
Managing the Google Web 1T 5-gram Data Set

Aminul ISLAM
Department of Computer Science, SITE

University of Ottawa
Ottawa, ON, Canada

mdislam@site.uottawa.ca

Diana INKPEN
Department of Computer Science, SITE

University of Ottawa
Ottawa, ON, Canada

diana@site.uottawa.ca

Abstract:
This paper describes how the Google Web 1T 5-
gram data set, contributed by Google Inc., can be
stored so that it can be used efficiently with respect
to time. We present an efficient way of accessing
all the 5-grams for a specific word of interest from
the stored files. We measure the maximum access
and processing efficiency achievable for any word of
interest. We also compare results (access time and
memory requirements) on the task of accessing all
the 5-grams for a list of words, on both the processed
and the original organization of the data set.

Keywords:
Google web 1T; n-gram; 5-grams

1. Introduction
The Google Web 1T data set [1], contributed by Google

Inc., contains English word n-grams (from unigrams to 5-
grams) and their observed frequency counts calculated over
1 trillion words from web page text collected by Google in
January 20061. It is expected that this data will be useful
for a variety of Research and Development projects, such as
statistical machine translation, speech recognition, spelling
correction, entity detection, information extraction, as well
as for other uses. It contains so much data that many ma-
chines with average amounts of memory are unable to even
load it. We propose a method for splitting the enormous
list of 5-grams, released in 118 large files, down to a more
manageable size based on user requirements.

We use the 5-grams from the Web 1T corpus such that the
middle token is the term and the two tokens on either side
form the context. Several researchers tried to find out the
advantages of this context definition by initiating the prac-
tical question of what minimum value of window size would,
at least in a tolerable fraction of cases, lead to the correct
choice of meaning for the central word [2]. A well-known
early experiment by Kaplan [3] attempted to answer this
question at least in part, by presenting ambiguous words in
their original context and in a variant context providing one
or two words on either side to seven translators. Kaplan [3]
observed that sense resolution given two words on either side

1Details of the Google Web 1T can be found at
www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt

978-1-4244-4538-7/09/$25.00 c©2009 IEEE.

of the word was not significantly better or worse than when
given the entire sentence [4]. The same phenomenon has
been reported by several researchers: e.g., [5] on Russian,
and [6] on French. Whenever we talk about window size,
we consider the word of interest in the middle of the win-
dow and context words on either side of the word of interest.
But we can not use the Web 1T 5-grams as a window of 5
as all the 5-gram files (total 118 files) are sorted based on
the first word in the 5-grams and then the second word in
the 5-grams and so on.

In this article, we wish to find out what maximum n-gram
access and processing efficiency can be achieved for any word
of interest. Searching in the original Web 1T dataset is
dependent on the total number of n-grams of all the words,
including the word of interest. Our goal is to make this
search independent of the total number of n-grams of all
the words; this ensures the maximum access and processing
efficiency achievable for any word of interest.

Two of our primary assumptions (used in Section 2) are
that we need to store less than or equal to n (for our ex-
periment, n = 100, 000) 5-grams in each single file and we
want to read only a single file to process all the 5-grams for
a specific word of interest. In Section 3, we omit the first
assumption and add a new assumption.

This paper is organized as follow: Section 2 shows how
the Web 1T 5-gram data set can be used as a balanced win-
dow and how this data can be stored, accessed or processed
efficiently with respect to time and memory space and we
present experimental results. In Section 3, we find out what
maximum n-gram access and processing efficiency can be
achieved. We summarize contributions in Section 4.

2. Processing the Web 1T 5-grams
As the Web 1T 5-grams are sorted based on the first

words in the 5-grams, we need to search the middle words
in 118 large files of 5-grams. That is, to find the context
words of a single word, we need to search all the 5-grams
(1,176,470,663), which is not time efficient at all, especially
when we are in need of finding context words of a specific
word of interest on the fly. So, we process all the Web 1T
5-grams as described in the next sections, in order to make
the procedure of finding context words time efficient.

