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Abstract

This paper adapts the least-squares luma-chroma demultiplexing (LSLCD) demosaicking methods

to noisy Bayer color filter array (CFA) images. A model is presented for the noise in white-balanced

gamma-corrected CFA images. A method to estimate the noise level in each of the red, green and

blue color channels is then developed. Based on the estimated noise parameters, one of a finite set of

configurations adapted to a particular level of noise is selected to demosaic the noisy data. The noise-

adaptive demosaicking scheme is called LSLCD with noise estimation (LSLCD-NE). Experimental

results demonstrate state-of-the-art performance over a wide range of noise levels, with low computa-

tional complexity. Many results with several algorithms, noise levels and images are presented on our

companion web site along with software to allow reproduction of our results.

Index Terms

color filter array, Bayer sampling, demosaicking, noise estimation, noise reduction, noise model

I. INTRODUCTION

Most digital cameras acquire color images with the use of a color filter array (CFA), whereby

only one color component is measured at each spatial location of the sensor. The most popular

CFA pattern in current use continues to be the one due to Bayer. The process of reconstructing

three color components at each point of the spatial sampling structure is known as demosaicking.
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A large number of methods have been proposed to carry out this demosaicking process; a recent

survey can be found in [1]. One successful class of methods is based on a frequency-domain

interpretation of the spatial multiplexing of red, green and blue components; it has been termed

the method of luma-chroma demultiplexing in [2]. Coupled with a least-squares methodology

for designing the associated filters, it was called least-squares luma-chroma demultiplexing

(LSLCD), a term we adopt in this paper. The method was shown in [2] to give a state-of-

the-art quality/complexity tradeoff for essentially noise-free Bayer CFA images. However, noise

introduced by the acquisition process is always present in the CFA images acquired by digital

cameras and it can seriously affect demosaicking performance. Thus, the processing of raw

camera images requires both demosaicking and denoising processes. This paper addresses the

problem of accounting for noise in LSLCD demosaicking.

Many demosaicking methods have been proposed (e.g., [3], [4], [5], [6], [7], [2]), and their

performance has been established on noise-free CFAs. To make the system more realistic, many

recent papers have described demosaicking/denoising methods for noisy CFA signals [8], [9],

[10], [11], [12], [13], [14], [15], [16]. Their purpose is to reduce the noise while maintaining

significant signal details as much as possible. There are two main issues to consider in a

demosaicking/denoising system. The first is the noise model to be used. The noise introduced at

the sensor is signal dependent noise [17] and some papers have taken this into account [8],[10],

[18]. However, as we argue in section II of this paper, it is reasonable to model the noise in

the white-balanced, gamma-corrected signal as signal-independent white Gaussian noise, but

with different variances in the different color channels. The second issue is the structure of

the demosaicking/denoising system. It is possible to first perform denoising of the CFA image

followed by demosaicking [14], [15], or to first perform demosaicking followed by denoising.

Several drawbacks of such approaches were reported in [11],[12]. Thus, it should be better to

jointly perform demosaicking and denoising, the approach we take here.

We briefly review the methods that have been proposed for joint demosaicking and denoising.

Zhang et al. presented a method which estimates the color differences with a minimum MSE

technique that exploits both spectral and spatial correlations to simultaneously eliminate sensor

noise and reconstruction error [9]. Paliy et al. presented an efficient spatially adaptive nonlinear

filter by utilizing a local polynomial approximation to eliminate the demosaicking noise generated

in the demosaicking process. Later they used this method to suppress noise and demosaic the CFA
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signal [10]. Menon and Calvagno utilized a space-varying filtering and autocorrelation evaluation

approach [12]. In [11], Zhang et al. used the approach of principle component analysis to analyze

the local structure of each CFA variable block, which includes color components from different

channels. In [13], Condat proposed filters for denoising green/magenta and red/blue chrominance

and used BM3D [19] to denoise the luminance component.

In this paper, we present a noise-adaptive demosaicking system based on LSLCD, where

training of the filters in the system is done on noisy signals obtained by artificially adding noise

according to our model to the images in a training set. Different noise levels are added in the

different color channels according to the camera model. A different LSLCD system is designed

for each of a discrete set of noise levels. To select which set of filters should be used, we must

estimate the noise level in the CFA signal, a problem which has not received attention in the

literature. To this end, we have adapted the noise estimation method of Amer and Dubois [20]

to the problem of estimating the noise levels in the three channels of a Bayer CFA, and use the

result to select one of the pre-designed filter sets for demosaicking. We call the resulting system

LSLCE with noise estimation, or LSLCD-NE and show in this paper that it gives state-of-the-art

performance for this problem over a wide range of noise levels.

The remainder of this paper is organized as follows. In Section II, we present our model for the

formation of the noisy CFA signal after white balance and gamma correction. Section III reviews

the LSLCD system, showing how it can be used with noisy data, and how the BM3D scheme of

[19] can be integrated with it. The adaptation of the noise estimator of [20] to noisy CFA signals

is presented in Section IV. Then Section V shows how the estimated noise parameters are used

to select the filters for the LSLCD-NE algorithm. Experimental evaluations and comparisons are

given in Section VI. A representative set of demosaicked images and software to replicate the

results can be found on our associated web page [21]. Conclusions are drawn in Section VII.

