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Abstract

Image capture and image demosaicking are two important fields in image processing. Differ-

ent sampling structures and their associated demosaicking algorithms produce images that

are more or less pleasant to the eye.

The pattern that is analyzed here, the hexagonal rotated Bayer structure, sits on a hexagonal

lattice. This is different than what is seen on most devices that have rectangularly sampled

displays.

This report describes the implementation of the Least-Squares Luma-Chroma de-multip-

lexing (LSLCD) algorithm on the hexagonal rotated Bayer structure. It strives to offer a

detailed overview of the whole process. It starts by describing the hexagonal rotated Bayer

structure in a mathematical framework. Then, it expands upon the spatial demosaicking

strategies that can be used to recreate the image from the color filter array signal. Next, it

details the frequency domain demosaicking and makes note of the fact that, in this particular

case, an adaptive scheme can be used to improve the results of the algorithm. Finally, the

demosaicking quality versus algorithm complexity issue is discussed.
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1 Introduction

Most digital color cameras use a charged-coupled device (CCD) sensor and a color filter

array (CFA1) to capture color images. CFAs come in a variety of colors and patterns. Each

sensor element of the CFA measures only one tristimulus value value. To reconstruct a full

color image, one needs to estimate the values of the other two tristimulus value values at

each point.

The process of reconstruction the image from incomplete samples is called demosaicking.

Numerous demosaicking algorithms taking into consideration the spatial domain were pro-

posed [1]. However, even when these algorithms are complex, the final image quality is not

entirely satisfactory.

In their work, Alleysson et al. [2] pointed out that, for certain patterns, the luma and chroma

components are reasonably well isolated in the frequency domain. This observation led to the

development of numerous new demosaicking algorithms using the frequency domain analysis

[3, 4, 5] . For the well-known Bayer structure, these algorithms produce high quality results

with a lower complexity than that of the best spatial domain algorithms [6].

The hexagonal rotated Bayer structure that is discussed in this report is nothing more than

a variation of the Bayer pattern. It consists of a combination of red, green and blue samples

having the green sample density twice as large as the density of the other color samples and

its underlying lattice is hexagonal.

The rotated Bayer structure is more commonly known under the name SuperCCD and

sensors using this pattern have been used by Fujifilm [7] as early as 1999. SuperCCD is

actually a family of sensors with octagonal-shaped photodiodes placed on lines angled at

45 degrees. Fuji uses this type of sensor in the FinePix S6500fd and the FinePix F-series

cameras, which are credited with exceptional signal to noise ratios [8, 9].

A very important observation is that the rotated Bayer structure lies on a hexagonal lattice.

This influences the way that the various demosaicking algorithms are implemented and the

way their final output is displayed.

The analysis of the rotated Bayer structure was sketched by Dubois in [10]. This report

completes the analysis, provides optimization and extensive results. A web site was created

to make these results and the code used to generate them available [11].

This document offers a detailed overview of the demosaicking process for the rotated Bayer

structure (RBS). The first part of the report focuses on the particularities of the RBS and

1The definition of the terms in italic is given at the end of the document in Appendix: Glossary of terms
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on the construction of test images. The next section discuses the foundations of frequency

domain demosaicking. The following section touches upon the adaptive frequency domain

demosaicking. Then, the Least-Squares Luma-Chroma De-multiplexing (LSLCD) algorithm

adapted to the rotated Bayer structure is described. The last sections analyze how the

computational complexity of the LSLCD algorithm can be reduced.

2 Formation of the Test Images

The rotated Bayer structure lies on a hexagonal lattice. However, most image displays in

use take rectangular images as inputs. The algorithms developed for the RBS demosaicking

have a hexagonally sampled CFA signal as an input and output a rectangularly sampled

image.

A set of images widely used in the image processing literature are the 24 full color Kodak

images2. These are 2048×3072 px images sampled on a rectangular lattice. To be able to

compare the results obtained with the demosaicking results of other researchers or with the

results obtained on other sampling structures, the test images used are down-sized versions

of these Kodak images. For ease of manipulation, the down-sampled images are stored in

a checker-board pattern on a rectangular matrix, that is double its size. Note that, from

now on, the size of the image referred to is specified as the size of the underlying matrix size

times 1
2
. i.e. the size of the matrix that supports the image. For example the size of the

image below, containing 25 samples, is denoted 7×7
2

.

Figure 1: Hexagonally sampled image (left); Memory storage on a rectangular matrix (right).

The final demosaicked image lies on a rectangular matrix that is double the size of its

corresponding CFA signal matrix. When the size of the down-sampled images was decided

2There are 24 original Kodak images. However, only 22 of these images are available to us. The files we
have for the Kodak image 9 and the Kodak image 22 are corrupted.
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upon, two sizes were considered: 1024×1536
2

pixels and 683×1024
2

pixels. The difference between

these sizes is in the amount of detail that can be preserved. For the first option, the CFA

signal has a number of pixels equal to the CFA signal pixel number used for testing the

Bayer structure demosaicking algorithms [6]. This option would make it easier to compare

the results obtained on the hexagonal rotated Bayer structure with those obtained on other

structures such as the Bayer or the diagonal stripe patterns. The second option would allow

for comparison of the algorithm output with demosaicked images having the same size. In

the case of the smaller CFA, the final output image size is closer to the images sizes presented

in [6].

Down-sampling an image by simply discarding some of it samples produces aliasing. To

avoid this, one needs to pre-filter the image with an anti-aliasing filter. The characteristics

of this filter are largely determined by the Voronoi cell of the down-sampled image. Figure

2 compares the unit cell of the reciprocal lattice of the original Kodak image with the unit

cell of the reciprocal lattice of the down-sampled images. In this figure the units of u and v

are in c/px. The unit cell of the reciprocal lattice of the original Kodak image would cover

the interval [−0.5, 0.5] c/px ×[−0.5, 0.5] c/px.

Figure 2: Voronoi cell of the reciprocal lattice of the original Kodak images compared to the
unit cell of the reciprocal lattice of the down-sampled images.

Figure 2 gives a lot of insight about the pass-band of the filter that needs to be designed. To

avoid aliasing, only the frequencies that are in the Voronoi cell of the smaller image should

be kept.
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To down-sample the original images to a suitable set of test images lying on a hexagonal

lattice, the following steps need to be taken:

1. Pre-filter the images with a diamond shaped filter corresponding to the Voronoi cell of

the desired down-sampled dimension;

2. Discard the samples that are not on the hexagonal lattice;

3. Create the corresponding rotated Bayer CFA image.

It is obvious that the ideal filter in the frequency domain has a pass-band region in the

Voronoi cell of the lattice that is down-sampled to. Nonetheless, a very sharp cut-off of the

filter bands in the frequency domain would cause rippling in space (Gibbs phenomenon).

Having a smooth transition from the pass-band to the stop band minimizes this effect.

However, if the image is pre-filtered too much, then the space domain representation obtained

is blurry. If the image is pre-filtered too little, then aliasing will be noticeable in the space

domain. The width and the relative position of the transition band are the two parameters

that influence the filter design most. Other parameters that are taken into consideration

when designing the filter are the filter size and the filter ‘corners’. The only limitation

imposed on the filter is that the transition band be linear. The figure below explains what

each of the filter parameters means. The filters are designed using the windowing design

method.

Figure 3: Parameters taken into consideration when designing the anti-aliasing filter.
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The empirical filter construction algorithm is done following the steps shown below:

1. Observe the effect that the transition band width has in the space domain (look for

rippling);

2. Observe the effect that the transition band position has in the space domain (look for

blurring/aliasing);

3. Observe how the quality of the image is affected by the filter size (smallest filter size

that can be used for a high subjective quality);

4. Analyze whether or not the high frequencies present in the image have a bad influence

on the image subjective quality and decide whether the high horizontal or vertical

frequencies must be filtered out more.