We replace all the times, dates, numbers and the words
that start with special characters or numbers with blank
spaces in all the 5-grams. If the middle word of a 5-gram
is eliminated then we eliminate the whole 5-gram. We also
transform all the 5-grams into lower case; this creates many
duplicate 5-grams (5-grams having the same words). We

Algorithm 1: calculating unique two characters and
their frequencies using 5-grams

input : input files /* 118 re-sorted files */

output: output file /* contains unique two

characters and their frequencies */

for each sorted file do1

for each 5-gram do2

word1 ← first word of the 5-gram3

str ← SubStr(word1, 2) /* returns first two4

characters of word1 */

if str ∈ list then /* list contains unique two5

characters (i.e., str) and their

frequencies (i.e., list.str) */

increment list.str6

else7

list.str ← 1 /* initialize */8

end9

end10

end11

for each str ∈ list do12

write str and list.str to output file13

end14

merge all the duplicate 5-grams by adding their frequencies.
In this way we managed to reduce the number of 5-grams
from 1,176,470,663 to 356,611,338 and the file size of all the
118 files from 33.68 GB to 9.48 GB. Using the same tech-
nique, we managed to reduce the number of unigrams from
13,588,391 to 2,870,385. We re-sort all the 118 preprocessed
5-gram files based on the middle words and restore the sorted
5-gram files to place the middle words in the first position.

2.1 Calculating Unique Two Characters and Their Fre-
quencies using 5-grams

We devise an algorithm (Algorithm 1) that generates all
the unique two-character tokens/words (taking the first two
characters from the first word in each 5-gram) and their
frequencies from all the 5-grams of 118 re-sorted files.

Now we need to make a decision of what maximum num-
ber of 5-grams2 (say N) we will store in a single file so that
we can have efficient search results to find context words
for a specific word of interest. Based on the value of N, we
split the output file generated by Algorithm 1 into two files.
One file (say filesName) contains only the words (not fre-
quencies) having frequencies less than N. Another file (say
nextInFile) also contains only the words (not frequencies)
having frequencies greater than or equal to N.

2.2 Calculating Unique p+1 Characters and Their Fre-
quencies using 5-grams

We execute Algorithm 2 with nextInFile and p = 2 (p
denotes the number of characters). Algorithm 2 generates
all the unique (p + 1)-character tokens and their frequencies
from those 5-grams of 118 re-sorted files having the first two
characters of the first words in nextInFile.

We split the output file generated by Algorithm 2 and
add the words having frequencies less than N into the file

2For the Web 1T 5-gram we use N = 100,000 as the state-
of-the-art computing device can process these numbers of
5-grams in less than a second.

Algorithm 2: calculating unique p + 1 characters and
their frequencies using 5-grams

input : p, input files and current nextInFile /* input

files are 118 re-sorted files (p ≥ 2) */

output: output file /* output file contains unique

p + 1 characters and their frequencies */

listFN← nextInFile /* listFN contains all the1

tokens in nextInF ile */

for each sorted file do2

for each 5-gram do3

word1 ← first word of the 5-gram4

if SubStr(word1, p) ∈ listFN then5

str ← SubStr(word1, p + 1)6

if list.str > 0 then /* strisin list*/7

increment list.str8

else9

list.str ← 110

end11

end12

end13

end14

for each str ∈ list do15

write str and list.str to output file16

end17

filesName and we store words having frequencies greater
than or equal to N by overwriting the file nextInFile. We
carry on executing Algorithm 2 with current nextInFile and
incremented p (i.e., this time p = 3).

We follow the same steps of executing Algorithm 2 until
nextInFile is empty. For the Web 1T 5-gram data set, we
get an empty nextInFile when p = 12. Finally filesName
contains all the file names that need to be created3.

