
Database Schema Matching using Corpus-based
Semantic Similarity and Word Segmentation

Aminul Islam, Diana Inkpen, and Iluju Kiringa

University of Ottawa, School of Information Technology and Engineering
800 King Edward, Ottawa, ON, K1N 6N5, Canada

{mdislam, diana, kiringa}@site.uottawa,ca

Abstract. In this paper, we present a new method for database schema match-
ing, the problem of identifying elements of two given schemas that correspond
to each other. We use two methods based on a large text corpus: one method for
determining the semantic similarity of two target words and the other for auto-
matic word segmentation. We present a name-based element-level database
schema matching method that exploits the semantic similarity and the word
segmentation method. We also use normalized and modified versions of the
Longest Common Subsequence string matching algorithm with weight factors
to allow for a balanced combination. Our goal is to develop a schema matching
method that uses a single property (element name) for matching and achieves a
comparable F-measure score with respect to the methods that use multiple
properties (element name, text description, data instance, context description).
We validate our method with experimental studies, the results of which suggest
that the method is a useful addition to the set of existing schema matchers.

1 Introduction

Database schema matching is the problem of identifying elements of two given sche-
mas that correspond to each other. It has been the focus of research since the 1970s in
the Artificial Intelligence, Databases, and Knowledge Representation communities.
Schema matching can also be defined as discovering semantically corresponding at-
tributes in different schemas or detecting two names that denote the same concept in a
flat ontology. Traditionally, the problem of matching schemas has essentially relied on
finding pairwise attribute correspondences. Though schema matching identifies ele-
ments that correspond to each other, it does not explain how they correspond. For
example, it might say that FirstName and LastName in one schema are related to
Name in the other, but it does not say that concatenating the former yields the latter.
Automatically discovering these correspondences or matches is inherently difficult.
Today, many researchers realize that schema matching is a core problem in e-
commerce exchanges, in data integration / warehousing, and in Semantic Web appli-
cations. Schema matching is fundamental for enabling query mediation and data ex-
change across information sources [2], [21]. While schema matching has always been
a problematic and interesting aspect of information integration, the problem is exacer-
bated as the number of information sources to be integrated, and hence the number of

integration problems that must be solved, grows. Such schema matching problems
arise both in “classical” scenarios such as company mergers, and in “new” scenarios
such as the integration of diverse sets of queryable information sources over the Web.
Purely manual solutions to the schema matching problem are too labor-intensive to be
scalable; as a result, there has been a great deal of research into automated techniques
that speed up this process by either automatically-discovering good mappings, or at
least by proposing likely matches that are then verified by a human expert [9].

Rahm and Bernstein [18] point out that it is not possible to determine fully-
automatically all the matches between two schemas, primarily because most schemas
have some semantics that affects the matching criteria but is not formally expressed or
often not even documented. The implementation of the matching should therefore only
determine match candidates, which the user can accept, reject, or change. Further-
more, the user should be able to specify matches for elements for which the system
was unable to find satisfactory match candidates.

In this paper we present a novel approach to database schema matching, by using
natural language processing techniques. The paper is organized as follow: Section 2
presents a short overview of different schema matching approaches. The corpus-based
word similarity method and the word segmentation method that we use in schema
matching are briefly described in Section 3. Our proposed schema matching method is
described in Section 4 and examples are given in Section 5. Evaluation and experi-
mental results are presented in Section 6 and we conclude in Section 7.

2 Classification of Schema Matching Approaches

Rahm and Bernstein [18] summarize the major approaches to schema matching. There
are individual matchers: each computes a mapping based on a single matching crite-
rion. Alternatively, combinations of individual matchers are built, either by using
multiple matching criteria (e.g., name and type equality) within an integrated hybrid
matcher or by combining multiple match results produced by different match algo-
rithms within a composite matcher.