II. FORMATION OF THE NOISY CFA IMAGE

Random noise is introduced into the CFA image at the level of the sensor. There are typically

two sources of noise: Poisson distributed noise generated in the process of converting photons to

electrons (shot noise), and electronic amplifier noise [18]. The image at the output of the Bayer
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CFA sensor in the noise free case can be modeled as [22]

fraw[x] =

∫ λmax

λmin

∫
R2

f(x− s, λ)ha(s)ds ci(λ)dλ,

x ∈ Ψi, i = 1, 2, 3. (1)

In this expression, Ψi is the sampling structure for the ith sensor class, where i = 1, 2, 3

correspond to R, G and B respectively. The functions ci(λ) represent the spectral sensitivities

of the red, green and blue filters placed over the sensor elements. Typical examples that we

have used in our work are shown in Fig. 5.1 of [23]. The function ha(s) is the camera aperture

and f(x, λ) is the spectral irradiance that would be projected at position x by an ideal (pinhole)

optical system.

This signal is corrupted by noise as described above to yield the noisy sensor output

frawn[x] = fraw[x] + v[x], (2)

where v[x] is a zero-mean random noise whose statistics we assume do not depend on x but

which generally depend on the value of fraw. A typical model for digital cameras is that v is

the sum of two independent noise terms, where one is signal independent and the other has a

variance proportional to the signal value [17]. Such a model could be formulated as

frawn[x] = fraw[x] +
√
m0v1[x] +

√
m1fraw[x]v2[x], (3)

where v1 and v2 are independent zero-mean, unit variance white Gaussian noise processes,

and m0 and m1 are parameters that describe the noise level. (See [24] for a similar, more

elaborate model that accounts for clipping.) In this model, the variance of the noise, given fraw,

is E[v2|fraw] = m0 +m1fraw.

This noise will impact all subsequent image processing operations and should be accounted for

when optimizing these operations. Examples of such operations are white balancing, color space

conversion (from the camera color space to CIE color space), gamma correction, denoising, and

of course demosaicking. These operations can be carried out separately in some particular order,

or they can be integrated to give the best overall solution. In this paper, we neglect the color

space conversion and assume that the noise-free values fraw represent sRGB tristimulus values

on the respective R, G, B sampling structures. We assume that white balance is first carried out,
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Fig. 1. Block diagram of the proposed LSLCD-NE system.

followed by gamma correction, and then joint demosaicking/denoising. Thus, we wish to model

the noise in the white-balanced, gamma-corrected signal.

To achieve white balance, the individual raw channels are multiplied by constants αi so that

the response to a reference white spectrum is 1.0 in each channel. Examples of this calculation

are given in section 5.2 of [23] for Canon 10D and Nikon D76 data from [25]. Finally, the signal

values pass through a gamma-correction operation g−1(·), such as sRGB gamma correction (e.g.,

eq. (5.11) in [23]). Thus, the white-balanced, gamma-corrected CFA signal can be modeled as

f ′CFAN[x] = g−1(α[x]fraw[x] + α[x]v[x]), (4)

where α[x] = αi for x ∈ Ψi, whereas the ideal signal is

f ′CFA[x] = g−1(α[x]fraw[x]). (5)

If we write

f ′CFAN[x] = f ′CFA[x] + v′[x] (6)

we would like to model the noise v′[x] in each channel Ψi.

In this paper, we propose to model the noise in each channel of the gamma-corrected signal as

white Gaussian noise with variances σ2
R, σ2

G and σ2
B respectively, that are essentially determined

by the gains needed to achieve white balance. The motivation is as follows. Suppose that m0 is

small and can be considered negligible (as in modern high-quality cameras), and that the gamma
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correction is simply a power-law operation g−1(f) = f 1/γ , which is a reasonable approximation.

For example, sRGB gamma correction can be very closely modeled by such a power law with

γ = 2.2 [26]. Then, at any particular point x

frawn = fraw +
√
m1frawv2

frawn
fraw

= 1 +

√
m1

fraw
v2(

frawn
fraw

)1/γ

=

(
1 +

√
m1

fraw
v2

)1/γ

≈ 1 +
1

γ

√
m1

fraw
v2, (7)

where we are keeping the first two terms of the Taylor expansion of (1 + a)1/γ for small a. It

follows that (taking the approximation as equality)

(frawn)1/γ = (fraw)1/γ +
1

γ

√
m1v2f

(2−γ)/2γ
raw

(αfrawn)1/γ = (αfraw)1/γ +
1

γ

√
m1α

1/γv2f
(2−γ)/2γ
raw

v′[x] =
1

γ

√
m1α

1/γv2[x](fraw[x])(2−γ)/2γ. (8)

We see that if γ = 2, v′[x] is signal independent. If γ = 2.2, then v′ is proportional to f−0.045raw ,

which is nearly signal independent. In a simulation of sRGB gamma correction on uniformly

distributed data, the PSNR in ten amplitude bins over the signal range varied from about 33.9

dB to 36.8 dB, whereas it ranges from 43.1 dB to 30.7 dB in the non-gamma-corrected signal.