2.3 Creating Files and Assigning 5-grams to Files
We execute Algorithm 3 which practically creates all the

files needed based on filesName entries and assigns each 5-
gram to the appropriate file (the entries in filesName are the
name of the files) traversing all 118 re-sorted 5-gram files.

2.4 Efficient Search in the Web 1T 5-grams
To find all the 5-grams for a specific word of interest, we

need to search only in a single file among those 22,743 files
created using Algorithm 3 in Section 2.3. Algorithm 4 is
used to locate the specific file and then to access all the 5-
grams for that word to further process as per requirement4.

2.5 Comparing Efficiency in Time and Memory Space
We use [7] data set, a well known data set used to judge

different natural language processing (NLP) tasks, to ana-
lyze the access time and main memory requirements on run
time and to process a specific task5. Though there are 30

3filesName contains 22,743 entries after running Algorithm 2
on the Web 1T 5-grams.
4We can insert user defined code in line 16 of Algorithm 4.
5As a specific task for processing, we access all the 5-grams
of a word of interest and then from those 5-grams we find
all the unique context/neighbor words and the pair frequen-
cies. By pair we mean the word of interest and one con-
text/neighbor word.

Table 1: Experimental Results on Miller and Charles Data Set
Word
Num-
ber

Word Time to access all the 5-
grams (in seconds)

Time to access all the 5-
grams & to find all the
context words and the pair
frequencies (in seconds)

Number of
searched 5-
grams

Number
of target
5-grams

Memory
required
to run (in
bytes)

Dual Core
Machine

Think
Centre

Dual Core
Machine

Think
Centre

TER
0.67

TER 1

TER
0.67

TER
1

(TER
0.67)

TER
0.67

TER
1

(TER
0.67)

1 car 1.66 0.07 3.39 4.35 3.65 5.5 272,920 272,532 272,532 455,583
2 automobile 0.28 0.01 0.58 0.42 0.18 0.69 47,395 11,863 11,863 57,993
3 gem 0.19 0.00 0.38 0.30 0.14 0.47 31,891 9,342 9,342 58,488
4 jewel 0.40 0.00 0.11 0.13 0.12 0.19 8,263 7,936 7,936 53,606
5 journey 0.13 0.01 0.27 0.33 0.27 0.45 23,996 19,508 19,508 93,099
6 voyage 0.37 0.00 0.76 0.46 0.07 0.80 60,527 4,684 4,684 37,016
7 boy 0.40 0.02 0.81 1.08 0.93 1.42 67,943 67,391 67,391 209,030
8 lad 0.01 0.00 0.03 0.03 0.03 0.05 2,471 1,837 1,837 18,424
9 coast 0.51 0.02 1.08 1.12 0.82 1.55 86,362 59,030 59,030 170,044
10 shore 0.15 0.00 0.33 0.33 0.23 0.48 27,400 15,837 15,837 78,535
11 asylum 0.09 0.00 0.17 0.15 0.07 0.23 15,656 5,057 5,057 35,086
12 madhouse 0.01 0.00 0.03 0.02 0.00 0.03 2,123 179 179 3,057
13 magician 0.39 0.01 0.81 0.46 0.04 0.83 70,113 2,497 2,497 21,479
14 wizard 0.12 0.00 0.26 0.28 0.21 0.39 22,324 14,471 14,471 75,424
15 midday 0.54 0.00 1.11 0.61 0.01 1.11 91,534 992 992 10,069
16 noon 0.10 0.00 0.20 0.17 0.08 0.27 18,058 5,806 5,806 31,747
17 furnace 0.03 0.00 0.06 0.06 0.05 0.09 4,952 3,104 3,104 23,627
18 stove 0.05 0.00 0.11 0.10 0.07 0.14 8,340 4,747 4,747 28,568
19 food 0.97 0.05 2.05 2.68 2.28 3.44 171,215 170,079 170,079 305,285
20 fruit 0.32 0.01 0.66 0.63 0.39 0.91 57,135 28,403 28,403 108,827
21 bird 0.40 0.01 0.86 0.85 0.59 1.20 71,947 40,779 40,779 152,996
22 cock 0.39 0.02 0.77 0.97 0.83 1.22 60,695 60,424 60,424 92,293
23 tool 0.50 0.02 1.06 1.40 1.18 1.78 87,837 87,022 87,022 222,354
24 implement 0.14 0.01 0.28 0.41 0.34 0.53 26,026 26,022 26,022 82,762
25 brother 0.35 0.01 0.73 0.72 0.46 1.03 63,185 34,244 34,244 119,188
26 monk 0.13 0.00 0.28 0.19 0.06 0.33 24,507 3,630 3,630 32,736
27 oracle 0.12 0.01 0.27 0.32 0.27 0.44 21,346 19,624 19,624 84,541
28 rooster 0.05 0.00 0.09 0.08 0.03 0.11 8,580 1,924 1,924 18,374
29 cemetery 0.13 0.00 0.27 0.25 0.15 0.36 22,317 10,286 10,286 64,289
30 woodland 0.05 0.00 0.09 0.11 0.08 0.16 9,048 5,286 5,286 39,352
31 hill 0.44 0.02 0.91 1.22 1.06 1.56 74,961 73,998 73,998 251,043
32 slave 0.55 0.01 1.14 0.77 0.24 1.28 98,079 16,573 16,573 72,514
33 forest 0.42 0.01 0.88 0.95 0.69 1.31 73,224 48,829 48,829 174,405
34 graveyard 0.17 0.00 0.38 0.21 0.03 0.39 32,559 1,262 1,262 15,320
35 chord 0.14 0.00 0.28 0.19 0.05 0.30 24,158 3,384 3,384 23,465
36 smile 0.54 0.00 1.14 0.71 0.14 1.22 98,610 10,149 10,149 56,234
37 glass 0.49 0.03 1.03 1.36 1.15 1.72 84,160 83,244 83,244 206,989
38 string 0.47 0.02 0.98 1.16 0.90 1.56 87,937 66,204 66,204 236,570
39 crane 0.13 0.00 0.28 0.20 0.09 0.33 23,252 5,425 5,425 43,547