Among the individual matchers, linguistic matchers are of interest to us. They use
element names and text (sentences) to find semantically similar schema elements. We
discuss here two linguistic approaches: a) name matching and b) description matching.

a. Element Name Matching
Element name-based matching matches schema elements with equal or similar

names. Similarity of names can be defined and measured in various ways, including:
• Equality of name matching
• Equality of canonical name representations after stemming and preprocessing
• Equality of synonyms
• Equality of hypernyms (words that are more general)
• Similarity of names based on longest common substrings (LCS), edit distance,

pronunciation, soundex, or other string similarity measures.
Solving any task related to synonyms and hypernyms normally requires the use of

thesauri or dictionaries. These specific dictionaries require a substantial effort to be
built up in a consistent way. But corpus-based methods could be a better choice than

dictionary-based methods as a balanced text corpus covers a huge collection of both
domain-dependent and independent words including special terms and proper nouns.

Name-based matching can identify multiple relevant matches for a given schema
element i.e., it is not limited to finding just 1:1 matches. For example, it can match
“address” with both “home address” and “office address”. Bright et. al. [3] discuss an
approach to assigning different weights to different types of similarity relations.

b. Description matching
Often, schemas contain text descriptions of elements that typically explain the

meaning of elements in natural language to express the intended semantics of schema
elements. But the quality of these descriptions varies a lot. These comments can also
be evaluated linguistically to determine the similarity between schema elements. For
instance, this would help find that the following elements match, by a linguistic analy-
sis of the comments associated with each schema element:

S1: empn // employee name
S2: name // name of employee
This linguistic analysis could be as simple as extracting keywords from the descrip-

tion which are used for synonym comparison, much like name matching. Some ap-
proaches consider rule-based schema matching which are domain dependent [16].

Madhavan et al. [13] use name matching and description matching as part of a
combined method that builds a model for each schema element that includes knowl-
edge about other elements in a corpus of schemas and uses this model in the matching
process. Specifically, given the element in a schema that is not in the corpus, it finds
other elements in the corpus that are an alternate representation of the same underlying
concept. The method uses the corpus of schemas to estimate various statistics about
elements and relations in a domain to develop a better understanding of the domain.
They use 4 base learners (name learner, text learner, data instance learner, and context
learner) and a meta learner. For example, the name learner first tries to identify fre-
quent word roots in the element names by first splitting the names of the elements
based on capitalization and stemming the resulting fragments. Then it splits the names
into their corresponding n-grams to handle short forms, incomplete names and spelling
errors that are common in schema names. Finally, the method uses each base learner
to make a prediction of how a schema element is similar to each of the corpus ele-
ments. It combines the predictions of the base learners into a single similarity score.

3 Two corpus-based methods

We were motivated to use corpus-based similarity and word segmentation methods for
the following reasons (by corpus here we mean a large collection of text). First, we
focused our attention on corpus-based measures because of their large type coverage.
The types that are used in real-world database schema elements are often not found in
dictionaries. Second, some existing corpus-based word segmentation methods provide
good precision score, but provide low recall, and as a result low F-measure score.

3.1 Word Similarity Method

There is a relatively large number of word-to-word similarity metrics in the literature,
ranging from distance-oriented measures computed on semantic networks or knowl-
edge base (or dictionary / thesaurus-based measures), to metrics based on models of
information theory (or corpus-based measures) learned from large text collections. A
detailed review on word similarity can be found in [19], [23]. We choose a corpus-
based similarity measure because of the large type coverage.
 PMI-IR [22] is a simple method for computing corpus-based similarity of words. It
uses Pointwise Mutual Information, PMI(w1, w2) = log p(w1 & w2) / p(w1) p(w2).
Here, w1 and w2 are the two words; p(w1 & w2) is the probability that the two words
co-occur. If w1 and w2 are statistically independent, then the probability that they co-
occur is given by the product p(w1) · p(w2). If they are not independent, and they have
a tendency to co-occur, then p(w1 & w2) will be greater than p(w1) · p(w2). PMI-IR
used AltaVista Advanced Search query syntax to calculate the probabilities. In the
simplest case, two words co-occur when they appear in the same document. The prob-
abilities can be approximated by the number of documents (hits) retrieved:

