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1 Introduction

This chapter is concerned with the sampled representation of time-varying imagery, of-
ten referred to as video. Time-varying imagery must be sampled in at least one di-
mension for the purposes of transmission, storage, processing or display. Examples
are one-dimensional temporal sampling in motion-picture �lm, two-dimensional vertical-
temporal scanning in the case of analog television, and three-dimensional horizontal-
vertical-temporal sampling in digital video. In some cases a single sampling structure is
used throughout an entire video processing or communication system. This is the case
in standard analog television broadcasting where the signal is acquired, transmitted and
displayed using the same scanning standard from end to end. However, it is becoming
increasingly more common to have di�erent sampling structures used in the acquisition,
processing, transmission, and display components of the system. In addition, the number
of di�erent sampling structures in use throughout the world is increasing. Thus, sampling
structure conversion for video systems is an important problem.

The initial acquisition and scanning is particularly critical because it determines what
information is contained in the original data. The acquisition process can be modeled
as an analog pre�ltering followed by ideal sampling on a given sampling structure. The
sampling structure determines the amount of spatio-temporal information that the sam-
pled signal can carry, while the pre�ltering serves to limit the amount of aliasing. At
the �nal stage of the system, the desired display characteristics are closely related to the
properties of the human visual system. The goal of the display is to convert the sampled
signal to a continuous image presented to the viewer that approximates the original con-
tinuous scene as closely as possible. In particular, the e�ects caused by sampling should
be attenuated su�ciently to be below the threshold of perceptibility.

This chapter has three main sections. First the sampling lattice, the basic tool in
the analysis of spatiotemporal sampling, is introduced. The issues involved in the sam-
pling and reconstruction of continuous time-varying imagery are then addressed. Finally,
methods for the conversion of image sequences between di�erent sampling structures are
presented.
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2 Spatiotemporal Sampling Structures

A continuous time-varying image fc(x; y; t) is a function of two spatial dimensions x and
y and time t, usually observed in a rectangular spatial windowW over some time interval
T . The spatiotemporal regionW�T is denotedWT . The spatial window is of dimension
pw � ph where pw is the picture width and ph is the picture height. Since the absolute
physical size of an image depends on the display device used, and the sampling density
for a particular video signal may be variable, we choose to adopt the picture height ph as
the basic unit of spatial distance, as is common in the broadcast video industry. The ratio
pw=ph is called the aspect ratio, the most common values being 4/3 for standard TV
and 16/9 for HDTV. The image fc can be sampled in one, two or three dimensions. It is
almost always sampled in the temporal dimension at least, producing an image sequence.
An example of an image sampled only in the temporal dimension is motion picture �lm.
Analog video is typically sampled in the vertical and temporal dimensions while digital
video is sampled in all three dimensions. The subset of R3 on which the sampled image
is de�ned is called the sampling structure 	; it is contained in WT .

The mathematical structure most useful in describing sampling of time-varying images
is the lattice. A discussion of lattices from the point of view of video sampling can be
found in [1] and [2]. Some of the main properties are presented here. A lattice � in
D dimensions is a discrete set of points that can be expressed as the set of all linear
combinations with integer coe�cients of D linearly independent vectors in RD (called
basis vectors),

� = fn1v1 + � � �+ nDvD j ni 2 Zg; (1)

where Z is the set of integers. For our purposes, D will be 1, 2 or 3 dimensions. The
matrix V = [v1 j v2 j � � � j vD] whose columns are the basis vectors vi is called a sampling
matrix and we write � = LAT(V ). The basis or sampling matrix for a given lattice is not
unique however, since LAT(V ) = LAT(V E) where E is any unimodular (j detEj = 1)
integer matrix. Fig. 1 shows an example of a lattice in two dimensions, with basis vectors
v1 = (2X; 0) and v2 = (X; Y ). The sampling matrix in this case is

V� =

�
2X X
0 Y

�
:

A unit cell of a lattice � is a set P � R
D such that copies of P centered on each

lattice point tile the whole space without overlap: (P + s1)\ (P + s2) = ; for s1; s2 2 �,
s1 6= s2, and [s2�(P + s) = R

D . The volume of a unit cell is d(�) = j detV j, which is
independent of the particular choice of sampling matrix. We can imagine that there is a
region congruent to P of volume d(�) associated with each sample in �, so that d(�) is
the reciprocal of the sampling density. The unit cell of a lattice is not unique. In Fig. 1,
the shaded hexagonal region centered at the origin is a unit cell, of area d(�) = 2XY .
The shaded parallelogram in the upper right is also a possible unit cell.