Algorithm 3: creating files and assigning 5-grams

input : input files and filesName /* 118 re-sorted

files */

output: output files /* the names of the files are

the token names in filesName */

listFN← filesName1

for each sorted file do2

for each 5-gram do3

word1 ← first word of the 5-gram4

len← length(word1)5

not found← TRUE6

while len > 1 AND not found = TRUE do7

if SubStr(word1, len) ∈ listFN then8

fname← SubStr(word1, len)9

not found← FALSE10

Open fname in append mode11

write 5-gram to fname12

else13

decrement len14

end15

end16

end17

end18

pairs of words in this data set, the number of distinct words
are 39. We experimented on two different machines. The
first machine is a dual core Intel R© XeonTM having CPU
speed of 3.20 GHz and main memory of 4 GB (we refer it
as Dual Core Machine). The second machine is an IBM
ThinkCentre M51 machine with Intel R© Pentium 4 proces-
sor having CPU speed of 3.40 GHz and main memory of
1GB (we refer it as ThinkCentre). Table 1 shows all the
test results on [7] data set. Table 1 shows that 38 words
out of 39 (97.4%) were accessed in less than a second. The
total access time for all the 39 words on this machine is 12
seconds, an average of 0.31 seconds per word which is almost
half compared to the ThinkCentre (0.64 seconds). The first
word, car, takes longer time to be accessed or to be processed
because it has more 5-grams than the other words.