PMI-IR(w1, w2) = hits(w1 AND w2) / (hits(w1) hits(w2)).
 Latent Semantic Analysis (LSA) [12], a high-dimensional linear association model,
analyzes a large corpus of natural text and generate a representation that captures the
similarity of words and text passages. The underlying idea is that the aggregation of
all the word contexts in which a given word does and does not appear provides a set of
mutual constraints that largely determines the similarity of meaning of words and sets
of words to each other [12]. The model tries to answer how people acquire as much
knowledge as they do on the basis of as little information as they get. It uses the Sin-
gular Value Decomposition (SVD) to find the semantic representations of words by
analyzing the statistical relationships among words in a large corpus of text. The simi-
larity of two words is measured by the cosine of the angle between their corresponding vectors.
 We use Second Order Co-occurrence PMI (SOC-PMI) word similarity method [7] that
uses Pointwise Mutual Information to sort lists of important neighbor words of the two target
words from a large corpus. The method considers the words which are common in both lists
and aggregate their PMI values (from the opposite list) to calculate the relative semantic simi-
larity. We empirically evaluated this method [7] by computing its correlation with the
human scores for the Miller and Charles’s [15] 30 noun pair subset and the Rubenstein
and Goodenough’s [20] 65 noun pairs. The evaluation also included the use of the
word similarity method in the task of solving 80 synonym test questions from the Test
of English as a Foreign Language (TOEFL), and 50 synonym test questions from a
collection of English as a Second Language (ESL) tests. The evaluation results show
that the method outperforms several competing methods (PMI-IR and LSA).
 PMI-IR used AltaVista Advanced Search query syntax to calculate the probabili-
ties. The ‘NEAR’ search operator of AltaVista is an essential operator in PMI-IR
method and it is no longer in use in AltaVista; this means that it is practically not
possible to use PMI-IR method in the same form in new systems. Also, we prefer to
SOC-PMI because it uses second-order co-occurrences, therefore it can compute simi-
larity even for two words that do not co-occur in the corpus. The word similarity
method is a separate module in our Schema Matching Method. Therefore any other

word similarity method could be substituted instead of SOC-PMI, if someone wants to
try other word-similarity methods (dictionary-based, corpus-based, or hybrid).

3.2 Word Segmentation Model

Word segmentation methods can be roughly classified as either dictionary-based or
corpus-based methods, while many state-of-the-art systems use hybrid approaches. In
dictionary-based methods, given an input character string, only words that are stored
in the dictionary can be identified. The performance of these methods thus depends to
a large degree upon the coverage of the dictionary, which unfortunately may never be
complete because new words appear constantly. Therefore, in addition to the diction-
ary, many systems contain special components for unknown word identification. In
particular, statistical corpus-based methods have been widely applied because they use
a probabilistic scoring mechanism rather than a dictionary to segment the text [6].
 We use a corpus-based method for automatic word segmentation [8]. The method
formulates a generalized approach to word segmentation using maximum-length de-
scending-frequency and entropy rate. The term maximum-length descending-
frequency means that it chooses maximum length n-grams (sequences of n characters)
that have a minimum threshold frequency; then it looks for further n-grams in de-
scending order, based on length. If two n-grams have the same length, it chooses the
n-gram with highest frequency first and then the n-gram with next-highest frequency if
any of its characters are not a part of the previous one. Following this procedure, after
some iterations, it can be in a state with some remaining characters (they call it resi-
due) that is not matched with any type in the corpus. To solve this, the method merges
residue with its adjacent words to form a string of characters and then apply a greedy
matching from the beginning and the end of the string; this is an algorithm of forward-
backward matching type [4], in which the results are composed and the segmentation
optimized based on the two results. The method chooses the result with lower number
of words. If the two results return same number of words then it uses the entropy rate
to decide which set of words to accept. The intuition behind using entropy rate is that
if it has a set of words with larger average frequency (normalized frequency in the
entropy rate) than the other set of words, it is obvious that the first set of words is
more meaningful than the second set of words [8]. The method obtained 89.92% word
precision rate, 94.69% word recall rate, and 92.24% word F-measure when they tested
the segmentation method on the Brown corpus. The results of other word segmenta-
tion methods ([5], [17], [10]), which are also tested on the Brown corpus, show that
our method outperforms these methods in terms of precision, recall, and F-measure.