The image pre-filtering and down-sampling was carried with the help of MATLAB®. The

decisions taken when designing the anti-aliasing filters are explained at the end of this

document in Appendix A. For the 1024×1536
2

down-sampled image the anti-aliasing filter has

the transition band width of 0.10 c/px, centered at the Voronoi cell border. The filter size

that gives the best quality vs. complexity performance is a 25 × 25 filter. For the smaller

image, the anti-aliasing filter is a diamond shaped filter having a transition band of 0.08

c/px, centered at the Voronoi cell border. In this case, the filter size that gives the best

results is 21× 21.

Once the antialiasing filtering is done, the down-sampling is done by discarding the samples

as shown in figure 4. The samples that are kept are represented by the blue squares.

Figure 4: Samples kept when down-sampling to the 1024×1536
2

image (right); and to the
683×1024

2
image (left).

The final step when building the test images is to create the CFA signals corresponding to

each of them. The CFA signals follow the rotated Bayer structure and are defined on a

hexagonal lattice and stored in a rectangular matrix that is double its size.
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Figure 5: CFA sampling structure of the image and the way it is saved on a larger, [2:1]
rectangular lattice.

3 Simple Interpolation Algorithms

This section discuses briefly the performance of the spatial de-multiplexing algorithms when

used on the hexagonal rotated Bayer CFA. The RBS CFA is regular and periodic. It is

comprised of three different samples: red, green and blue, and the number of green samples

is double than that of any other color. The samples are arranged as shown in figure 5.

3.1 Bilinear Demosaicking

With the exception of the nearest neighbor, bilinear interpolation is the simplest way to

reconstruct an image. Bilinear interpolation of the rotated Bayer CFA can be done in a

single step, using the following filters:

hR =
1

4


0 0 1 0 0

0 2 0 2 0

1 0 4 0 1

0 2 0 2 0

0 0 1 0 0

 , hG =
1

4

1 0 1

0 4 0

1 0 1

 , hB =
1

4


0 0 1 0 0

0 2 0 2 0

1 0 4 0 1

0 2 0 2 0

0 0 1 0 0

 .

The filters above are doing two things simultaneously: they bilinearly interpolate the CFA

to full color in the hexagonal lattice and up-scale the image on the underlying rectangular

lattice.

Objective results for this type of interpolation can be found at the end of the document in

Appendix B: Numerical results.
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3.2 Bicubic Interpolation

Bicubic interpolation is another spatial demosaicking algorithm. The CFAs are interpolated

to the larger lattice in two steps. First, the CFA is bilineary interpolated to the full color

hexagonal image. Then, bicubic interpolation is used to up-sample to the rectangular matrix.

Constructing the matrix for the bicubic interpolation is a bit more complex. This process is

explained here because this type of interpolation will also be used later on.

The rectangular [2 : 1] interpolator is assumed to be a 5×5
2

finite impulse response (FIR)

filter with quadrantal and diagonal symmetry. The general form of this type of filter is:

h =


0 b 0 b 0

b 0 a 0 b

0 a 1 a 0

b 0 a 0 b

0 b 0 b 0

 .

This filter has a frequency response of

H(u, v) = 1 + a(exp(−j2πu) + exp(j2πu) + exp(−j2πv) + exp(j2πv)) +

b(exp(−j2π(2u+ v)) + exp(j2π(2u+ v)) + exp(−j2π(2u− v)) +

exp(j2π(2u− v)) + exp(−j2π(u+ 2v)) + exp(j2π(u+ 2v)) +

exp(−j2π(u− 2v)) + exp(j2π(u− 2v)))

= 1 + 2a(cos(2πu) + cos(2πv)) +

2b(cos(2π(u+ 2v)) + cos(2π(u− 2v)) +

cos(2π(2u+ v)) + cos(2π(2u− v))).

The DC gain of this filter is required to be

H(0, 0) = 1 + 4a+ 8b = 2.

This implies that

a+ 2b = 0.25.

Note that if b = 0 and a = 0.25, we obtain the bilinear interpolator.
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The diagonal response of this filter is

H(u, u) = 1 + 4a cos(2πu) + 4b(cos(2π(3u)) + cos(2π(2u))) +

4(a+ b) cos(2πu) + 4b cos(6πu).

Given that the frequency response of the one-dimensional cubic interpolator is

1 +
9

8
cos(2πu)− 1

8
cos(6πu),

if we set a = 5
16

and b to b = − 1
32

, the bicubic interpolator matrix obtained becomes

h =
1

32


0 −1 0 −1 0

−1 0 10 0 −1

0 10 32 10 0

−1 0 10 0 −1

0 −1 0 −1 0

 . (1)

The RBS CFA is bicubically interpolated to a full color image and Appendix B offers a full

list of results.

Spatial domain reconstruction of the images is very easy to understand and to implement.

However, experience on other sampling structures such as the Bayer or the diagonal stripe

[11] suggests that this approach does not give the best quality results.

4 Foundations of Frequency Domain Demosaicking

Figure 6 shows a pattern of hexagonal rotated Bayer CFA signal on a sampling lattice Λ.

Similar to the well-known Bayer structure, the rotated Bayer structure is a pattern of red,

green and blue samples multiplexed over the disjoint shifted sub-lattices ΛR, ΛG and ΛB.

The density of the green samples is twice that of the red or blue samples and only one

tristimulus value value is associated to each point of the lattice. One period of this pattern

is comprised within the bold lines of the figure. X is used as unit of length, X = 1px.

In his book chapter, Dubois [10] gives a mathematically rigorous description of sampling

structures for color filter arrays. Throughout this section, his notation is used to describe

the hexagonal rotated Bayer structure. A serious user of this report is assumed to have

assimilated the content of [10].
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(a) (b)

Figure 6: (a)Hexagonal rotated Bayer color structure; (b) Corresponding color structure
lattices: ΛR(�), ΛG(�) and ΛB(4).

The rotated Bayer structure lies on a hexagonal lattice Λ that can be written as

Λ = LAT

([
2 1

0 1

])
.

Alternatively,

Λ = {(m1,m2) ∈ Z2 m1 +m2 is even}.

Figure 6 shows the origin of this lattice placed on the upper-left corner, on a green sample.

The y axis is oriented downward. The hexagonal rotated Bayer structure pattern contains

three sensor classes (red, green and blue) and four sensor elements (forming the basic pattern)

each lying on a disjoint shifted sub-lattice of Λ.

The period of this pattern is comprised of four sensor elements that can be expressed by

B =

[
0 2 1 3

0 0 1 1

]
.

The sensor colors can be expressed by

J =


0 1 0

0 1 0

1 0 0

0 0 1

 .

The first two rows of this matrix represent the green color. The reciprocal lattices corre-
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sponding to the structure and its basic pattern cell are found to be

Λ∗ = LAT

([
1 1

2

0 1
2

])

and

Γ∗ = LAT

([
1
2

1
4

0 1
4

])
.

Figure 7 illustrates the reciprocal lattices corresponding to the rotated Bayer structure and

the associated Voronoi cell.

Figure 7: Reciprocal lattices of the hexagonal rotated Bayer structure.

The reciprocal coset representative matrix D is:

D =

[
0 0.5 0.25 0.25

0 0 0.25 −0.25

]

In their paper, Alleysson et al. [2] showed that the CFA signal can be manipulated such

that the luma-chroma representation of the signal becomes obvious in the frequency domain.