Most sampling structures of interest for time-varying imagery can be constructed
using a lattice. In the case of 3D sampling, the sampling structure can be the intersection
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Figure 1: Example of a lattice in two dimensions with two possible unit cells.

ofWT with a lattice, or in a few cases, with the union of two or more shifted lattices. The
latter case occurs relatively infrequently (although there are several practical situations
where it is used) and so the discussion here is limited to sampling on lattices. The theory
of sampling on the union of shifted lattices (cosets) can be found in [1]. In the case of
one or two-dimensional (partial) sampling (D = 1 or 2), the sampling structure can be
constructed as the Cartesian product of a D-dimensional lattice and a continuous (3�D)
dimensional space. For one-dimensional sampling, the 1D lattice is �t = fnT j n 2 Zg
where T is the frame period. The sampling structure is then W � �t = f(x; t) j x 2
W; t 2 �tg. For two-dimensional vertical-temporal sampling (scanning) using a 2D lattice
�yt, the sampling structure is WT \ (H��yt) where H is a one-dimensional subspace of
R
3 parallel to the scanning lines. In video systems, the scanning spot is moving down

as it scans from left to right, and of course is moving forward in time. Thus H has
both a vertical and temporal tilt, but this e�ect is minor and can usually be ignored;
we assume that H is the line y = 0, t = 0. Most digital video signals are obtained by
three-dimensional subsampling of signals that have initially been sampled with one or
two-dimensional sampling as above. Although the sampling structure is space limited,
the analysis is often simpli�ed if the sampling structure is assumed to be of in�nite extent,
with the image either set to zero outside of WT or replicated periodically.

Much insight into the e�ect of sampling time-varying images on a lattice can be
achieved by studying the problem in the frequency domain. To do this, we introduce the
Fourier transform for signals de�ned on di�erent domains. For a continuous signal fc the
Fourier transform is given by

Fc(u; v; w) =

Z Z Z
fc(x; y; t) exp[�j2�(ux+ vy + wt)] dx dy dt (2)
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or more compactly, setting u = (u; v; w) and s = (x; y; t),

Fc(u) =

Z
WT

fc(s) exp(�j2�u � s)ds; u 2 R3 : (3)

The variables u and v are horizontal and vertical spatial frequencies in cycles/picture
height (c/ph) and w is temporal frequency in Hz.

Similarly, a discrete signal f(s), s 2 � has a lattice Fourier transform (or discrete
space-time Fourier transform)

F (u) =
X
s2�

f(s) exp(�j2�u � s); u 2 R3 : (4)

With this non-normalized de�nition, both s and u have the same units as in equation (3).
As with the 1D discrete-time Fourier transform, the lattice Fourier transform is periodic.
If k is an element of R3 such that k � s 2 Z for all s 2 �, then F (u+ k) = F (u). It can
be shown that fk j k � s 2 Z for alls 2 �g is a lattice called the reciprocal lattice ��, and
that if V is a sampling matrix for �, then �� = LAT((V T )�1). Thus F (u) is completely
speci�ed by its values in a unit cell of ��.

For partially sampled signals, a mixed Fourier transform is required. For the ex-
amples of temporal and vertical-temporal sampling mentioned previously, these Fourier
transforms are

F (u; w) =

Z
W

X
n

f(x; nT ) exp[�j2�(u � x+ wnT )]dx (5)

and

F (u; v; w) =

Z
H

X
(y;t)2�yt

f(x; y; t) exp[�j2�(ux + vy + wt)] dx: (6)

These Fourier transforms are periodic in the temporal frequency domain (with period-
icity 1=T ) and in the vertical-temporal frequency domain (with periodicity lattice ��yt)
respectively.

The terminology is illustrated with two examples that will be discussed in more detail
further on. Fig. 2 shows two vertical-temporal sampling lattices: a rectangular lattice �R

in Fig. 2(a) and a hexagonal lattice in Fig. 2(b). These correspond to progressive scanning
and interlaced scanning respectively in video systems. Possible sampling matrices for the
two lattices are

VR =

�
Y 0
0 T

�
and

�
Y 0
T=2 T

�
: (7)

Both lattices have the same sampling density, with d(�R) = d(�H) = Y T . Fig. 3 shows
the reciprocal lattices ��R and ��H with several possible unit cells.
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Figure 2: Two-dimensional vertical-temporal lattices. (a) Rectangular lattice �R. (b)
Hexagonal lattice �H .