Thus, it is reasonable to model noise in the white-balanced gamma-corrected signal as signal-

independent white Gaussian noise, but with channel-dependent variances

σ2
R : σ2

G : σ2
B = αR : αG : αB. (9)

For the Canon 10D as described in [23], we have αR : αG : αB = 1.86 : 0.69 : 1.0 and for the

Nikon D70, αR : αG : αB = 1.72 : 0.68 : 1.0.

III. LSLCD DEMOSAICKING OF NOISY BAYER CFA SIGNALS

We have shown in [2] how a noise-free Bayer CFA signal can be demosaicked using luma-

chroma demultiplexing with least-squares filters. Specifically, we can express the CFA signal
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as

fCFA[n1, n2] = fL[n1, n2] + fC1[n1, n2]e
jπ(n1+n2)

+ fC2[n1, n2](e
jπn1 − ejπn2)

, fL[n1, n2] + fC1m[n1, n2]

+ fC2ma[n1, n2] + fC2mb[n1, n2], (10)

with Fourier transform

FCFA(u, v) = FL(u, v) + FC1(u− 0.5, v − 0.5)

+ FC2(u− 0.5, v)− FC2(u, v − 0.5), (11)

where frequencies are expressed in c/px. The luma and chroma components are related to the

RGB components by the matrix transformation
fL

fC1

fC2

 =


1
4

1
2

1
4

−1
4

1
2
−1

4

−1
4

0 1
4



fR

fG

fB

 . (12)

Demosaicking is accomplished by extracting estimates of fC1 and fC2 using band-pass filters

h1, h2a, and h2b, followed by demodulation. A key ingredient to the success of that algorithm

in an adaptive combination of the two independent modulated versions of fC2 at frequencies

(0.5,0.0) and (0.0,0.5). The luma component is obtained by subtracting the estimated modulated

chroma components from the CFA signal, and the estimated R,G,B components are obtained by

applying the inverse of Eq. (12). The system is defined by the filters h1, h2a and h2b, which

were obtained in [2] using a least-squares criterion on a suitable training set. That algorithm,

referred to as least-squares luma-chroma demultiplexing (LSLCD) is summarized in Fig. 1 of

[2].

In this paper, we adapt the LSLCD approach to demosaicking noisy Bayer CFA signals.

As described in Section II, we assume that the three measured components are corrupted

with additive white Gaussian noise, but with different (unknown) variances. Depending on our

knowledge of the acquisition system, the ratio of the variances may or may not be known, but

we may assume that they are approximately as given in Section II for the Canon 10D and Nikon

D70 cameras. The demosaicking algorithm is essentially the same as in [2], but the least-squares
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Fig. 2. Block diagram of the setup for training filter hLN for noisy luminance component.

filters are trained on noisy signals. In the training phase, noise is added to the gamma-corrected

R, G, B components with the given ratio of variances. Filters are then designed to minimize the

squared error between the filtered noisy CFA signals and the corresponding noise-free modulated

chroma components. The approach is identical to that of [2] except that filters are applied to

simulated noisy CFA signals. Note that the noise in the modulated chroma components is a

mixture of the different RGB noise terms, but this is captured automatically by the least-squares

approach.

Since the real noise level is variable and unknown, we have designed least-squares filters for

P different levels of noise, where the noise variances in R, G, and B are in a given predefined

ratio. In this way, we design P different demosaicking systems, each adapted to a different noise

level. Our approach is to estimate the noise level from the CFA signal, and then choose the best

adapted system from among the P candidates, as shown in Fig. 1. We note that the adaptive

combining of f̂C2a and f̂C2b is done exactly as in [2]. One notable difference is that the luma

signal estimate obtained by subtracting the estimated modulated chroma signals from the noisy

CFA signal will contain noise in the luma band. This noise can be reduced using any denoising

algorithm for gray-scale images. We have done this using another least-squares filter hLN that

minimizes the squared error between the filtered noisy luma estimate and the noise-free luma

on the training set, as shown in Fig. 2. We have also used the BM3D noise reduction filter of

Dabov et al. [19], as suggested by Condat [13].

Fig. 3 illustrates a typical set of filters obtained with this algorithm. Fig. 3(a-d) shows filters

designed when there is no added noise, while Fig. 3(e-h) shows the filters obtained for σA = 10.

The effect of the noise on the filter design is quite evident.
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Fig. 3. Perspective view of frequency responses of typical 11× 11 sized filters. (a) h1, (b) h2a, (c) h2b, (d) hL for noise-free

CFA. (e) h1N , (f) h2aN , (g) h2bN , (h) hLN for noisy CFA (σA = 10).