Dubois [10] showed that the resulting luma and chroma signals can be obtained as a function

of the CFA RGB samples by calculating the matrix M = 1
K

[exp(−j2πDTB)]J.

10



This gives:

M =
1

4


1 2 1

−1 2 −1

−1 0 1

1 0 −1


and the corresponding signals:

� Luma:

q1[x] =
1

4
f1[x] +

1

2
f2[x] +

1

4
f3[x]

� Chroma 1:

q2[x] = −1

4
f1[x] +

1

2
f2[x]− 1

4
f3[x]

� Chroma 2a

q3a[x] = −1

4
f1[x] +

1

4
f3[x]

� Chroma 2b

q3b[x] =
1

4
f1[x]− 1

4
f3[x]

Notice that q3a = −q3b. The CFA signal representing the image in the frequency domain can

be written as:

FCFA(u, v) = Q1(u, v) +Q2(u− 0.5, v) +Q3(u− 0.25, v − 0.25)−Q3(u− 0.25, v + 0.25)

The CFA signal is a combination of a baseband component (luma) and two modulated

color difference signals (chroma) [10]. Figure 9 shows where the different components can

be identified on the CFA signal power spectrum. This spectrum is obtained by using the

method of averaging modified periodograms on image 8 of the modified Kodak set, the Alfred

image, and the different components are easily identified on this figure.

In spatial domain, the chroma 1 apears as green-magenta and the chroma 2 component as

blue-orange. Figure 8 shows the different frequency-domain components equivalent in spatial

domain.

A closer look at the power spectrum helps identify potential problems with frequency domain

demosaicking algorithms. High frequency luma patterns intrude into the chrominance bands,

possibly causing false colors. High frequency chrominance information overlaps with the luma

band resulting in false patterns. This will be discussed in more detail later in section 5.
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(a) (b)

(c) (d)

Figure 8: Luma-chroma components of an image: (a) Original image; (b) Luma component;
(c) Chroma 1 component; (d) Chroma 2 component.

Figure 9: Power spectrum of a CFA signal on the hexagonal rotated Bayer structure.

Filters can be designed to extract the different modulated components from this signal [10].

Then, the approximated color channels can be obtained by de-modulation and simple matrix

12



transformations:

R[x] = q1[x]− q2[x]− 2q3[x]

G[x] = q1[x] + q2[x]

B[x] = q1[x]− q2[x] + 2q3[x]

Depending on the filters chosen, this approach can significantly improve the demosaicking

algorithm results. Simply designing Gaussian filters and modulating them at the appro-

priate chroma frequencies gives results that are more satisfactory than the spatial domain

algorithms results [11]. However, taking into account the sampling structure particularities,

these results may be improved.

5 Adaptive Frequency-Domain Demosaicking

On the power spectrum of the CFA signal in figure 9, there are two important things one

needs to notice. The first is thatQ3 appears both at (0.25, 0.25) and (0.25, -0.25). The second

is that high frequency luma components overlap with high frequency chroma components:

high frequency luma patterns intrude into the chrominance bands, resulting in false colors

and high-frequency chrominance information intrudes into the luma band, resulting in false

luma patterns, often having a zipper-like appearance.

Either one of the two copies of Q3 can be used to reconstruct the signal. However, due to

local properties of the image, both reconstructions suffer from cross-talk, but in different

ways.

Each of the two copies privileges one of the diagonal directions. For example, in the second

image of figure 10, the details on the -45 degree diagonal are the ones to suffer the most.

The local neighborhood of each pixel can be viewed in frequency domain as shown in figure

11.

For the first scenario, q3a is the better estimate. For the second one, it is q3b that would

give better results. When the pixels belong to one of the 45 degree diagonal pattern, only

one of the two copies will suffer from cross-talk due to the luma interference. The other one

can be used for a very good reconstruction of the image. The following section details the

steps taken to develop an algorithm that is able to analyze the neighborhood of each of the

picture pixels and detect which of the two estimates is the local better choice.
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(a) (b)

(c)

Figure 10: Frequency-domain demosaicking of a sample image taking into consideration
different chroma components: (a) Original image; (b) Only q3a is used; (c) Only q3b is used.

(a) (b)

Figure 11: Local neighborhood of pixels in frequency-domain: (a) q3a is the better estimate;
(b) q3b is the better estimate.

5.1 Selection of the Weighting Coefficients

Averaging the coefficients corresponding to the chroma 2 components improves the result

that is obtained when using only one of these two copies, however this output is not good
14



enough. One would like a function that is able to detect which of the two copies is less

corrupted.

In order to automatically choose the q3 copy that is locally less influenced by cross-talk, one

needs to implement a function, (say w) that is able to make this selection.

The requirements for w are similar to those already used for the Bayer structure [12] and

therefore the scheme has been adopted: {w, (1 − w)}∈ [0, 1]. Let T (x, y) be the spatial-

domain function that describes the way w is chosen. T will be a function of how much the

chroma 2 copies interfere with the luma component. T : R+
�R+has to respect the following

conditions:

1. T = 1
2

, if the two chroma 2 elements are equally corrupted

2. 0 ≤ T < 1
2

if q3a is locally more corrupted than q3b i.e. locally, ea < eb and

limeb→0 T (x, y) = 0

3. 1
2
< T ≤ 1 if q3b is locally more corrupted than q3a and limea→0 T (x, y) = 1

One such function is:

T (x, y) =
eb

ea + eb

where ea and eb are the local luma-chroma energies corresponding to each pixel and are

defined in equation 2.

The q3 value that will be used when demosaicking is calculated by the weighted average:

q̂3[m1,m2] = w[m1,m2] · q̂3a[m1,m2] + (1− w[m1,m2]) · q̂3b[m1,m2], (m1,m2) ∈ Λ

Using this estimator when demosaicking eliminates a lot of the cross-talk and outputs a

better quality colored image.

By using one or the other q3 component, the cross-talk in specific regions of the picture can

be eliminated. Locally, the image is more or less diagonal and deciding upon the weighting

coefficients helps eliminate the cross-talk in the reconstruction of regions.

An important element when deciding which q3 copy to use is the energy of the pixel neigh-

borhood. In the frequency domain, the coefficients of different components are additive.

The modulated high frequencies of q3 overlap on the high luma frequencies. To obtain the

local pixel energy for each of the two chroma 2 copies, we need to sample the energies of the

frequencies that are in the overlapping region and demodulate them to baseband.
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(a) (b)

Figure 12: Frequency-domain demosaicking of a sample image weighting the chroma com-
ponents: (a) Original image; (b) Demosaicked image with q3a and q3b components weighted.

The cross-talk estimates can be written as:

ek = (fCFA ∗ hk)2 ∗ hm (2)

where hk filters out the overlapping region, the power two transforms the quantity into an

energy and hm is a moving average filter used for local smoothing.

Empirical results suggest that filtering (overlapping) regions centered at (0.0950, 0.0950)c/px

and (0.0950,−0.0950)c/px and using their energies in the demosaicking algorithm adaptive

scheme gives the best results3.

5.2 The Algorithm

Once the luma and chroma components are filtered efficiently and a representative interval

of the cross-talk energies is extracted, the reconstructed image should be relatively free of

color artifacts.

The algorithm block diagram is drawn in figure 13. In this figure, the points considered are

in Λ = {(m1,m2) ∈ Z m1 +m2 is even}.

The frequency-domain adaptive demosaicking algorithm becomes:

1. filter fCFA by h2 to get f̂C1m = fCFA ∗ h2 modulated at [0.0,0.5]. Demodulate to

baseband to get f̂C1[m1,m2] = f̂C1m[m1,m2](−1)m1 .