3 Sampling and reconstruction of continuous time-

varying imagery

The process for sampling a time-varying image can be approximated by the system shown
in Fig. 4. The light arriving on the sensor is collected and weighted in space and time
by the sensor aperture a(s) to give the output

fca(s) =

Z
R3

fc(s+ s
0)a(s0)ds0 (8)

where it is assumed here that the sensor aperture is space and time invariant. The
resulting signal fca(s) is then sampled in an ideal fashion on the sampling structure 	

f(s) = fca(s); s 2 	: (9)

By de�ning ha(s) = a(�s), it is seen that the aperture weighting is a linear �ltering
operation, i.e., the convolution of fc(s) with ha(s)

fca(s) =

Z
R3

fc(s� s
0)ha(s

0)ds0: (10)

Thus, if fc(s) has a Fourier transform Fc(u), then Fca(u) = Fc(u)Ha(u), where Ha(u)
is the Fourier transform of the aperture impulse response.

If the sampling structure is a lattice �, then the e�ect of sampling in the frequency
domain is given by [1]

F (u) =
1

d(�)

X
k2��

Fca(u+ k); (11)
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Figure 3: Reciprocal lattices of the two-dimensional vertical-temporal lattices of Fig. 2.
(a) Rectangular lattice ��R. (b) Hexagonal lattice �

�
H .

Linear shift-

invariant filter 
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on Ψ
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Figure 4: System for sampling a time-varying image.

in other words, the continuous signal spectrum Fca is replicated on the points of the
reciprocal lattice. The terms in the sum of equation (11) other than for k = 0 are
referred to as spectral repeats. There are two main consequences of the sampling process.
The �rst is that these spectral repeats, if not removed by the display/viewer system, may
be visible in the form of icker, line structure or dot patterns. The second is that if the
regions of support of Fca(u) and Fca(u + k) have non-zero intersection for some values
k 2 ��, we have aliasing; a frequency ua in this intersection can represent both the
frequencies ua and ua � k in the original signal. Thus, to avoid aliasing, the spectrum
Fca(u) should be con�ned to a unit cell of �

�; this can be accomplished to some extent by
the sampling aperture ha. Aliasing is particularly problematic because once introduced
it is di�cult to remove, since there is more than one acceptable interpretation of the
observed data. Aliasing is a familiar e�ect that tends to be localized to those regions of
the image with high frequency details. It can be seen as moir�e patterns in such periodic-
like patterns as �shnets and venetian blinds, and as staircase-like e�ects on high-contrast
oblique edges. The aliasing is particularly visible and annoying when these patterns are
moving. Aliasing is controlled by selecting a su�ciently dense sampling structure and
through the pre�ltering e�ect of the sampling aperture.

If the support of Fca(u) is con�ned to a unit cell P� of ��, then it is possible to
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reconstruct fca exactly from the samples. In this case, we have

Fca(u) =

(
d(�)F (u) if u 2 P�

0 if u 62 P�
(12)

and it follows that

fca(s) =
X
s02�

f(s0)t(s� s
0) (13)

where

t(s) = d(�)

Z
P�

exp(j2�u � s)du (14)

is the impulse response of an ideal lowpass �lter (with sampled input and continuous out-
put) having passband P�. This is the multidimensional version of the familiar Sampling
Theorem.

In practical systems, the reconstruction is achieved by

bfca(s) = X
s02�

f(s0)d(s� s
0) (15)

where d is the display aperture which generally bears little resemblance to the ideal t(s)
of (14). The display aperture is usually separable in space and time, d(s) = ds(x; y)dt(t),
where ds(x; y) may be Gaussian or rectangular, and dt(t) may be exponential or rectan-
gular, depending on the type of display system. In fact, a large part of the reconstruction
�ltering is often left to the spatiotemporal response of the human visual system. The
main requirement is that the �rst temporal frequency repeat at zero spatial frequency
(at 1=T for progressive scanning and 2=T for interlaced scanning (Fig. 2) be at least 50
Hz for large area icker to be acceptably low.