4. Proposed Schema Matching Method

We use the longest common subsequence (LCS) [1] measure with some normalization
and small modifications for our string similarity measure. We use three different
modified versions of LCS and then take a weighted sum of these1. Kondrak [11]

1 We use modified versions because in our experiments we obtained better results (precision and recall for

schema matching on a sample of data) than when using the original LCS, or other similarity measures.

showed that edit distance and the length of the longest common subsequence are spe-
cial cases of n-gram distance and similarity, respectively. Melamed [14] normalized
LCS by dividing the length of the longest common subsequence by the length of the
longer string and called it longest common subsequence ratio (LCSR). But LCSR
does not take into account of the length of the smaller string which sometimes has a
significant impact on the similarity score.
 We normalize the longest common subsequence (LCS) so that it takes into account
of the length of both the smaller and the longer string and call it normalized longest
common subsequence (NLCS) which is,

)()(

))},(({
),(

2

1
ji

ji
ji slengthrlength

srLCSlength
srNLCSv

×
==

While in classical LCS, the common subsequence need not to be consecutive, in data-
base schema matching, consecutive common subsequence is important for a high
degree of matching. We use maximal consecutive longest common subsequence start-
ing at character 1, MCLCS1 (Figure 1) and maximal consecutive longest common
subsequence starting at any character n, MCLCSN (Figure 2). In Figure 1, we present
an algorithm that takes two strings as input and returns the smaller string or maximal
consecutive portions of the smaller string that consecutively match with the longer
string, where matching must be from first character (character 1) for both strings. In
Figure 2, we present another algorithm that takes two strings as input and returns the
smaller string or maximal consecutive portions of the smaller string that consecutively
match with the longer string, where matching may start from any character (character
n) for both of the strings. We also normalize MCLCS1 and MCLCSN and call it nor-
malized MCLCS1 (v2) and normalized MCLCSN (v3), respectively.
 We take the weighted sum of these individual v1, v2, and v3 to determine string simi-
larity score, where w1, w2, w3 are weights and w1+w2+w3=1. Therefore, the similarity
of the two strings is: α = w1v1 + w2v2 + w3v3. We set equal weights for our experi-
ments. Theoretically, v3 ≥ v2. We then use the word similarity measure, normalize it,
and combine it with the string similarity to obtain the final similarity score.

 We now describe our schema matching method in detail. Consider two given data-
base schemas R = {R1, R2 …, Rσ } and S = {S1, S2 …, Sχ }; for each element in one
database schema, we try to identify a matching element in the other schema, if any,
using element names. We assume that schema R has σ elements and Ri is the element’s
name, where i = 1 … σ. Similarly, schema S has χ elements and Sj is the element’s
name where j = 1 … χ. Note that some elements in R can match multiple elements in
S, and vice versa. So, our task is to identify whether an element name RR

i
∈ matches

an element name SS
j

∈ . Both Ri and Sj are strings of characters. Our method provides

a similarity score between 0 and 1, inclusively. If the similarity score is above a cer-
tain threshold then the elements are considered match candidates. If we set the thresh-
old to 1 and the similarity score reaches this value, only then are we certain about their
matching. For all other cases, we can only determine more or less probable match
candidates. The method comprises the following six steps:
Step 1: We use all special characters, punctuations, and capital letters, if any, as initial
word boundary and eliminate all these special characters and punctuations. After this

initial word segmentation, we pass the segmented words to the word segmentation
method and lemmatize to generate tokens. We assume Ri = {r1, r2 …, rm} has m tokens
and Sj = {s1, s2 …, sn} has n tokens and n ≥ m. Otherwise, we switch Ri and Sj.
Step 2: We count the number of r i’s (say, δ) for which r i = sj, for all

i
Rr ∈ and for all

i
Ss∈ . I.e., there are δ tokens in Ri that exactly match with Sj, where δ ≤ m. We re-

move all δ tokens from both of Ri and Sj. So, Ri = {r1, r2 …, rm-δ} and Sj = {s1, s2 …, sn-