3The method used to find these locations is discussed in a later section.
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Figure 13: Block diagram of the adaptive demosaicking algorithm for the hexagonal rotated
Bayer CFA structure.

2. filter fCFA by h3a to get f̂C2ma = fCFA ∗ h3a modulated at [0.25, 0.25] and by h3b to

get f̂C2mb = fCFA ∗ h3b modulated at [0.25, -0.25]. Demodulate fC2ma and fC2mb to

get f̂C2a[m1,m2] = f̂Cm2a[m1,m2](−i)m1+m2 ·mod(m1 +m2 + 1, 2) and f̂C2b[m1,m2] =

−f̂Cm2a[m1,m2](−i)m1−m2 ·mod(m1 +m2 + 1, 2).

3. Use ha and hb in equation 2 to filter the cross-talk regions and compute the weighting

coefficients wa and wb. Obtain the C2 estimate f̂C2[m1,m2] = w[m1,m2]·fC2ma[m1,m2]+

(1− w) · f̂C2mb[m1,m2].

4. Compute the baseband estimate of luma: f̂L[m1,m2] = fCFA[m1,m2]− f̂C1m[m1,m2]−
f̂C2[m1,m2]((−i)m1+m2 − (−i)m1−m2).

5. Apply the linear transform described by the matrix M to obtain the RGB components

of the image.

6. Up-sample to an image that is twice the size and lies on a rectangular lattice.

The luma component is calculated as a difference between the CFA and the previously

computed modulated chromas. This way, the adaptive algorithm is taken into consideration

(simply filtering out the luma would not deal with the interference caused by chroma 2).

The up-sampling is done using bicubic interpolation and this has proved to give satisfactory

results. Other spatial interpolation methods, such as those presented in [1], may further

optimize the demosaicking of the rotated Bayer structure, but since the focus is on the
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extraction of the frequency-domain components, they were not considered in the analysis.

As it will be seen in the following sections, using well-designed filters for the luma and

chroma components and also taking into consideration the adaptive nature of the algorithm

presented above gives excellent demosaicking results on the considered training set.

6 Filter Design for h1, h2, h3a and h3b

The adaptive scheme gives excellent frequency-domain demosaicking results. A good choice

of the chroma filters should improve them.

The CFA signal that is being used lies on a hexagonal lattice. For ease of manipulation,

this lattice is placed on a larger, rectangular lattice for which half of the points are 0 or

undefined/NULL. When designing the filters for the chroma components of the image, this

aspect must be taken into consideration. The filters designed have to be defined in the same

space: on the hexagonal lattice.

Designing the chroma filters can be accomplished using many methods. The simplest ones

that come to mind are Gaussian filters and filters designed with the window design method.

Although these approaches offer a certain flexibility for the shape and modulation position

of the filters, they do not necessarily output the optimum results. To improve the results,

the filter design can be done following the least squares approach. This method is already

used by Dubois in [10]. It uses a representative image training set to help model the desired

filters such that the squared difference between the original and the reconstructed images is

minimum over the training set.

Each image of the training set constructed in section 2 is considered the original. The

luma and chroma filters are constructed such that the total signal difference between the

demosaicked image and the original is minimum.

For each of the four signals, Q1−3b, the quantity that needs to be minimized is the total

squared difference between the original signal and its demodulated approximation

hy = argminh

P∑
i=1

∑
(m1,m2)∈W (l)

(r
(l)
Y [m1,m2]−

∑
(k1,k2)∈S

h[k1, k2]f
(l)
CFA[m1 − k1,m− 2, k2])

2.
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This expression is a least squares equation of the form

hY = argminh

P∑
i=1

||Z(i)h− r(i)Y ||
2

that is known to have the solution:

hY = [
P∑
i=1

Z(i)HZ(i)](−1)[
P∑
i=1

Z(i)HrY
(i)]. (3)

To apply the results in equation 3, the matrices describing the images need to be re-arranged

in vector form. Once this step is done, MATLAB® is used to determine the least squares

filters.

6.1 Design of the h2 Filter

The h2 filter is used to extract the chroma 1 component. This is found on the horizontal

and vertical axis, at the corner of the Voronoi cell at [±0.5, 0] c/px and [0,±0.5] c/px.

The idea is to compare the value of the chroma 1 component of the original image:

q2[x] = −1

4
f1[x] +

1

2
f2[x]− 1

4
f3[x]

to that extracted from the CFA signal.

This is done on all the training set images in steps. The first step is to divide the image

into sub-images. Then, let NB = |S| be the number of filter coefficients that need to be

determined and NW be the number of samples in the sub-images. A NB×1 vector is formed

by scanning the coefficients of h column by column, from left to right. A NW vector is formed

by scanning the elements of the sub-image in the same order. Finally, a NW × NB = Z(l)

matrix is formed from the elements of fCFA as follows: each column of Z(l) corresponds to an

element (k1, k2) ∈ S scanned in the same order. Each column of the Z matrix corresponds

to the CFA elements neighboring a fixed point, that would be modified by the chroma filter

at convolution. After applying equation 3 and obtaining h in vectorial form all that is left

to do is to re-arrange the coefficients of h2.

For the chroma 1 filter we obtain the results similar to the example shown in figure 14.
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Figure 14: Frequency response of the h2 filter as designed with the least squares method.

6.2 Design of the h3a and h3b filters

There are two copies of the chroma 2 component in the frequency domain. To benefit from

the adaptive component of the algorithm, the two filters extracting the Q3 component need

to be designed simultaneously. This time h3a and h3b need to be optimized such that the

error between q3 and q̂3 is minimized. The chroma 2 component of the de-mosaicked image

is written as:

q̂3[m1,m2] = w[m1,m2](i)
m1+m2 ×

∑
(k1,k2)∈S

h3a[k1, k2]fCFA[m1 − k1,m2 − k2]

−(1− w[m1,m2])(i)
m1−m2 ×

∑
(k1,k2)∈S

h3b[k1, k2]fCFA[m1 − k1,m2 − k2]

The variables are plugged into MATLAB® as follows: First, two vectors of length NB are

formed by scanning every column of h3a and h3b from top to bottom and left to right and

stacking them on top of each other. Then, a 2NB × 1 vector holding the coefficients of these

two filters is formed. The column vector of q3 is obtained by scanning the elements of q3 in

the same order:

h3 =

[
h3a

h3b

]
.

Finally, a NW × 2NB matrix W (l) is formed as follows: the first NB rows are formed by

reshaping w(l)[m1,m2](i)
m1+m2f

(l)
CFA[m1−k1,m2−k2] for each (k1, k2) ∈ S while the next NB

rows are formed by scanning −(1−w(l)[m1,m2])(i)
m1−m2f

(l)
CFA[m1 − k1,m2 − k2] in a similar

manner.
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Figure 15: Frequency response of the h3a and h3b filters as designed with the least squares
method.

This least squares problem can be written as:

h3ab = argminh

P∑
l=1

||W(l)h− q3
(l)||2

with the solution:

h3ab = [
P∑
l=1

W(l)HW(l)]−1[
P∑
l=1

W(l)Hq3
(l)]

Reshaping h3ab gives the two chroma 2 filters h3a and h3b.

7 Optimization of the Algorithm Performance

The LSLCD algorithm is relatively complex. Among the parameters that determine its

performance are the filter sizes, the filter shape, the images chosen in the training set, etc.

The 24 Kodak images are considered representative for a set of natural images. Because

the images considered for demosaicking are images that would normally be taken with a

photo camera, the possibility of changing the filter training set type (to a set of artificially

constructed images) will not be explored. The demosaicking filters are trained on all the

training set images.

Optimizing all the algorithm parameters simultaneously would be a very long process. More-

over, because the training set is finite (and quite small) this kind of effort would be irrelevant.