IV. ESTIMATING NOISE LEVEL IN R, G, B CHANNELS

To select the appropriate set of trained filters, we need to know the noise level in the three

channels of the CFA signal. Although there have been many methods developed for noise level

estimation in single-channel images, there has been little work on this problem for CFA signals.

We have experimented with various techniques for noise level estimation and found that the

method of Amer and Dubois [20] is most suitable for our problem. This section shows how the

method of [20] has been adapted for CFA images.

Since we only deal with gamma-corrected images in this paper, the prime notation of section II

is dropped. Thus, we assume

fCFAN[n1, n2] = fCFA[n1, n2] + v[n1, n2] (13)

where v[n1, n2] is independent white Gaussian noise with variance σ2
i in the ith channel ([n1, n2] ∈
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Ψi). We have tested our noise estimation methods on two standard image data sets with added

noise: the 768× 512 Kodak images (KO), and the data set of 720× 540 images made available

by L. Condat [27] (LC).

A. Basic Noise Estimation Algorithm

To adapt the noise estimation of [20] to CFA images, we partition the image into four

rectangularly sampled subimages R, G1, G2, and B, corresponding to the four phases of the Bayer

pattern. The proposed method estimates the global image noise variance from the variances of a

set of blocks within the subimages classified as the most intensity-homogeneous blocks (IHB).

This method selects IHBs in a subimage by rejecting blocks with line structure, using the

masks of [20] to detect line structures. The noise level estimation method consists of two parts:

(1) detection of IHBs, (2) calculating σi =
√
αiσA for color i ∈ {R,G,B} of the selected

blocks. For each subimage, we define square ω×ω blocks B(j)
kl , centered at each location (k, l)

in the subimage, j ∈ {R,G1, G2, B}. We denote the sample mean and sample variance for each

block by µ
B

(j)
kl

and σ2

B
(j)
kl

. The assumption is that for the most homogeneous blocks in the image,

µ
B

(j)
kl

represents the signal value and the variance σ2

B
(j)
kl

can be attributed to the noise in the

corresponding channel, and is a good estimate of the noise variance in that channel.

To determine if a block can be classified as an IHB, we need to calculate a homogeneity

measure, ξ
B

(j)
kl

. Assume we have eight directional homogeneity measures from eight edge di-

rections (masks as shown in Fig. 4 for ω = 5), where ζ(m)

B
(j)
kl

is the absolute value of the output

of a one-dimensional high pass filter applied on mask contour m as shown in Fig. 4, evaluated

at the center of the block. We assume that blocks with the smallest sum of all directional

homogeneity measures, ξ
B

(j)
kl

=
∑

1≤m≤8 ζ
(m)

B
(j)
kl

, may be identified as IHBs. Several combinations

of configurations can be made for determining IHBs. They can be determined by (1) window

size ω (ω is an odd number, ω ≥ 3), (2) skipping parameter τ to reduce the computational

cost (horizontally and vertically skipping each τ th pixel in an image), (3) high pass filter (HPF)

design (f 3
HP = [ −1 2 −1 ], f 5

HP = [ −1 −1 4 −1 −1 ], filter size is 1×ω). The selected

configuration for our application has been determined empirically as [ω, τ,HPF ] = [5, 3, f 5
HP ].

Figure 4 shows the homogeneity analyzer, where f 5
HP = [ −1 −1 4 −1 −1 ] is chosen as

the high pass filter which measures the degree of homogeneity in the eight different directions.

The blocks with lowest sum of all homogeneity measures are assumed to be close to the ideal
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Fig. 4. Direction of the homogeneity analyzer when ω=5.

IHB. However, deciding the noise level using just one IHB is not reliable. Therefore we use

three blocks in each subimage to estimate the corresponding unknown noise variance. Let V (j)

be the set of locations of the centers of three blocks in subimage j with the lowest aggregate

homogeneity measure (aside from the lowest one). The corresponding sample variances are

σ2

B
(j)
kl

, (k, l) ∈ V (j) for j ∈ {R,G1, G2, B}, and the estimate of the variance for each phase is

σ2
e,j =

1

3

∑
(k,l)∈V (j)

σ2

B
(j)
kl

. (14)

If we know the exact ratio of αR : αG : αB that was used to obtain fCFAN, we select σTαe as,

σTαe = median
[
σe,R√
αR
,
σe,G1√
αG
,
σe,G2√
αG
,
σe,B√
αB

]
(15)

where Tα stands for true alpha ratio, which means we apply the known alpha values for

estimating the noise standard deviation.