δ}. If m-δ = 0, we go to step 6.
Step 3: We construct a (m-δ)×(n-δ) matching matrix (say, M1 = (αij)(m-δ)×(n-δ)) using the
following process: we assume any token

ii
Rr ∈ has τ characters, i.e., r i =

{ c1c2…cτ}and any token
jj

Ss ∈ has η characters, i.e., sj = {c1c2 … cη}where τ ≤ η. In

other words, η is the length of the longer token and τ is the length of the smaller token.
We calculate the followings: v1 ← NLCS(r i, sj) v2 ← NMCLCS1(r i, sj)
 v3 ← NMCLCSN(r i, sj) αij ← w1v1 + w2v2 + w3v3
i.e., αij is a weighted sum of v1, v2, and v3 (equal weights). We put αij in row i and col-
umn j position of a matrix M1 for all i = 1..m-δ and j = 1..n-δ.
Step 4: We construct a (m-δ)×(n-δ) similarity matrix (say, M2 = (βij)(m-δ)×(n-δ)) using the
following process: We put βij (the SOC-PMI similarity score) in row i and column j
position of a matrix M2 for all i = 1 … m-δ and j = 1 … n-δ.
Step 5: We construct another (m-δ)×(n-δ) joint matrix (say, M = (γij)(m-δ)×(n-δ)) using M
← ψM1 + φM2 (i.e., γij = ψαij + φβij) where ψ is the matching matrix weight factor. φ is
the similarity matrix weight factor, and ψ + φ = 1. Setting any one of these factors to 0
means that we do not include that matrix. Setting both of the factors to 0.5 means we
consider them equally important.
 After constructing the joint matrix, M, we find out the maximum-valued matrix-
element, γij. We add this matrix element to a list (say, ρ and ρ ← ρ U γij) if γij ≥ ς (we
will discuss about the similarity threshold, ς in next section). We remove all the matrix
elements of i’ th row and j’th column from M. We repeat the finding of the maximum-
valued matrix-element, γij adding it to ρ and removing all the matrix elements of the
corresponding row and column until either γij < ς, or m-δ-|ρ| = 0, or both.
Step 6: We sum up all the elements in ρ and add δ to it to get a total score. We multiply this
total score by the reciprocal harmonic mean of m and n to obtain a balance similarity score
between 0 and 1, inclusively.

mn

nm
SRScoreSimilarity i

i

ji 2

)()(
),(

||

1

+×+
=

∑
=

ρ

ρδ

Choosing the values of ζ and ς
ζ is the minimum number of characters for which we continue the matching process.
Theoretically ζ could be any value between 1 and m inclusively. We set ζ to 1. If we
set ζ to 1 then we can get expected matching result for small-length tokens. E.g., if we
have three sample tokens named min, max and similarity and we set ζ to 1. The pair
min max returns m and the pair min similarity returns Ø when we use MCLCS1. When
we use MCLCSN, the first pair returns m and the second pair returns mi. But if we set
ζ to 2, the pair min max returns Ø for both MCLCS1 and MCLCSN. If we set ζ to 3,
the pair min similarity returns Ø for both MCLCS1 and MCLCSN.

Theoretically, ς could be any value between 0 and 1, but we usually set ς close to 0
(we set ς = 0.01 for all of our experiments). All matrix elements having values lower
than ς may have negative impacts to the matching, thus it is better to omit them.

Algorithm MCLCS1
 Input: r i, sj // r i and sj are two input strings where |r i| = τ, |sj| = η and τ ≤ η as mentioned.
1. τ ← |r i|, η ← |sj|
2. while |r i| ≥ ζ // we usually set ζ to 1. Details are discussed in next section.