The parameters considered are optimized one by one while keeping everything else fixed. De-

pending on the observations gathered, this process may be performed several times.
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The system parameters to be optimized are:

1. filter h2 of order M1 ×M2: the filter size is be optimized to give a maximum image

quality while having the lowest possible complexity;

2. filters h3a and h3b of order N1 ×N2: the only parameter optimized is the filter size;

3. filters ha and hb used for the luma-chroma inference extraction:

(a) the middle modulation frequency, fm;

(b) the standard deviations;

(c) the filter size, P1 × P2.

In general, larger filter sizes tend to improve visual quality. This is because the impulse

response of a larger filter can be shaped more precisely to extract the luma and chroma

components. However, using larger filters may increase the filter design and demosaicking

time.

The size of the moving average filter hm in equation 2, used for constructing the weighting

coefficients will not be optimized. In the experiments, a size of 11×11
2

was considered for this

filter.

The CPSNR (Color Peak Signal-to-Noise Ratio) is the objective measure chosen to evaluate

the image quality. The CPSNR is measured in decibels (dB) and is equal to 10 times the

logarithm of the Color Mean Squared Error (color mean squared-error) between the original

and the demosaicked image. In general, a larger CPSNR indicates less overall error and

corresponds to a better visual quality. However, it is important to verify all the conclusions

by visual inspection sice a higher CPSNR does not necessarily imply a better subjective

quality of the image.

7.1 Determination of Constants

With the exception of the Gaussian filters (used for the luma-chroma interference energy

extraction), all the filters that are used in the LSLCD algorithm are modeled by training on

an image set. Up until now, the Gaussian filter parameters and modulation frequency were

considered constant. One would like to know if the choices made are good or if there is a

need to change these parameters in order to obtain optimal results.

The Gaussian filters that are used are first designed with respect to the XY axes, then

rotated by 45 degrees and modulated. During the experimental trials, it was observed
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that diagonally oriented filters perform better. However, it is much easier to perform the

optimization of parameters such as the filter size before the rotation.

The first thing that is optimized is the modulation frequency of these filters for the 1024×1536
2

images. The h2, h3a and h3b filter sizes are fixed at 11×11
2

. Then, assuming that the best

middle modulation frequency would be found on the ±45 degrees diagonals, filters modulated

at all the possible (a, a), (b,−b) combinations within the 0.01 to 0.17c/px interval with a step

size of 0.01c/px are designed. The observations made in this interval suggest that the search

be refined in the [0.0945, 0.0955]c/px interval with a step size of 0.0001c/px. The modulation

frequency fm is finally fixed at (0.0950, 0.0950) and (0.0950,−0.0950) respectively. The plot

corresponding to this search can be seen in figure 16.
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Figure 16: Algorithm performance as function of position of center frequency of the modu-
lated energy extraction filters.

The second parameter that is optimized for the Gaussian filters is their standard devia-

tions. The testing conditions are left the same and the modulation frequency is set to

(0.0950,±0.0950) as previously established. The standard deviation is fixed after trying all

the (a, b) (c, d) combinations with a, b, c and d going from 1.0 to 15.0 in steps of 1.0. The

test conditions are similar: LSLCD designed luma and chroma filters having a size of 11×11
2

are used. The results obtained by this brute-force optimization are very similar to what was

obtained for the Bayer structure in [13]: rG1 = 3.0 and rG2 = 1.0.

Finally, the Gaussian filter size is determined by trying all the a×b
2

, a×b
2

combinations with a

and b going from 4 to 20 in steps of two. During these experiments, the size for the h2, h3a
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and h3b filters is fixed at 11×11
2

. The other Gaussian parameters are as determined above.

For the larger image, the optimal Gaussian filter size is found to be 12× 10 before the filter

rotation. Note that the horizontal size mentioned is equivalent to the actual filter size when

these filters are rotated. The filter size before the rotation takes place is used because this

‘rectangle’ is much easier to visualize. Figure 17 shows how the algorithm performance varies

with the Gaussian filter size.
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Figure 17: LSLCD algorithm performance as function of Gaussian filter size when h2, h3a
and h3b filter sizes are fixed.

The way the luma-chroma interference is filtered has a big impact on the final objective

quality of the image. Although the Gaussian filters considered are diagonally oriented, their

initial design is done with respect to the XY axes. This is easier from a computational

point of view and has the additional advantage that, this way, the Gaussian filters can be

considered separable in a naturally rectangular space such as MATLAB® and, thus, reduce

the algorithm complexity.

Having fixed the Gaussian filter size, the next step is to find out which size do h2, h3a and

h3b need to have for the algorithm to be optimized. All the filter size combinations from 5×5
2

to 23×23
2

in steps of two are tried while the following constraints are imposed:

1. The filters are square. It was shown that for the Bayer structure demosaicking this

type of filters give the best type of performance [13]. Having square filters has the

advantage that they are symmetric in the two directions (XY axes or diagonals). The

non-square filters can be seen as a particular case of the square filters in the sense that

if the optimum filter size were rectangular the algorithm would produce it and would

pad the rest of the area with zeros up until the filters became square.
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2. The size of the h3a and h3b is the same. This makes the filter design process much

easier and the optimization process shorter.

Figure 18: LSLCD algorithm performance as function of filter size of h2, h3a and h3b when
the energy extracting filters are fixed.

The algorithm performance does not change very much once the Gaussian filter parameters

are determined. In fact, for all the (h2, h3a, h3b) combinations, the average CPSNR variations

occurr at the order of the 3rd or 4th decimal. This type of variation can be included in the

algorithm error. Changing the selected training set would probably give a similar difference

in the average CPSNR.

8 Objective Analysis of the Image Quality versus the

Filter Complexity

The computational complexity of a demosaicking algorithm ultimately translates into de-

mosaicking time and cost of hardware. One would like to have an algorithm that outputs a

high quality image and uses very little resources. The LSLCD algorithm is comprised mostly

of spatial filtering realized by convolution operations. The amount of computational work

required depends on the signal that needs to be reconstructed and on the sizes of the filters

used when performing this operation. Out of these two parameters, the only ones that can

controlled are the filter specifications.
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This section, does not focus on optimizing the algorithm performance or the filter design

but tries to find out what are the minimum filter sizes that can be used to obtain a good

quality image.

Without loss of generality, the number of computations it takes to demosaic one pixel is used

as a measure of algorithm complexity. The convolutions used in the LSLCD algorithm are

in general 2-dimensional convolutions by an K1×K2

2
filter. These take K1·K2

2
multiplications

per pixel. The divisions have a similar complexity as the multiplications. Additions are not

counted in the number of computations because they take significantly less time to complete

than multiplications.

By tracing the demosaicking steps in figure 13, the number of multiplications S required to

demosaic each pixel is:

S =
1

2
(2(P1 + P2) +M1M2 + 2N1N2) + 5

where P1 +P2 and P2 +P1 are the orders of the (separable) Gaussian filters, h2 has the order

M1×M2 and the filters h3a and h3b have the order of N1×N2 and N2×N1 respectively. The

other counted multiplications are due to the modulation/de-modulation and interpolation

operations including the weighting of the chroma 2 coefficients.

Basing the algorithm on an observation that was done for the Bayer structure [12, 13], and

because this is computationally easier on a system that is used to working with rectangular

matrices, only square sizes are considered for the h2, h3a and h3b filters in the filter kernel

optimization. A greedy algorithm is used to explore the relationship between the objective

demosaicking quality and computational complexity.