However, as we describe in Section II, the ratio αR : αG : αB can be different depending

on camera models. Therefore we may have to estimate the αR : αG : αB ratio first before we

determine σe. From Eq. 9 we know σ2
R : σ2

G : σ2
B = αR : αG : αB, so we assume σe,R√

αR
≈ σe,G1√

αG
≈

σe,G2√
αG

≈ σe,B√
αB

. If we arbitrarily set αB = 1, then αR and αG are calculated as(
σe,R
σe,B

)2

:
σ2
e,G1

+ σ2
e,G2

2σ2
e,B

: 1 ≈ αR : αG : αB, (16)

and σEαe is calculated as Eq. 15. Here Eα stands for estimated alpha ratio, which means we

apply the estimated alpha ratio for estimating the noise standard deviation.
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Fig. 5. Estimated quantities as a function of the added noise level. σA is shown in all cases. (a) σTαe and σEαe estimated from

a constant image of value 128. (b) σTαe and σEαe estimated from the KO data set. (c) σTαE and σEαE estimated from the KO

data set with values of MO and AO given in Table I. (d) σTαe and σEαe estimated from the LC data set. (f) σTαE and σEαE

estimated from the LC data set with values of MO and AO given in Table I.

B. Refining σTαe and σEαe to Estimate σA

Although σTαe and σEαe are closely related to σA that we wish to estimate, we do not use them

as the direct estimate, but rather we determine how they are related on our training data sets with

different levels of synthetically added noise. For all our experiments, we assume that there are

P = 11 discrete levels of added noise, σA ∈ {0, 2, 4, . . . , 20} with the pth value of σA given as

2(p−1), and with the noise variance ratios for the Canon 10D, αR : αG : αB = 1.86 : 0.69 : 1.0.

Image values are on a scale from 0 to 255. Figure 5(a) shows σTαe and σEαe determined as

described in Section IV-A along with the true values of σA for the 11 added noise levels on a

constant image of value 128. There is clearly a linear relationship between σA and σTαe , σEαe ,

and for this image we conclude that σA ≈ MOTασTαe ≈ MOEασEαe , where from the graph we

identify MOTα = 1.0265 and MOEα = 1.1920. We note in particular that both methods give
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Fig. 6. (a) Scatter plot of best filter index versus σTαE (blue *), with best quadratic fit (green ◦) denoted CCF and the discrete

chosen filter, denoted DCF (red ◦). (b) Scatter plot of CMSE obtained with the best filter versus the CMSE with the DCF. Point

shown in red have the same CMSE.

an estimate of 0 when no noise is added.

Fig. 5(b) and (d) show the values of σTαe and σEαe for the 11 levels of added noise on the

KO and LC data sets; estimates were obtained for each image in the data set, and these were

averaged. We see a similar slope to that in Fig. 5(a), but also an additive offset due to the

underlying noise in these image data sets in addition to the added noise. In our application, we

wish to estimate the added noise, in order to relate it to the noise level in the training data set

with different levels of added noise. Thus we propose estimators of the form

σTαE = MOTα × σTαe + AOTα
LC , (17)

σEαE = MOEα × σEαe + AOEα
LC . (18)

Using the multiplicative factors found above, we determined an additive offset so that the

estimates in Eq. (17) and Eq. (18) approximate σA as closely as possible over the range of

added noise values. The resulting values are shown in Table I and the graphs of σTαE and σEαE

for the KO and LC data sets are shown in Fig. 5(c) and (e), showing that a good estimate of

the parameter σA can be obtained over the range of added noise, in both cases where the ratios

of noise levels in the different channels are known or unknown. Note that the noise level in the

LC data set is a bit higher than in the KO data set, leading to a slightly higher offset.
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TABLE I

ADDITIVE AND MULTIPLICATIVE PARAMETERS FOR ESTIMATE OF σE .

MO AOLC AOKO

Tα 1.027 -2.732 -1.825

Eα 1.192 -4.576 -3.292

V. FILTER SET SELECTOR

Our LSLCD-NE design algorithm can be summarized as follows. We first add Gaussian noise

with parameter σA (standard deviations
√
αRσA,

√
αGσA,

√
αBσA in each color channel) to

the Bayer CFA images, with σA ∈ {0, 2, ..., 20} as described above. We designed optimal

filters for the LSLCD system using the different noise levels in this set (with the method

shown in Section III, using the entire data set as training set). We denote the resulting LSLCD

demosaicking systems D(2(p−1)). Noise level estimation was introduced in Section IV, where we

use σTαE or σEαE to estimate σA. While the added noise levels σA are discrete even numbers,

the estimated σTαE and σEαE are continuous values. Thus, we have to assign one filter set to the

obtained σTαE or σEαE .

In this section, we show how to do this based on the values of σTαE , i.e., assuming that the

ratios of the noise variances in the three channels of the CFA are known. The procedure is the

same when using σEαE . For each image f (k) in the training set, and with each level of noise

2(p−1), we determined the best filter set by exhaustive search based on the color mean squared

error CMSE:

BF (k, σA) = arg min
σ∈{0,2,...,20}

CMSE(D(σ)f
(k,σA)
CFAN , f (k)). (19)

We also determine the noise estimate σTαE . Fig. 6(a) shows a scatter plot of the index of the

best filter versus σTαE (blue stars). There is a clear trend, and we fit this data with least-

squares polynomials of various order, concluding that a second order polynomial fit was the

most appropriate. Fig. 6(a) also shows the least-squares quadratic fit to this data (green circles),

denoted CCF. As our selected filter, we simply take the nearest even integer,

DCF = 2× round
(
CCF

2

)
, (20)
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shown as red circles in Fig. 6(a). After the training phase, DCF (σTαE ) is saved as a quantizer-

like function that partitions the σTαE axis into P disjoint intervals and assigns the value of DCF

depending on which interval contains the measured σTαE . The procedure is general and can be

applied for any number P of design standard deviations, which could also be non-uniformly

distributed.