3. if
ji

Sr ∈ // i.e.,
iij

rrS =I

4. return r i
5. else r i ← r i \ cτ // i.e., remove the right-most character from r i
6. end if
7. end while
 Output: r i // r i is the Maximal Consecutive LCS starting at character 1

Figure 1. Maximal Consecutive LCS starting at character 1.

Algorithm MCLCSN
 Input: r i, sj // r i and sj are two input strings where |r i| = τ, |sj| = η and τ ≤ η.
1. while |r i| ≥ ζ // we usually set ζ to 1.

2. determine all n-grams from r i where n = 1 .. |r i| and ir is the set of n-grams

3. if jsx∈ where {x | irx∈ , x = Max (ir)}

 // i is the number of n-grams and Max (ir) returns the maximum length n-gram from ir

4. return x

5. else ir ← ir \ x // remove x from set ir

6. end if
7. end while
 Output: x // x is the Maximal Consecutive LCS starting at any character n

Figure 2. Maximal consecutive LCS starting at any character n

5. Example

We provide an example that describes the proposed method and determine the similar-
ity score. We use two simple element names from a database schema, for brevity.
 Let Ri = “maxprice”, Sj = “High_Price”.

Step 1: After eliminating all special characters and punctuations, if any, and then
using word segmentation method and lemmatizing , we get Ri = {max, price} and Sj =
{ high, price} where m = 2 and n = 2.

Step 2: Because only one token (i.e., price) in Ri exactly matches with Sj we set δ to
1. We remove price from both Ri and Sj. So, Ri = {max} and Sj = {high}. As m – δ ≠
0, we proceed to next step.

Step 3: We construct a 1×1 matching matrix, M1. Consider the max high pair
where η = 4 is the length of the longer token (high), τ = 3 is the length of the smaller

token (max) and 0 is the maximal length of the consecutive portions of the smaller
token that consecutively match with the longer token. So, v1 = v2 = v3 = 0 and α11 = 0.

 high

M1 = max 0
Step 4: We construct a 1×1 similarity matrix, M2. Here, λ = 20 as we used the

SOCPMI method.
 high

M2 = max 0.326

Step 5: We construct a 1×1 joint matrix, M and assign equal weight factor by set-
ting both ψ and φ to 0.5.

 high

M = max 0.163

We find the only maximum-valued-matrix-element, γij = 0.163 and add it to ρ as γij
≥ ς (we use ς = 0.01 in this example). So, ρ = {0.163}. The new M is empty after
removing i’th (i = 1) row and j’th (j = 1) column. We proceed to next step as m-δ-|ρ| =
0. (Here, m = 2, δ = 1 and |ρ| = 1.)

Step 6: 1

| |
() ()

(,)
2

i
i

i j

m n
SimilarityScore R S

mn

ρ
δ ρ

=
+ × +∑

= = (1 + 0.163) ×4/8 = 0.582

6. Evaluation and Results

We now present experimental results that demonstrate the performance of our method.
All the schemas we used in our experiments are from Madhavan et al. [13], where they
used web form schemas from two different domains, auto and real estate. Web form
schema matching is the problem of identifying corresponding input fields in the web
forms. Each web form schema is a set of elements, one for each input. The properties
of each input include: the hidden input name or element name that is passed to the
server when the form is processed, the description text and sample values in the option
box. We tested on the same data as Madhavan et al. [13], all of it, while they used
75% of it, randomly selected. We could not reproduce the exact 75% that they used.
In each domain, they manually created mappings between randomly chosen schema
pairs. The matches were one-many, i.e., an element can match any number of elements
in the other schema. These manually created mappings are used as a gold standard to
compare the mapping performance of the different methods, including our method.
Table 1 provides detailed information about each of the two domains and our results.
For each domain, we compared each predicted mapping pair against the manually
created mapping pair. For our experiment, we only used element names for matching.
We used eleven different similarity thresholds ranging from 0 to 1 with interval 0.1.
For example, using the auto domain when we used similarity threshold 0.1, our
method matched 961 elements, out of which 628 elements were among the 769 manu-
ally matched elements. The last three columns of the table show the precision, recall,
and F-measure for the two domains, for the various threshold values. A low similarity
threshold (≈ 0.2) gives the best F-measure score.