If sampling is performed in only one or two dimensions, the spectrum is replicated
in the corresponding frequency dimensions. For the two cases of temporal and vertical-
temporal sampling, we obtain

F (u; w) =
1

T

1X
l=�1

Fca(u; w +
l

T
) (16)

and

F (u; v; w) =
1

d(�yt)

X
k2��

yt

Fca(u; (v; w) + k): (17)

Consider �rst the case of pure temporal sampling, as in motion-picture �lm. The main
parameters in this case are the sampling period T and the temporal aperture. As shown in
equation (16), the signal spectrum is replicated in temporal frequency at multiples of 1=T .
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In analogy with one-dimensional signals, one might think that the time-varying image
should be bandlimited in temporal frequency to 1=2T before sampling. However, this is
not the case. To illustrate, consider the spectrum of an image undergoing translation with
constant velocity �. This can model the local behavior in a large class of time-varying
imagery. The assumption implies that fc(x; t) = fc0(x � �t), where fc0(x) = fc(x; 0).
A straightforward analysis [3] shows that Fc(u; w) = Fc0(u)�(u � � + w), where �(�) is
the Dirac delta function. Thus, the spectrum of the time-varying image is not spread
throughout spatiotemporal frequency space but rather it is concentrated around the plane
u � � +w = 0. When this translating image is sampled in the temporal dimension, these
planes are parallel to each other and do not intersect, i.e., there is no aliasing, even if the
temporal bandwidth far exceeds 1=2T . This is most easily illustrated in two dimensions.
Consider the case of vertical motion only. Fig. 5 shows the vertical-temporal projection
of the spectrum of the sampled image for di�erent velocities �. Assume that the image
is vertically bandlimited to B c/ph. It follows that when the vertical velocity reaches
1=2TB picture heights per second (ph/s), the spectrum will extend out to the temporal
frequency of 1=2T as shown in Fig. 5(b). At twice that velocity (1=TB), it would extend
to a temporal frequency of 1=T which might suggest severe aliasing. However, as seen
in Fig. 5 (c), there is no spectral overlap. To reconstruct the continuous signal correctly
however, a vertical-temporal �ltering adapted to the velocity is required. Bandlimiting
the signal to a temporal frequency of 1=2T before sampling would e�ectively cut the
vertical resolution in half for this velocity. Note that the velocities mentioned above
are not really very high. To consider some typical numbers, if T = 1=24 s, as in �lm,
and B = 500 c/ph (corresponding to 1000 scanning lines) the velocity 1=2TB is about
1=42 ph/s. It should be noted that if the viewer is tracking the vertical movement, the
spectrum of the image on the retina will be far less tilted, again arguing against sharp
temporal bandlimiting. (This is in fact a kind of motion-compensated �ltering by the
visual system.) The temporal camera aperture can roughly be modeled as the integration
of fc for a period Ta � T . The choice of the value of the parameter Ta is a compromise
between motion blur and signal-to-noise ratio.

Similar arguments can be made in the case of the two most popular vertical-temporal
scanning structures, progressive scanning and interlaced scanning. Referring to Fig. 6, the
vertical-temporal spectrum of a vertically translating image at the same three velocities
(assuming that 1=Y = 2B) is shown for these two scanning structures. For progressive
scanning there continues to be no spectral overlap, while for interlaced scanning the
spectral overlap can be severe at certain velocities (e.g., 1/TB as in Fig. 6(f)). This is a
strong advantage for progressive scanning. Another disadvantage of interlaced scanning
is that each �eld is spatially undersampled and pure spatial processing or interpolation
is very di�cult. An illustration in three dimensions of some of these ideas can be found
in [4].
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Figure 5: Vertical-temporal projection of the spectrum of temporally sampled time-
varying image with vertical motion of velocity �. (a) � = 0. (b) � = 1=2TB. (c)
� = 1=TB.
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Figure 6: Vertical-temporal projection of spectrum of vertical-temporal sampled time-
varying image with progressive and interlaced scanning. Progressive: (a) � = 0. (b)
� = 1=2TB. (c) � = 1=TB. Interlaced: (d) � = 0. (e) � = 1=2TB. (f) � = 1=TB.
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4 Sampling structure conversion

There are numerous spatiotemporal sampling structures used for the digital representa-
tion of time-varying imagery. However, the vast majority of those in use fall into one of
two categories corresponding to progressive or interlaced scanning with aligned horizontal
sampling. This corresponds to sampling matrices of the form24X 0 0

0 Y 0
0 0 T

35 or

24X 0 0
0 Y 0
0 T=2 T

35
respectively. Table 1 shows the parameters for a number of commonly used sampling
structures covering a broad range of applications from low-resolution QCIF used in video-
phone to HDTV and digitized IMAX �lm (the popular large-format �lm, about 70 mm
by 52 mm, used by Imax Corporation). Note that of these, only HDTV and IMAX for-
mats have X = Y (i.e., square pixels). It is frequently required to convert a time-varying
image sampled on one such structure to another. An input image sequence f(x) sampled
on lattice �1 is to be converted to the output sequence fo(x) sampled on the lattice �2.