Let [M N P1 P2] represent the filter orders used at each iteration. The size of the h2 filter

is M ×M , the one of the h3a and h3b filters is N × N and the size of the two Gaussian

filters used to extract the luma-chroma interference energies is P1×P2. The iteration begins

at [21 21 21 21] and ends with the final configuration [1 1 1 1]. At each iteration, the

algorithm creates four temporary configurations by decrementing each entry in the current

configuration by two at a time, e.g. cf (1) = [M −∆M N P1 P2], cf
(2) = [M N −∆N P1 P2],

etc. For each temporary configuration, the algorithm prepares four implementations of the

demosaicking algorithm with the appropriate least squares and Gaussian filters that match

it. Then, it uses this set of filters to perform demosaicking over a set of images. Finally,

the greedy algorithm keeps the best of the four temporary configurations as the ‘current

configuration’ for its next iteration.
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Figure 19: Demosaicking quality versus algorithm complexity (greedy) for the 1024×1536
2

px
images (left); Zoomed-in version of the same plot (right).
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Figure 20: Demosaicking quality versus algorithm complexity (greedy) for the 683×1024
2

px
images (left); Zoomed-in version of the same plot (right).

The objective quality of the temporary configurations is determined by the CPSNR metric

on the RGB color space. Specifically, averaging the PSNR values obtained for the red,

green and blue channels gives the training set CPSNR. A higher CPSNR indicates a better

objective quality. The data gathered when running the greedy algorithm is presented in

Appendix C.

Figure 19 indicates that, for the larger images, a total filter complexity of around 85 may

be optimum in what the algorithm speed is concerned. For all the higher complexity

configurations, the improvement in demosaicking quality is too small considering the supple-

mentary effort required. The table in Appendix C suggests that starting with the [7 7 9 1]

configuration satisfactory results are obtained. For the smaller images, the minimum filter

complexity should be 61. In the greedy algorithm output, this corresponds to the [7 9 13 3]

configuration.
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This sort of iteration allows testing the filter performance for a full range of filter complexities.

However, it does not necessarily choose the optimal performance for each complexity level.

Trying all the 114 configurations would take an immense amount of time and would also be

impractical because the optimization would be done only on a small set of training images

that are not necessarily the best representatives of natural images. Nonetheless, performing

this type of algorithm gives a general idea about how long it would take to obtain a certain

image quality.

8.1 Filter Complexity Reduction Techniques

Once the optimal filter size is decided upon, one can question if the number of computations

can be further reduced. A complexity reduction technique that is worth considering is to

create quadrantally symmetric filters. This technique can be applied on the pre-designed

luma, chroma and Gaussian filters.

The quadrantally symmetric approximation of the least squares filters is created by averaging

every set of four quadrantally related filter coefficients and then redistributing this average

value to those four locations. Quadrantal symmetry generally reduces the number of required

multiplications in the convolution by a factor of close to four. The number of multiplications

required to demosaic each pixel is then:

S =
1

2
(2(P1 + P2) +

M1M2

4
+
N1N2

2
) + 5

The image quality that was obtained after demosaicking with quadrantally symmetric filters

is not much different from what was previously obtained. The average CPSNR when de-

mosaicking the 22 images was: 37.1670 dB compared to 37.9865 dB (for the larger images)

when the LSLCD filters were used unmodified. For the smaller images, the average CPSNR

was 35.9315 dB compared to 35.9558 dB when the original filters were used. The numerical

results are listed at the end of the report in Appendix B.

The quadrantal symmetry is applied to the filters after their design is completed. Not only

is this very easy to do at post-design time, but it does not unnecessarily complicate the filter

design process. The filter performance of these newly designed filters is only slightly worse

than that of the non-reduced ones.

Whether or not a complexity reduction technique was used, a trade-off between the objective

image quality and the algorithm complexity was noticed.
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9 Analysis of the Subjective Performance of the

LSLCD Algorithm on the Rotated Bayer Structure

The rotated Bayer structure contains half the red and blue samples than it contains green

samples. The green samples weight a lot in the luma component of the CFA signal. This way,

the sampling structure approaches the way that the human visual system is constructed [2].

Moreover, the RBS structure privileges the high horizontal and vertical frequencies. This

may prove to be an advantage when judging the subjective quality of the images because

humans are more sensitive to horizontal and vertical lines than they are to diagonals [14].

Because of the aforementioned properties, it is possible that the rotated Bayer structure

gives a better (subjective) image quality than other sampling structures when the objective

demosaicking quality is the same.

In the experiments, the most bothersome demosaicking flaw noticed was the false colors.

The reasons behind this phenomenon are various and they will be exemplified and explained

in what follows. Because of the more restrained frequency interval, these effects are more

visible when smaller size images are demosaicked.

False colors (blue-orange) were observed in relatively non-uniform picture areas where the

luminance varies a lot such as the walls or the water. These are due to the chroma 1 - luma

interference in the high luma frequencies and can be seen in figure 21.

(a) (b)

Figure 21: Chroma interference in the high luma frequencies.

On the diagonals, the chroma 1 and luma components are very hard to separate. As seen

in figure 22, a blue-orange pattern appears on lines and patterns that are close to the ±45

diagonals.
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(a) (b)

Figure 22: Chroma 1 - luma interference.

Probably the most bothersome false color effect is due to the luma - chroma 2 interference.

A turquoise-magenta pattern appears on lines and patterns that are (almost) horizontal or

vertical. For the smaller images, where the frequency interval is not very large, this effect

greatly diminishes the image quality (figure 23). There may be a green-turquoise interfere

on diagonal lines as well — where the luma value varies a lot.

(a) (b)

Figure 23: Chroma 2 - luma interference.

At the object edges or when there is a color change, the pattern pixelation becomes visible

(one can tell which tristimulus value value was missing from a certain pixel). This is especially

true for the bright red areas (figure 24) and it is due to the fact there are not enough red

samples available to properly define the edges.
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(a) (b)

Figure 24: Imperfect reconstruction of edges, color leak.

Comparison with images that have been sampled differently and demosaicked using the

LSLCD algorithm is rather difficult because of the extra interpolation step taken to finalize

the demosaicking of the RBS structure. However, the images that were obtained seem to

have a better quality than the images that were sampled on the diagonal stripe pattern.

Whether or not this structure performs better than the Bayer structure is debatable and

depends on the picture details (density of horizontal and/or diagonal frequencies).

When it comes to the way the filter sizes influence the image quality, quadrantally symmetric

filters have reduced complexity and perform almost as well as the filters they were derived

from. No difference is noticeable with the naked eye.

10 Recommendation

Designing the appropriate LSLCD filters for the rotated Bayer structure is a relatively com-

plex process. However, once all the filter parameters are optimized, the algorithm gives very

good results even when the filter complexity is not too high.

To obtain a good picture quality while keeping a relatively low complexity, the filters should

be set as follows:

1. The h2 filter, filtering the chroma 1 component should be a 13×13
2

filter;

2. The h3a and h3b filters, filtering the two chroma 2 components, should have the size
13×13

2
;
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3. For the adaptive part of the algorithm one should use 12×10
2

Gaussian filters rotated by

45 or −45 degrees and modulated at (0.0950, 0.0950) c/px and (0.0950,−0.0950) c/px

respectively. The Gaussian filter specifications are rG1 = 3 and rG2 = 1.

If the algorithm complexity needs to be reduced, the first thing that needs to be considered is

to profit from the quadrantal symmetry. The greedy algorithm analysis that was performed

suggests that if there is need for further complexity reduction it is best to first reduce the filter

order of the h2, h3a, and h3b filters before changing any of the Gaussian filter parameters.

11 Conclusion

This report addresses the problem of demosaicking the hexagonally sampled rotated Bayer

structure. For better comparison with the literature, the test images used are down-sampled

versions of the well-known full color Kodak images during the testing. The custom-built

rotated Bayer CFA signals are derived from those images.