 The reason for a lower similarity threshold to obtain a better F-measure score is
that we always take into accounts both the string similarity and the semantic word
similarity measures. If two strings have perfect semantic word similarity score (i.e. ≈
1) and no string similarity score (i.e. ≈ 0), which is practically a perfect matching (e.g.,
car and vehicle), the total similarity score will be lower. Again, we multiply this total
score by the reciprocal harmonic mean of m and n to obtain a balanced similarity
score; this also lowers the final similarity value. When we use string similarity thresh-
old score of 1 (i.e., matching the element names exactly, therefore no semantic simi-
larity matching is included), we obtain recall values of 0.133 and 0.107 for the auto
and real estate domains, respectively. We can consider these as baselines.

Table 1. Characteristics of the evaluation domains and our results.

D
o

m
ai

n

N
o

.
o

f
sc

h
em

as

N
o.

 o
f m

an
u

al

m
ap

pi
n

g
s

N
o.

 o
f m

an
u

-
al

ly
 c

re
at

ed
 m

ap
-

pi
n

g
 p

ai
rs

S
im

ila
rit

y
th

re
sh

ol
d

 s
co

re
 in

o

ur
 m

et
h

o
d

N
o.

 o
f p

re
-

di
ct

ed
 m

ap
pi

n
g

p

ai
rs

N
o

.
of

 c
or

re
ct

m

ap
p

in
g

 p
ai

rs

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

0 33116 769 0.02 1.00 0.05
0.1 961 628 0.65 0.82 0.73
0.2 769 596 0.78 0.78 0.78
0.3 701 564 0.80 0.73 0.77
0.4 689 558 0.81 0.73 0.77
0.5 642 530 0.83 0.69 0.75
0.6 501 424 0.85 0.55 0.67
0.7 438 382 0.87 0.50 0.63
0.8 200 192 0.96 0.25 0.40
0.9 176 176 1.00 0.23 0.37

 A

u
to

30

95

769

1.0 103 103 1.00 0.13 0.24
0 4262 280 0.07 1.00 0.12

0.1 364 232 0.64 0.83 0.72
0.2 310 211 0.68 0.75 0.72
0.3 248 176 0.71 0.63 0.67
0.4 228 173 0.76 0.62 0.68
0.5 203 164 0.81 0.59 0.68
0.6 155 130 0.84 0.46 0.60
0.7 124 105 0.85 0.38 0.52
0.8 59 55 0.93 0.20 0.32
0.9 48 48 1.00 0.17 0.29

 R

ea
l e

st
at

e

20

57

280

1.0 30 30 1.00 0.11 0.19

Madhavan et al. [13] used three methods: direct, pivot and augment. They selected

a random 25% of the manually created mappings in each domain as training data and
tested on the remaining 75% of the mappings. In the augment method, they used dif-
ferent base learners such as name learner, text learner, data instance learner, context
learner and then used a meta-learner to combine the predictions of the different base
learners into a single similarity score. To train a learner, the augment method requires
learner specific positive and negative examples for the element on which it is being

trained. The direct method uses the same base learners, but the training data for these
learners is extracted only from the schemas being matched. Pivot is the method that
computes cosine distance of the interpretation vectors of the two elements directly.

For the auto domain, the direct, pivot and augment methods achieved precision of
around 0.76, 0.74 and 0.92, recall of around 0.74, 0.78, 0.72 and F-measure of around
0.73, 0.74 and 0.78 respectively. We achieved around 0.78 as precision, recall and F-
measure with 0.2 as similarity threshold. For the real estate domain, the direct, pivot
and augment methods achieved precision of 0.78, 0.71 and 0.76, recall 0.69, 0.74,
0.81 and F-measure of 0.71, 0.71 and 0.78, respectively. We achieved precision of
0.68, recall of 0.75, and F-measure of 0.72, with the same threshold.
 Generally, it seems that precision matters more than recall in the schema matching
problem. But pragmatically it is not possible to determine fully-automatically all
matches between two schemas, and the implementation of the matching therefore only
determine match candidates that are then verified by a human expert. If a human ex-
pert is involved in the verification procedure then recall is as important as precision.
 Note that our algorithms assumed that most element names are tokenizable, but not
all of them. There are indeed types of data where it was nearly impossible to obtain
matches using element name matching. For such cases, we got very low similarity
values. However, even by considering cases like this one, we obtained good results on
our experimental data sets, which is from real-world web data sources. This means
that this type of data is not very frequent in real-world web data sources.

