. In all three cases, the recipro-
cal lattice is equivalent under rotation to the face-centered
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Fig. 19. (a) Face-centered orthorhombic lattice (FCO). (b) Reciprocal lattice.
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Fig. 20. (a) Hexagonal lattice with four field periodicity (HEX4). Also known as nonsta-

tionary line-quincunx (QLNS). (b) Reciprocal lattice.
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Fig. 21. (a) Hexagonal lattice with three-field periodicity (HEX3). (b) Reciprocal lattice.

Table 1 Minimum Sampling Density for Alias-Free Sampling
of Signals Band-Limited to |f] < W

Minimum Sampling

Sampling Density

Structure 1/X,X,X, X, X, X,
ORT 8wl =C 12w 12w 1/2W
AUl 43W? =0866C 12W  1/2W 13w
BCO 42w =0707C 12w 122w 2w
FCO #2wW?3 =0707C 12w 12w IN2w
QLNS 6w3 =075C  1/2/3wW 1/2w /3w
HEX3 H2W?P =0707C 1/B3W 12w 32w
QL Vs w? =0838C 2//15 W 1/2wW 13w

cubic (FCC) lattice, which is known to be the densest
possible lattice sphere packing. In order to apply these
results to the sampling of time-varying imagery, it is neces-
sary to relate measures of temporal frequency to those of
spatial frequency. This may not be strictly possible since
these are fundamentally different units. An approach sug-
gested by Tonge [28] is to base this relationship on the
spatiotemporal response characteristics of the human visual
system, and to assume a worst case viewing distance. If the
high-frequency portion of the threshold data, as in Fig. 13,
is used for this purpose, an approximate equivalence of 1
Hz and 0.62 cycles per degree (or 8.8 c/ph at a viewing
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Fig. 22. (a) Line-quincunx structure (QL). (b) Reciprocal structure. * indicates all multiples

of 1/X;.
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Fig. 23. (a) Perspective view of BCO lattice. (b) Perspective
view of reciprocal lattice (FCQO), showing Voronoi region.

distance of four picture heights) is obtained. This ratio
would equate a temporal frequency of 60 Hz with a spatial
frequency of 528 c/ph, very close to the ratio used in the
NTSC system.

An interesting parameter associated with each sampling
structure is the ratio of the spatial sampling density per field
to the total spatial sampling density, as seen in the spatial
projection of the structure. We refer to this as the interlace
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order. This was the basic parameter of interest in the
original dot-interlace schemes, and is of particular interest
in motion-adaptive interpolation, to be discussed in the
next section. For a given spatiotemporal sampling density,
the potential spatial resolution in stationary areas increases
with interlace order. For the sampling structures of Figs.
16-22, the interlace order is equal to the highest sample
index on the diagram of part (a) of the corresponding
figure. The HEX3 sampling structure has the highest inter-
lace order (three) among the optimal sphere packing lattices
we have given. The HEX4 lattice gives an interlace order of
four, with only a small decrease in packing efficiency,
making it a potentially attractive structure. However, it
remains to be verified that the crawling patterns described
in [6] can be eliminated by suitable spatiotemporal interpo-
lation filters.

When sampling a signal which has already been scanned
(usually with 2:1 line interlace), the samples must lie on
the scanning lines. The structures which are compatible
with line-interlaced scanning without field subsampling are
ALl, BCO, HEX4, and QL. As the sampling density decreases,
it may be advantageous to perform field subsampling to
maintain similar resolution in the different dimensions. In
this case, the ORT, FCO, and HEX3 patterns may also be
used. Tonge [28] has proposed preferred sampling structures
(choosing between BCO and FCO) compatible with
European scanning standards for different sampling densi-
ties.