Table 1 also shows a comparison between the number of
5-grams we search through (we call them searched 5-grams)
versus the number of 5-grams we needed (we call them target
5-grams). The number of searched 5-grams and the number
of target 5-grams are independent of the computing devices.
The ratio between the number of target 5-grams and the
number of searched 5-grams (we call it Time Efficiency Ra-
tio (TER)) is a key issue for efficiency in terms of time. The
higher the TER the better. Having the time efficiency ratio
equal to 1 is an ideal case. The average time efficiency ratio
for all the 39 words using the original 118 files is 0.001108
(this is the base case). The average time efficiency ratio
for all the 39 words using 22,743 files is 0.63. To have an
ideal average time efficiency ratio, we need to have a dis-
tinct 5-gram file for each unique word (unigram) possible.
In Section 3, we study the feasibility and practicability of
generating this enormous number of files.

3. Making the time efficiency ratio (TER) equal to 1
To have an ideal TER, we use a new assumption (instead

of the first assumption used in Section 2) that we store only

Algorithm 4: finding the specific file and all the 5-
grams for a word

input : word /* the word of interest */

output: fname /* contains all the 5-grams of word */

listFN← filesName1

len← length(word)2

not found← TRUE3

while len > 1 AND not found = TRUE do4

if SubStr(word, len) ∈ listFN then5

fname← SubStr(word, len)6

not found← FALSE7

else8

decrement len9

end10

end11

Open fname in read mode12

for each 5-gram in fname do13

word1 ← first word of the 5-gram14

if word = word1 then15

do as per requirement16

end17

end18

all the 5-grams of each unique word in a single file. We also
use the second assumption used in Section 2.

3.1 Creating Files and Assigning 5-grams when TER=1
We execute Algorithm 5 which creates unique files to store

all the 5-grams associated with each unique words and as-
signs each 5-gram to the appropriate file traversing all 118
re-sorted 5-gram files. Algorithm 5 generates 2,870,385 files
from the 118 re-sorted files and all these files are stored in a
subfolder sf (sf ∈ {{a · · · z}×{0 · · · 9,′ , a · · · z}}) under the
folder f (f ∈ {a · · · z}). So, there will have 26 × 37 = 962
unique subfolders under 26 folders. For example, all the 5-
grams of word brother are in subfolder br under folder b (the
path of the file is /home/ · · · /b/br/brother).

Algorithm 5: creating unique files to store all the 5-
grams associated with each unique words

input : input files /* 118 re-sorted files */

output: output files /* the names of the output

files are the unique word names */

for each sorted file do1

for each 5-gram do2

word1 ← first word of the 5-gram3

char1 ← SubStr(word1, 1)4

char2 ← SubStr(word1, 2)5

fname← /home/ · · · /char1/char2/word16

Open fname in append mode7

write 5-gram to fname8

end9

end10

3.2 Efficient Search when TER = 1
To find all the 5-grams for a specific word of interest, we

need to access6 only a single file among those 2,870,385 files,

6Actually we do not need to search as all the 5-grams in the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
W ord Number

T
im

e
 i

n
 S

e
c

o
n

d
s

Having 22,743 files Having 2,870,385 files

Figure 1: Comparison between time (in seconds)
needed to access all the 5-grams of the 39 words on
the Dual Core Machine having 22,743 files versus
having 2,870,385 files.

distributed under 962 different subfolders, created using Al-
gorithm 5 in Section 3.1. Algorithm 6 is used to locate the
specific file that has all the 5-grams for a specific word and
then to access all the 5-grams for that word to further pro-
cess as per requirement7.