To evaluate the effectiveness of this procedure, Fig. 6(b) shows for the Kodak image set, a plot

of the CMSE obtained with the DCF versus the CMSE obtained with the best of the available

filters BF. Points are red when DCF is equal to BF. When DCF 6= BF , the points are shown in

blue. From the result, 40.91 % of all cases correctly assigned DCF to BF for the Kodak image

set. It is clear that there is very little difference between use of the filter set obtained by this

procedure and use of the best filter set (which is of course unknown in actual use).

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed LSLCD-NE algorithm, we compare it with other

algorithms reported in the literature. The performance measurements are CPSNR and S-CIELAB

∆E∗ as in previous papers on this topic. For experimental validation, we consider the Kodak

test set of 24 color images of size 768× 512. We obtained ST (self-trained on the given image)

and GT (global-trained on all images) filter sets for 24 Kodak images using the DCF criterion

described above. If DCF ≤ 0, we assume no noise exists in the CFA image and original

LSLCD algorithm is used for demosaicking; in this case, the performance is the same as in [2].

If DCF > 0, we apply our proposed LSLCD-NE algorithm.

A. Comparison of Selected Conventional Demosaicking Algorithms with LSLCD-NE

In Tables II and III, we give a CPSNR and S-CIELAB ∆E∗ comparison between conventional

demosaicking algorithms which do not account for the noise (AHD [3], LMMSE [4], RAD [7],

LSLCD [2] with 11 × 11 hTO filters1) and the proposed LSLCD-NE (with 11 × 11 hGT filters

trained on all 24 images, and σA known) for different added noise levels (ANL). Here, ANL is

an integer from 1 to 11 with corresponding value of σA as described in section IV. The LSLCD

1Filter hTO is trained on the other 23 images in the Kodak data set. We assume that hTO is almost identical to hGT as found

previously.
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TABLE II

CPSNR RESULTS OF SELECTED DEMOSAICKING ALGORITHMS AND THE PROPOSED LSLCD-NE ALGORITHM WHEN

ANL ∈ {1, 2, ..., 11}. LSLCD EMPLOYED 11× 11 SIZED hTO AND LSLCD-NE EMPLOYED 11× 11 SIZED hGT WITH σA

KNOWN.

ANL AHD [3] LMMSE [4] RAD [7] LSLCD [2] LSLCD-NE

1 37.58 40.10 39.76 40.22 40.26

2 36.27 37.99 37.75 37.96 37.51

3 33.93 34.84 34.63 34.68 34.91

4 31.74 32.22 32.02 32.00 32.90

5 29.87 30.11 29.91 29.85 31.41

6 28.27 28.38 28.18 28.10 30.27

7 26.91 26.93 26.72 26.64 29.37

8 25.71 25.68 25.47 25.38 28.64

9 24.67 24.58 24.38 24.28 28.03

10 23.73 23.62 23.41 23.31 27.51

11 22.89 22.75 22.54 22.44 27.06

avg 29.23 29.75 29.52 29.53 31.62

algorithm shows better performance than the LSLCD-NE algorithm when ANL = 2, and results

are comparable when ANL = 1. However, the original LSLCD algorithm is seriously affected

by noise as ANL increases. The proposed LSLCD-NE with hLN yields better performance when

ANL is high, while it is still comparable with LSLCD when ANL is low. LSLCD-NE performs

better than all the other methods tested for ANL values of 3 or more with both performance

measures.

B. Evaluation of Noise Estimation Schemes

If we know σA, we can select the filter corresponding to BF (σA). However, in most cases

σA, and perhaps the ratios αR : αG : αB that characterize the image capture, are unknown at the

demosaicking step, and thus we have to estimate σE and perhaps the αi. There are four cases

for estimating σE that we have evaluated, as shown in Table IV. Fig. 7 shows CPSNR results on

the Kodak data set when different methods for estimating noise parameters are used compared
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TABLE III

S-CIELAB ∆E∗ RESULT OF SELECTED DEMOSAICKING ALGORITHMS AND THE PROPOSED LSLCD-NE ALGORITHM

WHEN ANL ∈ {1, 2, ..., 11}. LSLCD EMPLOYED 11× 11 SIZED fTO AND LSLCD-NE EMPLOYED 11× 11 SIZED fGT

WITH σA KNOWN.