D. Sampling of Color Signals

Sampling Component Color Signals: The sampling the-
ory which has been presented can be applied in a straight-
forward manner to sampling the three components of color
imagery. The main issues which arise are: which three
components should be sampled, and what shouid be the
relative sampling densities? The components which appear
to be the most advantageous are the luminance and two
chrominance components. From a statistical point of view,
most signal energy is contained in the luminance compo-
nent, and the Y, /, and Q components give similar energy
compaction to the Karhunen-Loéve transformation [34).
From a perceptual point of view, most successful models of
color vision incorporate a luminance channel, and two
chrominance channels (for example [35] and [36]). it is well
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known, that for a given total bandwidth, overall picture
quality is maximized by allotting more bandwidth to the
luminance than to the chrominance components; this forms
the basis for existing color television systems. The recent
recommendation for a digital component studio standard
[37] allows half the luminance sampling density to each
chrominance component (R-Y and B-Y). For many coding
systems, a much larger ratio of luminance to chrominance
sampling density is used. Further work is required to de-
termine more precisely the optimal allocation of relative
spatiotemporal sampling density to the luminance and
chrominance components.

Sampling Composite Color Signals: The sampling of
composite color video signals presents interesting prob-
lems, due to the irregular shape of the spectrum. In com-
posite signals, the luminance and chrominance information
is frequency-multiplexed in the three-dimensional frequen-
cy space. The form of the three-dimensional spectrum of
the PAL signal was derived in [38], and that of the NTSC
signal in [5]. Fig. 24 shows an idealized view of the three-

Fig. 24. Three-dimensional spectrum of NTSC signal.

dimensional spectrum of the NTSC signal. The sampling
problem is to choose a structure which will optimally pack
this spectrum region in three-dimensional frequency space.
A number of structures for this purpose, with a horizontal
sampling frequency equivalent to 2f,., were presented and
evaluated in {39]. Although this frequency is “sub-Nyquist”
in the one-dimensional sense, appropriate patterns give
good separation of the replicated spectra in three dimen-
sions. The preferred sampling pattern was determined to be
the body-centered orthorhombic pattern (or field quincunx),
and suitable interpolating filters were presented.

IV. FILTERS FOR PREFILTERING AND INTERPOLATION

A. Linear Shift-Invariant Filters

The prefilter and interpolation filters of Fig. 1 are gener-
ally hybrid analog/digital filters. The first stage of the
prefilter consists of the three-dimensional camera aperture
filter, and possibly a one-dimensional analog electrical filter.
The output of this stage is sampled on an initial sampling
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structure. It may then be digitally filtered, and subsampled
to the final sampling structure. At the display, the sampled
signal may first be digitally interpolated to a higher sam-
pling density. This is then interpolated to a continuous
signal by a one-dimensional analog electrical filter and the
display aperture.

There is little flexibility available in shaping the display an
camera apertures, whereas there is great flexibility in the
design of multidimensional digital filters, and many design
techniques are available [7]. Since linear phase is an im-
portant requirement in image filtering, finite-impulse re-
sponse (FIR) filters are most often used, where perfect
linear phase can be obtained. Infinite-impulse response
(IIR) filters can potentially give equivalent filter perfor-
mance for a lower order, but introduce problems of phase
response and stability. Since the implementation of a filter
requires a number of field memories equal to the temporal
order of the filter, there may be some advantage to be
gained by the use of IR filters if these problems can be
overcome.

There are two basic approaches available for the design
of the prefilters and interpolators.

1) Frequency-domain approach: for a given filter order,
the impulse response coefficients are chosen so that the
frequency response approximates in some way the pass-stop
characteristics of the ideal prefilter or interpolator, as de-
scribed in Section 1I-C.

2) Spatiotemporal-domain approach: for a given filter
order, the prefilter and interpolator coefficients are chosen
so that the interpolated signal approximates as closely as
possible the original image.

In video applications, the filters are generally of relatively
low order, due to speed and memory constraints. The
transition regions of the filters are thus not very sharp, so
that in-band components are attenuated, while out-of-band
components are not completely eliminated. The filters
should be optimized on the basis of subjective criteria, in
order to give the best tradeoff between resolution loss,
aliasing, and ringing. These do not in general carry equal
weight in terms of mean-square error. For example, it has
been found on the basis of subjective experiments on still
pictures that viewers attach more importance to loss of
sharpness than to aliasing distortion [40], [41].