System X Y T structure aspect ratio

QCIF 1
176

pw = 1
132

ph 1
144

ph 1
10
s P 4:3

CIF 1
352

pw = 1
264

ph 1
288

ph 1
15
s P 4:3

ITU-R-601 (30) 1
720

pw = 1
540

ph 1
480

ph 1
29:97

s I 4:3

ITU-R-601 (25) 1
720

pw = 1
540

ph 1
576

ph 1
25
s I 4:3

HDTV-P 1
1280

pw = 1
720

ph 1
720

ph 1
60
s P 16:9

HDTV-I 1
1920

pw = 1
1080

ph 1
1080

ph 1
30
s I 16:9

IMAX 1
4096

pw = 1
3002

ph 1
3002

ph 1
24
s P 1.364

Table 1: Parameters of several common scanning structures.

Besides converting between di�erent standards, sampling structure conversion can
also be incorporated into the acquisition or display portions of an imaging system to
compensate for the di�culty in performing adequate pre�ltering with the camera aper-
ture, or adequate post�ltering with the display aperture. Speci�cally, the time-varying
image can initially be sampled at a higher density than required, using the camera aper-
ture as pre�lter, and then downsampled to the desired structure using digital pre�ltering,
which o�ers much more exibility. Similarly, the image can be upsampled for the display
device using digital �ltering, so that the subsequent display aperture has a less critical
task to perform.
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4.1 Frame-rate conversion

Consider �rst the case of pure frame-rate conversion. This applies when both the input
and the output sampling structures are separable in space and time with the same spatial
sampling structure, and where spatial aliasing is assumed to be negligible. The temporal
sampling period is to be changed from T1 to T2. This situation corresponds to input and
output sampling lattices

�1 =

24v11 v12 0
0 v22 0
0 0 T1

35 ; �2 =

24v11 v12 0
0 v22 0
0 0 T2

35 : (18)

Pure temporal interpolation

The most straightforward approach is pure temporal interpolation, where a temporal
resampling is performed independently at each spatial location x. A typical applica-
tion for this is increasing the frame rate in motion picture �lm from 24 frames/s to 48
or 60 frames/s, giving signi�cantly better motion rendition. Using linear �ltering, the
interpolated image sequence is given by

fo(x; nT2) =
X
m

f(x; mT1)h(nT2 �mT1): (19)

If the temporal spectrum of the underlying continuous time-varying image satis�es the
Nyquist criterion, the output points can be computed by ideal sinc interpolation:

h(t) =
sin(�t=T1)

�t=T1
: (20)

However, aside from the fact that this �lter is unrealizable, it is unlikely, and in fact
undesirable according to the discussion of section 3, that the temporal spectrum satisfy
the Nyquist criterion. Thus high order interpolation kernels that approximate (20) are
not found to be useful and are rarely used. Instead, simple low-order interpolation kernels
are frequently applied. Examples are zero-order and linear (straight-line) interpolation
kernels given by

h(t) =

(
1 if 0 � t � T1

0 otherwise
(21)

and

h(t) =

8><>:
1� t=T1 if 0 � t � T1

0 if t > T1

h(�t) if t < 0

(22)

respectively. Note that (22) de�nes a non-causal �lter and that in practice a delay of T1
must be introduced. Zero-order hold is also called frame repeat and is the method used in
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�lm projection to go from 24 to 48 frames/s. These simple interpolators work well if there
is little or no motion, but as the amount of motion increases they will not adequately
remove spectral repeats causing e�ects such as jerkiness, and they may also remove useful
information, introducing blurring. The problems with pure temporal interpolation can
easily be illustrated for the image corresponding to Fig. 5(c) for the case of doubling the
frame rate, i.e. T2 = T1=2. Using a one-dimensional temporal lowpass �lter with cuto� at
about 1=2T1 removes the desired high vertical frequencies in the baseband signal above
B=2 (motion blur) and leaves undesirable aliasing at high vertical frequencies, as shown
in Fig. 7(a).