ANL AHD [3] LMMSE [4] RAD [7] LSLCD [2] LSLCD-NE

1 0.939 0.787 0.842 0.779 0.776

2 1.180 1.061 1.098 1.068 1.079

3 1.621 1.532 1.583 1.565 1.522

4 2.128 2.061 2.129 2.121 1.972

5 2.664 2.616 2.704 2.705 2.397

6 3.217 3.187 3.295 3.304 2.793

7 3.781 3.768 3.897 3.915 3.163

8 4.352 4.358 4.507 4.533 3.512

9 4.928 4.954 5.123 5.157 3.842

10 5.510 5.556 5.744 5.787 4.157

11 6.094 6.163 6.369 6.421 4.459

avg 3.310 3.277 3.390 3.396 2.697

TABLE IV

NOISE ESTIMATION CONDITIONS EVALUATED IN FIG. 7.

ANL αR : αG : αB ratio ImageSet σ decision

known - - σA

unknown known Kodak σTα,KOE

unknown unknown Kodak σEα,KOE

unknown known LC σTα,LCE

unknown unknown LC σEα,LCE

to when the best filter is used. For this assessment, we used 11 × 11 self-trained filters. From

the figure, we see BF (σA) gives the best result, followed by DCF (σTα,KOE ), DCF (σTα,LCE ),

DCF (σEα,KOE ), and DCF (σEα,LCE ) in that order. From this result, we see that the training set
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Fig. 8. CPSNR difference from LSLCD-NE with 13×13 sized fGT with conventional joint domosaicking/denoising methods.

has little impact, while knowing the true alpha ratio has somewhat more effect. When CPSNR

is plotted, all curves look pretty much the same, demonstrating that our noise estimation is quite

effective in the context of LSLCD-NE demosaicking.

C. Comparison of LSLCD-NE With Other Joint Demosaicking/Denoising Systems

Tables V and VI show CPSNR and S-CIELAB ∆E∗ performance of several versions of

the proposed algorithm and other joint demosaicking/denoising systems from the literature, as
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TABLE V

CPSNR PERFORMANCE COMPARISON FOR 24 KODAK DATA SET WHEN σA IS GIVEN. ALGORITHM LABELS (A) JDD [12],

(B) ZHANG1 [9], (C) LASIP [10], (D) ZHANG2 [11], (E) 9× 9 CONDAT [13], (F) 13× 13 CONDAT [13], (G) 5× 5 fGT ,

(H) 7× 7 fGT , (I) 9× 9 fGT , (J) 11× 11 fGT , (K) 13× 13 fGT , (L) 15× 15 fGT , (M) 11× 11 fGT . (G TO L): BM3D IS

USED FOR f̂LN OF FIG. 1, (M): hLN IS USED FOR f̂LN OF FIG. 1.)

ANL A B C D E F G H I J K L M

1 39.77 40.12 37.01 38.54 38.79 39.02 39.10 39.83 40.16 40.26 40.28 40.29 40.26

2 38.17 38.39 36.16 37.44 37.57 37.74 37.66 38.26 38.46 38.54 38.56 38.57 37.51

3 36.07 36.26 34.73 35.72 35.92 36.02 35.73 36.29 36.40 36.45 36.47 36.47 34.91

4 34.32 34.53 33.45 34.15 34.49 34.55 34.04 34.65 34.75 34.79 34.81 34.81 32.90

5 32.90 33.16 32.38 32.81 33.30 33.36 32.64 33.33 33.46 33.50 33.52 33.53 31.41

6 31.71 32.03 31.50 31.68 32.32 32.40 31.47 32.25 32.42 32.47 32.49 32.51 30.27

7 30.70 31.09 30.75 30.71 31.49 31.60 30.48 31.33 31.55 31.64 31.66 31.68 29.37

8 29.82 30.28 30.10 29.88 30.77 30.93 29.62 30.55 30.81 30.93 30.97 30.99 28.64

9 29.04 29.58 29.53 29.14 30.14 30.35 28.87 29.85 30.16 30.32 30.37 30.40 28.03

10 28.34 28.95 29.03 28.49 29.57 29.84 28.21 29.24 29.59 29.79 29.85 29.89 27.51

11 27.71 28.39 28.58 27.90 29.06 29.38 27.61 28.68 29.08 29.30 29.38 29.43 27.06

avg 32.60 32.98 32.11 32.40 33.04 33.20 32.31 33.12 33.35 33.45 33.49 33.51 31.62
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Fig. 9. S-CIELAB ∆E∗ difference from LSLCD-NE with 13× 13 sized fGT with conventional joint domosaicking/denoising

methods.
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TABLE VI

S-CIELAB ∆E∗ PERFORMANCE COMPARISON FOR 24 KODAK DATA SET WHEN σA IS GIVEN. ALGORITHM LABELS (A)

TO (M) CORRESPOND TO THOSE USED IN TABLE V.