Tonge [28] has presented frequency-domain designs for
prefilters and interpolators. For the low filter order usually
considered, a simple frequency constraint approach is often
successful. This can be accomplished by specifying that the
frequency response and its derivatives take on specified
values at certain frequencies. For example, the response at
the origin can be specified to give the desired dc gain, the
response at points of the reciprocal lattice in frequency
bands to be attenuated can be set to zero, and the deriva-
tives of the response at these frequencies can be set to zero
to give maximally flat response in different directions. Each
constraint results in a linear equation. If the number of
independent constraints equals the number of degrees of
freedom of the filter, a unique solution can be found.
Otherwise, the remaining coefficients can be varied in
some systematic fashion to obtain the best response. This
was the approach used in [28]. The McClellan transforma-
tion approach has been proposed for the design of two-
dimensional prefilters and interpolators, for use with still
images [42].



The spatiotemporal approach has been mainly confined
to the use of polynomial-type interpolation. Most promi-
nent among these is the cubic B-spline approach [43],
which has been used for spatial interpolation. This tech-
nique has the advantage of being able to compute inter-
polated values anywhere, not just on a rationally related
lattice. Another spatiotemporal approach is to choose the
interpolation coefficients to minimize the mean-square in-
terpolation error, based on a homogeneous random field
model for the image signal. This technique has mainly been
used for one-dimensional interpolation [44], [45], but is
easily extended to three dimensions.

B. Nonlinear Motion-Dependent Filters

The preceding sections on subsampling and interpolation
assume that the signal is reconstructed by means of a linear
three-dimensional low-pass filter. The specific nature of
time-varying imagery can be exploited to obtain improved
reconstruction techniques. Specifically, a time-varying scene
generally consists of a fixed background and a number of
moving objects. The temporal variation in the imagery is
caused by the motion of the objects in the scene. This
section presents reconstruction techniques which adapt to
the motion. Two main classes of algorithms are considered.
In the first, termed motion-adaptive processing, a motion
detection operation is performed, and different filtering
algorithms are used in moving and stationary parts of the
scene. In the second, motion-compensated processing, the
displacement of the objects from frame to frame is esti-
mated, and this motion estimation is used to determine the
filtering which is performed.

Motion-Adaptive Interpolation: Motion-adaptive inter-
polation can be used when it is desired to interpolate to a
higher density sampling structure which has the same spa-
tial projection. The maximum interpolation ratio which can
be obtained in this way is equal to the interlace order of
the original sampling structure. The idea is to perform
temporal interpolation in fixed areas, interpolating a miss-
ing sample from samples at the same spatial location in
previous and subsequent fields. In moving areas, where this
would not give good results, a spatial interpolator is used.
The basic concept is shown in Fig. 25. A motion detector
generates a motion index M, largely based on the inter-
frame difference in a neighborhood of the sample to be
interpolated. To avoid sudden switching between the two

Motion M . .
Index »1 Nonlinearity
a 1-a
u Spatial ag + o
1 Inter-
polation +
Y
Temporal Gy
»1 Inter- >
polation

Fig. 25. Motion-adaptive interpolation system.
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types of interpolators, a weighted sum of the two, with
weights determined by the motion index, is used. Thus if
g (x) is a temporal interpolation and dg(x) is a spatial
interpolation at point x, the motion-adaptive interpolation
is given by

a(x) = (M) G,(x) +(1 = a(M))a(x).  (63)
Fig. 26 shows the general form of the function a(M) which

relates the weighting factor to the motion index. If the
motion index is small, « is close to zero, and the interpola-

a (M)

A

0 > M

Fig. 26. Nonlinear function of motion index for motion-
adaptive interpolation.