An important observation to be made is that frequency domain based demosaicking offers

a better demosaicking quality on the rotated Bayer structure than the spatial demosaicking

techniques. The adaptive frequency-domain algorithm using filters designed by the least

squares method gives excellent demosaicking quality on the images considered.

The adaptive Least-Squares Luma-Chroma Demosaicking filters were optimized in order

to obtain a high demosaicking quality. Moreover, the iterative optimization procedure

confirmed that the demosaicking quality and complexity of algorithm form a trade-off rela-

tionship and pointed to the most computationally efficient demosaicking configuration that

would also output a high quality demosaicked image.

Extensive results were obtained for the LSLCD of the rotated Bayer structure. These results

and the software used to produce them are available in [11].

The rotated Bayer sensor model that was used is only a rough approximation of the actual

sensor. Future work would involve taking into consideration a more realistic modeling of the

octagonal shape of the sensor elements. The analysis of other members of the SuperCCD

sensor family is also an open future direction of research.
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A Anti-Aliasing Filters and Down-Sampled Image

Quality

When down-sampling a digital image, the frequency domain of the resulting output has a

much smaller unit cell than the unit cell of the original image. To avoid aliasing effects due

to this unit cell ‘contraction’, an anti-aliasing filter must be applied to the original image

before its samples are thrown away.

This appendix is dedicated to the anti-aliasing filer needed to downsample a 2048 × 3072

rectangularly sampled image to two smaller images lying on a hexagonal lattice: one of
1024×1536

2
pixels, the other having a size of 683×1024

2
pixels (they lie on a larger rectangular

lattice of 1024×1536 px and 683×1024 px, respectively).

The pass-band of the anti-aliasing filter has to be in the Voronoi cell of the down-sampled

image. The Voronoi cell of the 1024×1536
2

pixel image is diamond shaped. The diamond has

a diagonal of 0.5 c/px. The unit cell of the smaller down-sampled image is also diamond

shaped, having a diagonal of 0.3333 c/px. The parameters that will be taken into consider-

ation are the transition band width and its position, and whether or not the high horizontal

and vertical frequencies affect the image quality.

Figure 25: Anti-aliasing filter parameters.
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For the empirical experiments, the Kodak image number 8, the Alfred image, was chosen.

This image has a lot of different details and, because of this, was appropriate for the anti-

aliasing observations to be made.

A.1 Effect of the Transition Band Width on the Down-Sampled

Image

A narrow transition band helps obtain the desired effect in frequency domain (a unit cell

that has the size very close to the ideal one). However, this may cause rippling in space.

A wide transition band may over-filter the small frequencies and thus cause the image to

be blurry when looked at. The figure below shows details of the Alfred image when filtered

with different transition band widths centered at the Voronoi cell border.

Figure 26: Alfred picture details for the transition band width of the anti-aliasing filter used
for the 1024×1536

2
image.

A transition band having the width of approximately 0.10 c/px would be optimal for the

larger down-sampled image. The same way, a transition band width of 0.08 c/ph would suit

the smaller down-sampled image best.

A.2 Effect of the Transition Band Position on the Down-Sampled

Images

Deciding the transition band width should address the question of rippling in space. Where

this transition band is located will influence the degree of blurriness (not enough frequencies)

or aliasing (high frequency coefficients overlapping the low frequency ones).
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Figure 27 illustrates the effect of the transition band position on the down-sampled images.

Figure 27: Alfred picture details for the transition band position of the anti-aliasing filter
used for the 1024× 1536 image. The width is of 10c/px.

The image having the transition band centered at 0.15c/px seems to have the best subjective

quality for the large down-sampled image (transition band is going from 0.15 to 0.25c/px

—the Voronoi cell border) and the anti-aliasing filter is fully comprised in the unit cell. In

the case of the smaller down-sampled image, it seems wiser not to move the center of the

transition band (have it going from 0.12667 to 0.20667c/px).

An aspect that should be taken into consideration is that these images are twice as big as

the down-sampled images that are needed. The fine tuning done on this bigger images may

not work as well on the small ones. However, because the image frequency range is the same,

the observations should hold.

A.3 Effect of the Filter Size on the Down-Sampled Image

Figure 28: Alfred picture details for the size of the anti-aliasing filter used for the 1024×1536
image.
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The larger the filter size is, the better the image is filtered (details are fine tuned). However,

after a certain point, the difference in the subjective quality of the image obtained is below

the human perception threshold. Going beyond that filter size would only increase the

computational time needed to filter the images. The images in figure 28 show the effect of

different filter sizes on the Alfred image.

Observation shows that a filter size of 25× 25 can be used for the larger image and a filter

size of 21× 21 for the smaller one.

A.4 Effect of the Diamond-Shape Corners on the Down-Sampled

Image

No improvement if any was observed when the high horizontal and vertical frequencies of

the down-sampled images were pre-filtered more.

Figure 29: Frequency response of the anti-aliasing filter for the 1024×1536
2

image.

For the 1024×1536
2

down-sampled image, the filter that was chosen has the transition band

width of 0.10 c/px, centered at the Voronoi cell border. The filter size that gave the best

quality vs complexity performance was a 25×25 filter. For the smaller image, the anti-

aliasing filter chosen was a diamond shaped filter having a transition band of 0.08 c/px,

centered at the Voronoi cell border. In this case, the filter size that gave the best results was

21×21.
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B Numerical Results

1. Bilinear: Bilinear interpolation from the CFA signal to a fully colored hexagonal lattice

followed by bilinear up-sampling to a fully colored, rectangularly sampled image that

is twice the size.

2. Bicubic: Bilinear interpolation from the CFA signal to a fully colored hexagonal lattice

followed by bicubic up-sampling to a fully colored, rectangularly sampled image that

is twice the size.

3. LSLCD: Adaptive LSLCD with optimized filters

4. Bayer: Demosaicking of 45 degrees rotated images using the LSLCD filters recom-

mended for the Bayer structure [3] followed by up-sampling of to a rectangularly sam-

pled image.

The picture frame is the set of pixels that are saved at the image edge and that are not

part of the image. These are usually gray or have very intense colors. The picture frame is

not considered in the filter design and is not taken into consideration when computing the

algorithm objective quality.

The frame size considered when computing the CPSNR performance on each of the images

is equal to the size of the largest filter used in the demosaicking algorithm i.e. the maximum

size between the sizes of h2, h3a and h3b filters. For the bilinear column and the bicubic

column the frame is considered to have 11 pixels.

Table 1: Demosaicking results for the rotated Bayer structure - 1024×1536
2

images

Image Bilinear Bicubic LSLCD Quadrantal Bayer

1 29.0257 29.3556 35.7755 35.5411 35.7641
2 33.9313 34.3244 34.6903 34.4164 34.2040
3 38.0995 38.4781 41.9793 40.4301 41.5521
4 35.7440 36.1647 38.2757 37.7515 37.5057
5 30.8792 31.3947 37.3353 35.1008 36.9209
6 31.3768 31.7119 37.7791 36.9774 37.8621
7 36.9954 37.4811 41.4458 39.9242 40.9190
8 27.8359 28.2007 33.1569 32.6447 33.2946
10 37.1578 37.5811 40.9391 40.3063 40.5966
11 31.8762 32.2029 36.9791 36.1633 36.9288
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Demosaicking results for the rotated Bayer structure - 1024×1536
2

images (cont.)