ANL A B C D E F G H I J K L M

1 0.818 0.823 1.321 0.918 0.919 0.901 0.841 0.807 0.781 0.776 0.775 0.775 0.776

2 1.062 1.060 1.467 1.097 1.145 1.131 1.092 1.052 1.033 1.027 1.026 1.026 1.079

3 1.439 1.412 1.735 1.391 1.483 1.472 1.487 1.418 1.401 1.396 1.393 1.392 1.522

4 1.836 1.776 2.012 1.705 1.820 1.810 1.911 1.789 1.761 1.754 1.749 1.747 1.972

5 2.236 2.136 2.278 2.020 2.146 2.127 2.344 2.153 2.103 2.087 2.080 2.077 2.397

6 2.632 2.488 2.530 2.329 2.459 2.422 2.780 2.510 2.428 2.398 2.386 2.380 2.793

7 3.026 2.832 2.771 2.628 2.763 2.699 3.219 2.861 2.741 2.691 2.671 2.661 3.163

8 3.415 3.168 3.001 2.918 3.059 2.962 3.660 3.208 3.046 2.972 2.939 2.923 3.512

9 3.802 3.498 3.224 3.198 3.349 3.214 4.102 3.551 3.344 3.243 3.196 3.171 3.842

10 4.186 3.821 3.439 3.470 3.635 3.457 4.547 3.892 3.638 3.506 3.442 3.407 4.157

11 4.567 4.140 3.648 3.734 3.916 3.694 4.992 4.232 3.926 3.764 3.682 3.634 4.459

avg 2.638 2.469 2.493 2.310 2.427 2.353 2.816 2.497 2.382 2.328 2.304 2.290 2.697

TABLE VII

AVERAGE TIME (S) TO DEMOSAIC ONE 512× 768 IMAGE OF THE KODAK DATA SET WHEN σA IS GIVEN. ALGORITHM

LABELS (A) TO (M) CORRESPOND TO THOSE USED IN TABLE V.

A B C D E F G H I J K L M

time/image 4.975 72.679 6.672 289.809 9.221 9.566 9.359 9.420 9.397 9.430 9.537 9.419 0.942

described in the introduction. Figures 8 and 9 graphically show the performance difference

between one reference implementation of LSLCD-NE (K in the tables) and these same methods.

In all cases the noise level σA and the noise variance ratios are assumed known, since the methods

from the literature do not incorporate noise estimation. However, the other methods do not make

use of the noise variance ratios. Readers can make a subjective performance comparison by

viewing selected demosaicked images at the companion web site [21]. Some closeups of selected

critical areas are also shown, as well as results for a few other images outside the Kodak data
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set.

As a first observation, we note that the proposed method outperforms all the other methods

over the entire range of noise levels in terms of CPSNR. For the S-CIELAB ∆E∗ measure,

the method noted D: Zhang2 performed slightly better for added noise levels from 4 to 8. The

methods E and F of Condat perform very similarly to the proposed method at higher noise

levels, while the methods A: JDD and B: Zhang1 perform well at lower noise levels. Fig. 10

illustrates the performance of LSLCD-NE at the highest added noise level (ANL=11, σA = 20)

in comparison with two other methods on a zoomed portion of Kodak image 8. The comparison

methods are the closest comptetitors, Zhang2 (D) and 13×13 Condat (F). On this region, we see

that LSLCD-NE gives a more pleasing reproduced image than method D, and has better color

crosstalk suppression than method F. Again, many more results can be found on the companion

web site [21].

Regarding the proposed LSLCD-NE method, we have used filter sizes ranging from 5× 5 to

15×15 (G-L), allowing a tradeoff between complexity and demosaicking performance. It is clear

that we can do better than 5× 5, but gains above 11× 11 are getting small. Method M shows

the result of using a least-squares filter for the luma component rather than the BM3D filter.

This clearly degrades the performance and is not as good as any of the competing methods, so

use of the BM3D filter is definitely preferred.

Table VII shows the average time in seconds to demosaic one 512× 768 image of the Kodak

data set. From the result we see filter size does not seriously affect the computation time. We

see that the BM3D filter for the luma chroma contributes significantly to the complexity, but

it is needed to get suitable performance. All methods from the literature were tested using

the software made available by the authors of these methods on their web sites. Although these

times are only a rough measure of complexity, they do give important information on the relative

complexity of the different methods.

VII. CONCLUSION

This paper has extended the adaptive luma-chroma demultiplexing algorithm of [2] to noisy

CFA images, taking into account the different noise levels in the different color channels,

and providing a noise-level estimation scheme. The resulting method shows that LSLCD is

an algorithm of choice for noisy CFA demosaicking, and performs very well at all noise levels
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(a) (b)

(c) (d)

Fig. 10. Results on zoomed portion of Kodak image 8 with ANL=11 (σA = 20). (a) Original. (b) LSLCD-NE. (c) Zhang2.

(d) 13× 13 Condat.
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with a very competitive level of complexity. This is the only method we have seen that explicitly

accounts for different noise levels in the different channels in designing the demosaicking

algorithm. The methods proposed are general and can be applied to other CFA designs than

the Bayer, including those with more than 3 types of color filters, and other noise models. For

example, some CFA designs use a panchromatic channel to improve noise performance, and the

proposed algorithm can be adapted to exploit this feature as much as possible. It would also be

interesting to combine the LSLCD method with modern, locally adaptive denoising schemes to

get better overall performance.

Many results are provided on our companion web site along with software to reproduce our

results.
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