tion is mainly temporal. As the motion index increases, a
approaches unity, and the interpolation becomes mainly
spatial. This type of interpolation can give significantly
better results than fixed interpolation, especially in sta-
tionary areas where the eye is most critical. The perfor-
mance of motion-adaptive interpolation is critically depen-
dent on the motion detection algorithm, and most research
on this technique centers on this aspect. Motion-adaptive
interpolation has been applied in the interpolation from the
HEX4 structure to the orthorhombic structure which con-
tains it, in the subsampling subsystem of a low-rate coder
for video conferencing [46]. It has also been applied in the
interpolation from interlaced scanning to sequential scan-
ning with twice the number of lines per field, for improved
display performance [47]-[49]. Motion-adaptive processing,
based on the same principles, has also been applied to
noise reduction [50] and luminance/chrominance demuiti-
plexing in composite signals {49].

Motion-Compensated Interpolation: Motion compensa-
tion is a technique which has received considerable atten-
tion recently for application in predictive coding of time-
varying imagery (e.g., [51]-[53]), and in noise reduction [54].
This technique can be used to improve the performance of
interpolation in moving areas of the picture, especially
when pure temporal subsampling has been used, and the
spatial interpolation part of the motion-adaptive interpola-
tor is not relevant. The basis of the technique is to estimate
the motion of the objects in the scene, and to interpolate a
missing field using the corresponding object points in the
previous and subsequent transmitted fields. The concept
was described by Gabor and Hill [55], using interpolation
only along a given scan. The application to general two-
dimensional motion was described in a series of papers at
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the 1981 Picture Coding Symposium [56]-[58]. Specific al-
gorithms to perform motion-compensated interpolation are
disclosed in [59], and applications in low bit-rate coding are
given in [60}, [61].

With conventional temporal interpolation, a missing field
is reconstructed by forming a weighted combination of pels
at the same spatial location in previous and subsequent
transmitted fields (using spatial interpolation if necessary).
When the subsampling factor is large, this results in both
jerkiness (a result of aliasing) and blurring. Motion-com-
pensated interpolation can significantly reduce these ef-
fects. The general approach is illustrated in Fig. 27 for the
case of 2:1 field subsampling. For each point in the output
sampling structure of the nontransmitted field, such as pel
A, the spatial location of the corresponding point in the

Transmitted
Field

Non-Trensmitted
Field

Transmitted

Field oo & & & o

oo o o
F3
oo o0 o o

F2
/(
Fig. 27. Principle of motion-compensated interpolation.
Point A in field F2 is interpolated using point 8 in field F1

and point C in field £3, after having estimated the displace-
ment vector.

F1

previous and subsequent transmitted fields must be esti-
mated, B and Cin Fig. 27. It is assumed that the points BAC
lie on a straight line. A linear combination of the intensities
of the points at B and C is used to interpolate the value at
A. Many techniques have been developed for displacement
estimation, the most important_ones being matching [62],
[63], the method of spatiotemporal gradients [64], [65], and
steepest descent recursive estimation [51]. A review of dis-
placement estimation can be found in [66]. Any of these
methods can be applied to motion-compensated interpola-
tion; a matching approach is used in [60], while the steepest
descent approach has been used in [59] and [61].

It is important to recognize that there is no correction for
errors made in the displacement estimation, as there is in
predictive coding and noise reduction applications, and so
it is imperative that the displacement field used be as
accurate as possible, or else artifacts will appear in the
image. Another observation is that where a signal may be
considered undersampled and aliased from the point of
view of a homogeneous random field, it can be accurately
reconstructed on the basis of a more complex model.

V. CONCLUSION

This paper has presented an overview of techniques for
sampling and reconstruction of time-varying imagery. A
feature of the presentation is the use of lattices to describe
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the sampling process, greatly facilitating the subsequent
analysis of digital signal processing algorithms. A good
understanding of the principles involved will be required to
design systems capable of providing the highest image
quality possible for a given transmission format. This is of
great importance at this time with the advent of enhanced-
quality and high-definition television system proposals, dis-
cussed elsewhere in this issue. Further work is required to
arrive at three-dimensional linear and nonlinear filters capa-
ble of giving the desired image quality with reasonable
hardware complexity.
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