Algorithm 6: finding the specific file and all the 5-
grams for a specific word

input : word /* word of interest */

output: fname /* contains the 5-grams of word */

char1 ← SubStr(word, 1)1

char2 ← SubStr(word, 2)2

fname← /home/ · · · /char1/char2/word3

Open fname in read mode4

for each 5-gram in fname do5

do as per requirement6

end7

3.3 Comparing Efficiency when TER = 1
We use the same [7] data set on the Dual Core Machine.

Table 1 shows all the test results on [7] data set when TER =
1. Table 1 shows that all the 39 words (100%) were accessed
in less than 0.1 seconds using 2,870,385 files. The total ac-
cess time for all the 39 words on the Dual Core Machine is
0.37 seconds, an average of 0.0095 seconds per word (i.e.,
96.95% less average access time compared to using 22,743
files). Figure 1 shows a comparison between the time (in
seconds) needed to access all the 5-grams of the 39 words on
the Dual Core Machine using the 22,743 files from Section 2
versus using 2,870,385 files8. The single largest file with re-
spect to the memory size is new having 1,310,730 5-grams
and using 32,338,060 bytes (32.34 MB) of memory when we
use 2,870,385 files. So, the maximum main memory required
for any word is 32.34 MB. It takes 0.39 seconds on the Dual
Core Machine to access all the 5-grams and 17.12 seconds9

to access all the 5-grams and then to find all the context

file are target 5-grams.
7We can insert code for what we want to do with these 5-
grams in line 6 of Algorithm 6.
8There are 20 words in Figure 1 having 0.00 second access
time as the Benchmark module of Perl returns only 2 digits
after decimal point.
9We need 95.44% less time to only access all the 5-grams

Table 2: File Size on Disk
No. of
files

No. of
folders

Actual size (in
bytes)

Size on disk
(in bytes)

118 N/A 9,483,356,102 9,483,418,624
22,743 N/A 9,483,356,102 9,495,010,304
2,870,385 988 6,865,896,655 9,514,983,424

words and the pair frequencies for the word new. We can
consider these values as the upper limits. Table 2 shows
the actual size of the files and the size required on disk for
different number of files10.

4. Conclusions
It is expected that Google Inc. will release a larger data

set than the Web 1T in the future and our proposed method
is general enough to handle a larger data set than the Web
1T. Assuming that the rate of increase of the number of n-
grams is much smaller than the rate of increase of the num-
ber of words (collected from web pages) over which their
observed frequency are counted, our proposed approach is
easily applicable to the future Web 10T, Web 100T or even
Web 1Q (Q=Quadrillion). We find that if the computing
device supports millions of files, then creating unique files
to store all the 5-grams associated with each unique word
provides the best access time efficiency and processing effi-
ciency. Otherwise, the method described in Section 2 pro-
vides a reasonable access time efficiency and processing effi-
ciency. It is interesting to note that though we only exper-
imented on the 5-gram data set, the proposed methods are
also applicable to Web 1T bigrams, trigrams, and 4-grams.

References
[1] T. Brants and A. Franz, “Web 1T 5-gram corpus

version 1.1.,” tech. rep., Google Research, 2006.

[2] W. Weaver, Translation. 1949. Reprinted in Locke,
William N. and Booth, A. Donald (1955) (Eds.),
Machine translation of languages, John Wiley & Sons,
New York, 15-23.

[3] A. Kaplan, An experimental study of ambiguity and
context. November 1950. Published as Kaplan,
Abraham (1955), An experimental study of ambiguity
and context, Mechanical Translation, 2(2), 39-46.

[4] N. Ide and J. Véronis, “Word sense disambiguation:
The state of the art,” Computational Linguistics,
vol. 24, no. 1, pp. 1–41, 1998.

[5] A. K. Koutsoudas and R. Korfhage, “M.T. and the
problem of multiple meaning,” Mechanical Translation,
vol. 2, no. 2, pp. 46–51, 1956.

[6] Y. Choueka and S. Lusignan, “Disambiguation by short
contexts,” Computers and the Humanities, vol. 19,
pp. 147–158, 1985.

[7] G. A. Miller and W. G. Charles, “Contextual correlates
of semantic similarity,” Language and Cognitive
Processes, vol. 6, no. 1, pp. 1–28, 1991.

and 7.06% less time to access all the 5-grams and then to
find all the context words and the pair frequencies for the
word new compared to using 22,743 files.

10The actual file size using 2,870,385 files is less than the
other two versions because we do not need to store the word
of interest as the file name itself represents it.