B

v

w1/2T1

B

v

w1/2T

(a) (b)

Figure 7: Frequency domain interpretation of 2:1 temporal interpolation of an image
with vertical velocity 1=TB. (a) Pure temporal interpolation. (b) Motion-compensated
interpolation.

Motion-compensated interpolation

It is clear that to correctly deal with a situation such as in Fig. 4(c), it is necessary to
adapt the interpolation to the local orientation of the spectrum, and thus to the velocity,
as suggested in Fig. 7(b). This is called motion-compensated interpolation. An auxiliary
motion analysis process determines information about local motion in the image and
attempts to track the trajectory of scene points over time. Speci�cally, suppose we wish
to estimate the signal value at position x at time nT2 from neighboring frames at times
mT1. We can assume that the scene point imaged at position x at time nT2 was imaged
at position c(mT1;x; nT2) at time mT1 [5]. If we know c exactly, we can compute

fo(x; nT2) =
X
m

f(c(mT1;x; nT2); mT1)h(nT2 �mT1): (23)

Since we assume that f(x; t) is very slowly varying along the motion trajectory, a simple
�lter such as the linear interpolator of (22) would probably do very well. Of course,
we do not know c(mT1;x; nT2) so we must estimate it. Furthermore, since the position
(c(mT1;x; nT2); mT1) probably does not lie on the input lattice �1, f(c(mT1;x; nT2); mT1)
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must be spatially interpolated from its neighbors. If spatial aliasing is low as we have
assumed, this interpolation can be done well (see previous chapter).

If a two-point temporal interpolation is used, we only need to �nd the correspon-
dence between the point at (x; nT2) and points in the frames at times lT1 and (l + 1)T1
where lT1 � nT2 and (l + 1)T1 > nT2. This is speci�ed by the backward and forward
displacements

db(x; nT2) = x� c(lT1;x; nT2) (24)

df(x; nT2) = c((l + 1)T1;x; nT2)� x (25)

respectively. The interpolated value is then given by

fo(x; nT2) =f(x� db(x; nT2); lT1)h(nT2 � lT1) +

f(x+ df(x; nT2); (l + 1)T1)h(nT2 � (l + 1)T1):
(26)

There are a number of key design issues in this process. The main one relates to the
complexity and precision of the motion estimator. Since the image at time nT2 is not
available, the trajectory must be estimated from the existing frames at times mT1, and
often just from lT1 and (l + 1)T1 as de�ned above. In the latter case, the forward and
backward displacements will be collinear. We can assume that better motion estimators
will lead to better motion-compensated interpolation. However, the tradeo� between
complexity and performance must be optimized for each particular application. For ex-
ample, block-based motion estimation (say one motion vector per 16 � 16 block) with
accuracy rounded to the nearest pixel location will give very good results in large moving
areas with moderate detail, giving signi�cant overall improvement for most sequences.
However, areas with complex motion and higher detail may continue to show quite visible
artifacts, and more accurate motion estimates would be required to get good performance
in these areas. Better motion estimates could be achieved with smaller blocks, paramet-
ric motion models, or dense motion estimates, for example. Motion estimation is treated
in detail in Chapter 3.8. Some speci�c considerations related to estimating motion tra-
jectories passing through points in between frames in the input sequence can be found
in [5].

If the motion estimation method used sometimes yields unreliable motion vectors, it
may be advantageous to be able to fall back to pure temporal interpolation. A test can
be performed to determine whether pure temporal interpolation or motion-compensated
interpolation is liable to yield better results, for example by comparing jf(x; (l+1)T1)�
f(x; lT1)j with jf(x+df(x; nT2); (l+1)T1)�f(x�db(x; nT2); lT1)j. Then the interpolated
value can either be computed by the method suspected to be better, or by an appropriate
weighted combination of the two.

Occlusions pose a particular problem, since the pixel to be interpolated may be visible
only in the previous frame (newly covered area) or in the subsequent frame (newly exposed
area). In particular, if jf(x+ df(x; nT2); (l+1)T1)� f(x� db(x; nT2); lT1)j is relatively
large, this may signal that x lies in an occlusion area. In this case, we may wish to use
zero-order hold interpolation based on either the frame at lT1 or at (l + 1)T1, according
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to some local analysis. Fig. 8 depicts the motion-compensated interpolation of a frame
midway between lT1 and (l + 1)T1 including occlusion processing.

t

y

nT2lT1 (l+1)T1

Figure 8: Example of motion-compensated temporal interpolation including occlusion
handling.