Image Bilinear Bicubic LSLCD Quadrantal Bayer

12 38.4232 38.8085 43.5510 42.6721 43.1742
13 27.5777 27.8492 32.5701 32.0342 32.5497
14 32.4616 32.8552 36.2502 35.2011 35.9307
15 36.3346 36.6817 39.4469 38.7128 38.9883
16 32.9722 33.2401 38.5091 38.2211 38.7264
17 35.0808 35.3792 38.9319 37.8505 38.8320
18 30.8503 31.1578 34.1922 33.6369 34.0406
19 32.3208 32.7255 37.4232 36.8817 37.3686
20 35.0601 35.4085 39.5934 38.5268 39.4572
21 31.6535 31.9811 36.9288 36.3345 36.9909
23 39.2863 39.7862 42.2507 41.2840 41.6760
24 31.7668 32.2093 37.6705 37.0633 37.7960

Table 2: Demosaicking results for the rotated Bayer structure - 683×1024
2

images

Image Bilinear Bicubic LSLCD Quadrantal Bayer

1 27.0560 27.2997 33.2000 33.1645 33.5156
2 30.8898 31.0865 32.8074 32.7919 32.6371
3 33.5519 33.6404 39.2475 39.1625 39.5155
4 32.1346 32.3054 35.7667 35.7548 35.2627
5 27.3678 27.6793 33.0932 33.0442 33.5295
6 29.1014 29.2836 35.6480 35.6240 35.9800
7 32.3786 32.6243 38.3826 38.3822 38.3448
8 25.9593 26.2318 31.9278 31.8960 32.2928
10 33.0073 33.1434 39.6834 39.6034 39.7579
11 29.6975 29.8769 35.0613 35.0416 35.2532
12 33.6087 33.6644 41.0475 41.0029 41.0117
13 26.4125 26.5951 31.5262 31.5062 31.6288
14 29.4722 29.7297 33.1919 33.1620 33.2161
15 32.1030 32.2722 36.6649 36.6487 36.6114
16 30.8916 31.0122 37.4668 37.4396 37.7522
17 31.8138 31.9889 38.2850 38.2757 38.6477
18 29.0839 29.3217 33.3654 33.4036 33.4032
19 29.5370 29.7540 36.0014 35.9748 36.3073
20 31.2063 31.2969 38.1445 38.1352
21 29.3701 29.5568 35.7396 35.7481 35.9688
23 34.4657 34.6428 39.7283 39.7079 39.7374
24 28.3494 28.5017 35.0480 35.0229 35.3020
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C Greedy Algorithm Results

Table 3: Greedy iterations for the rotated Bayer structure - 1024×1536
2

px image

Configuration Image quality CPSNR

[21 21 21 21] 37.9144
[19 21 21 21] 37.9143
[17 21 21 21] 37.9139
[15 21 21 21] 37.9139
[15 19 21 21] 37.9120
[15 17 21 21] 37.9102
[15 15 21 21] 37.9089
[15 13 21 21] 37.9070
[13 13 21 21] 37.9047
[13 11 21 21] 37.8943
[11 11 21 21] 37.8774
[11 11 21 19] 37.8593
[11 11 21 17] 37.8593
[11 11 21 15] 37.8593
[ 9 11 21 15] 37.8193
[ 7 11 21 15] 37.8062
[ 7 9 21 15] 37.7692
[ 7 9 21 13] 37.6995
[ 7 9 21 11] 37.6995
[ 7 9 21 9] 37.7913
[ 7 9 21 7] 37.7913
[ 7 9 21 5] 37.7912
[ 7 9 21 3] 37.7871
[ 7 9 19 3] 37.7859
[ 7 9 17 3] 37.7859
[ 7 9 15 3] 37.7913
[ 7 9 13 3] 37.8188
[ 7 9 11 3] 37.8178
[ 7 9 9 3] 37.7827
[ 7 9 9 1] 37.7464
[ 7 7 9 1] 37.6845
[ 7 5 9 1] 37.4881
[ 5 5 9 1] 37.3358
[ 5 5 7 1] 36.5761
[ 5 5 5 1] 37.2249
[ 5 5 3 1] 37.2249
[ 5 5 1 1] 37.2332
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Greedy iterations for the rotated Bayer structure - 1024×1536
2

px image (cont.)

Configuration Image quality CPSNR

[ 3 5 1 1] 30.4808
[ 3 3 1 1] 26.8223
[ 1 3 1 1] 24.4291
[ 1 1 1 1] 20.6578

Table 4: Greedy iterations for the rotated Bayer structure - 683×1024
2

px image

Configuration Image quality CPSNR

[21 21 21 21] 36.0440
[19 21 21 21] 36.0439
[17 21 21 21] 36.0440
[15 21 21 21] 36.0442
[15 19 21 21] 36.0430
[15 17 21 21] 36.0419
[15 15 21 21] 36.0406
[13 15 21 21] 36.0389
[13 13 21 21] 36.0363
[13 13 21 19] 36.0323
[13 13 21 17] 36.0323
[13 13 21 15] 36.0323
[13 11 21 15] 36.0243
[11 11 21 15] 36.0154
[9 11 21 15] 35.9988
[7 11 21 15] 35.9987
[7 9 21 15] 35.9702
[7 9 21 13] 35.9257
[7 9 21 11] 35.9257
[7 9 21 9] 35.9818
[7 9 21 7] 35.9818
[7 9 21 5] 35.9816
[7 9 21 3] 35.9733
[7 9 19 3] 35.9720
[7 9 17 3] 35.9719
[7 9 15 3] 35.9890
[7 9 13 3] 36.0224
[7 9 11 3] 36.0222
[7 9 9 3] 36.0092
[7 7 9 3] 35.9622
[7 7 9 1] 35.9133
[7 5 9 1] 35.7408
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Greedy iterations for the rotated Bayer structure - 683×1024
2

px image (cont.)

Configuration Image quality CPSNR

[5 5 9 1] 35.5427
[5 5 7 1] 34.8299
[5 5 5 1] 35.3900
[5 5 3 1] 35.3900
[5 5 1 1] 35.3985
[3 5 1 1] 29.8092
[1 5 1 1] 26.4200
[1 3 1 1] 24.2389
[1 1 1 1] 20.6083

41



Appendix: Glossary of Terms

Bayer structure Sampling structure comprised of red, green and blue samples that lie on

a rectangular lattice. The green samples are twice as dense as the red or blue ones and

lie on a checker-board pattern. The red and blue samples alternate in such that the

distance between two samples of the same color is always larger than 3 units. 1, 3, 8,

15, 23, 24, 26, 37

CFA Color Filter Array. Describes the way that different color filters are positioned on the

photo-sensitive sensor of a digital camera. 1–8, 10, 11, 13, 17–19, 29, 32, 37

Color Mean Squared Error The average of the square of the differences between the

original and the estimated values. 22

demosaicking Algorithm used to construct a full color image from the subsamples provided

by a camera sensor. 1–3, 7, 11, 13, 15–18, 21, 22, 24–28, 32, 37

lattice In two-dimensions is the set of all linear combinations, with integer coefficients, of

two linearly independent vectors in R2. ii, 1–9, 17, 18, 33, 37

LSLCD Least-Squares Luma-Chroma De-multiplexing. Name given to the filter design

method using the least squares approach. 2, 21–23, 25, 26, 28, 31, 37

tristimulus value Value of the coefficient of the primary color when added to form the

desired color. 1, 8, 30

Voronoi cell In frequency domain, the geometrical space of the points that are closer to

the sample situated at the origin than they are to any other sample. 3–5, 10, 19, 33–36

windowing MATLAB® filter design method in which the user specifies the ideal impulse

response of a signal filter in the frequency domain. The method calculates the inverse

Fourier transform of the specifications and then truncates it to a finite number of

coefficients using the ‘windowing ’ function. 4
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