4.2 Spatiotemporal sampling structure conversion

In this section, we consider the case where both the spatial and the temporal sampling
structures are changed, and when one or both of the input and output sampling struc-
tures is not separable in space and time (usually because of interlace). If the input
sampling structure �1 is separable in space and time (as in (18)) and spatial aliasing is
minimal, then the methods of the previous section can be combined with pure spatial
interpolation. If we want to interpolate a sample at a time mT1, we can use any suitable
spatial interpolation. To interpolate at a sample at a time t that is not a multiple of T1,
the methods of the previous section can be applied.

The di�culties in spatiotemporal interpolation mainly arise when the input sam-
pling structure �1 is not separable in space and time, which is generally the case of
interlace. This encompasses both interlaced-to-interlaced conversion, such as in conver-
sion between NTSC and PAL television systems, and interlaced-to-progressive conversion
(also called deinterlacing). The reason this introduces problems is that individual �elds
are undersampled, contrary to the assumption in all the previously discussed methods.
Furthermore, as we have seen, there may also be signi�cant aliasing in the spatiotem-
poral frequency domain due to vertical motion. Thus, a great deal of the research on
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spatiotemporal interpolation has been addressing these problems due to interlace, and a
wide variety of techniques have been proposed, many of them very empirical in nature.

Deinterlacing

Deinterlacing generally refers to a 2:1 interpolation from an interlaced grid to a pro-
gressive grid with sampling lattices24X 0 0

0 Y 0
0 T=2 T

35 and

24X 0 0
0 Y 0
0 0 T=2

35 :
respectively (see Fig. 9). Both input and output lattices consist of �elds at time instants
mT=2. However, because each input �eld is vertically undersampled, spatial interpolation
alone is inadequate. Similarly, because of possible spatiotemporal aliasing and di�culties
with motion estimation, motion-compensated interpolation alone is inadequate. Thus,
the most successful methods use a nonlinear combination of spatially and temporally
interpolated values, according to local measures of which is most reliable. For example,
in Fig 9, sample A might best be reconstructed using spatial interpolation, sample B
with pure temporal interpolation and sample C with motion-compensated temporal in-
terpolation. Another sample like D may be reconstructed using a combination of spatial
and motion-compensated temporal interpolation. See [6] for a detailed presentation and
discussion of a wide variety of deinterlacing methods. It is shown there that some adap-
tive motion-compensated methods can give reasonably good deinterlacing results on a
wide variety of moving and �xed imagery.
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C D

Figure 9: Input and output sampling structures for deinterlacing.

17



5 Conclusion

This chapter has provided an overview of the basic theory related to sampling and in-
terpolation of time-varying imagery. In contrast to other types of signals, it has been
shown that it is not desirable to limit the spectrum of the continuous signal to a �xed

three-dimensional frequency band prior to sampling, since this leads to excessive loss of
spatial resolution. It is su�cient to ensure that the replicated spectra due to sampling
do not overlap. However, optimal reconstruction requires the use of motion-compensated
temporal interpolation.

The interlaced scanning structure that is widely used in video systems has a funda-
mental problem whereby aliasing in the presence of vertical motion is inevitable. This
makes operations such as motion estimation, coding etc. more di�cult to accomplish.
Thus, it is likely that interlaced scanning will gradually disappear as camera technology
improves and the full spatial resolution desired can be obtained with frame rates of 50-60
Hz and above.

Spatiotemporal interpolation will remain an important technology to convert between
the wide variety of scanning standards in both new and archival material. Research will
continue into robust, low-complexity methods for motion-compensated temporal inter-
polation that can be incorporated into any receiver.
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Further information

The classic paper on television scanning is [7]. The use of lattices for the study of
spatiotemporal sampling was introduced in [8]. A detailed study of camera and display
aperture models for television can be found in [9]. Research papers on spatiotemporal
interpolation can be found regularly in the IEEE Transactions on Image Processing, IEEE
Transactions on Circuits and Systems for Video Technology and Signal Processing: Image
Communication. See [10] for a special issue on motion estimation and compensation for
standards conversion.
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