6. Conclusions

Our schema matching method uses a single property (i.e., element name) for matching
and achieves a comparable F-measure score with respect to the methods that use mul-
tiple properties (e.g., element name, text description, data instance, context descrip-
tion). If we use a single property instead of multiple properties, it can speed up the
matching process which is important when schema matching is used in Peer-to-Peer
(P2P) data management or online query processing in P2P environments. Our method
is scalable, in the sense that, if needed, we could also add other properties (i.e., text
description and context description) to obtain a better schema matching result. To deal
with non-tokenizable cases, we also plan to combine our name-based schema matcher
with other existing matchers, in order to address specific situations that our method
does not cover. When the element names are not words or fragments of words, then
we need to use an instance matcher that looks at the type of the values in two columns,
or at the values of the instances. If the instances are words, we can re-use our semantic
and string similarity matching at the level of the instances. Sometimes two columns
might match if similar words are used to denote different fields in two different data-
bases. In such cases, the precision of the matching can be increased by matching the
text descriptions of the columns, when available. A word-level similarity measure can
be used to determine the similarity level of two description texts.

References

1. Allison, L., and Dix, T. I. A Bit-String Longest-Common-Subsequence Algorithm. In Infor-
mation Processing Letters. 23, (1986), 305-310.

2. Batini, C., Lenzerini, M., and Navathe, S. B. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18, 4, (1986), 323–364.

3. Bright, M. W., Hurson, A. R., and Pakzad, S. H. Automated resolution of semantic hetero-
geneity in multi databases. In Trans on Database Systems (TODS), 19, 2, (1994), 212–253.

4. Dale, R., Moisl, H., and Somers, H. Handbook of Natural Language Processing. Marcel
Dekker, Inc. New York, (2000), 22-26.

5. de Marcken, C. The Unsupervised Acquisition of a Lexicon from Continuous Speech.
Technical Report AI Memo No. 1558, M.I.T., Cambridge, MA, (1995).

6. Gao, J., Li, M., Wu, A. and Huang, C.-N. Chinese word segmentation and named entity
recognition: a pragmatic approach. Computational Linguistics, 31, 4, (2005).

7. Islam, A., and Inkpen, D. Second Order Co-occurrence PMI for Determining the Semantic
Similarity of Words. In Proceedings of the International Conference on Language Resources
and Evaluation, Genoa, Italy, (2006).

8. Islam, A., Inkpen, D., and Kiringa, I. A Generalized Approach to Word Segmentation using
Maximum Length Descending Frequency and Entropy Rate. In Procs. of the 8th Intl. Conf.
on Intelligent Text Processing and Comp. Linguistics (CICLing 2007), (2007), 175-185.

9. Kang, J., and Naughton, J. F. On Schema Matching with Opaque Column Names and Data
Values. In Proceedings of SIGMOD 2003, San Diego, CA, (2003).

10. Kit, C., and Wilks, Y. Unsupervised Learning of Word Boundary with Description Length
Gain. In Proceedings CoNLL99 ACL Workshop. Bergen, (1999).

11. Kondrak, G. N-gram similarity and distance. In Procs of the 12h Intel. Conf. on String
Processing and Information Retrieval, Buenos Aires, Argentina, (2005), 115-126.

12. Landauer, T. K., Foltz, P. W., and Laham, D. Introduction to Latent Semantic Analysis.
Discourse Processes, 25, 2-3, (1998), 259-284.

13. Madhavan, J., Bernstein, P., Doan, A., and Halevy, A. Corpus-based Schema Matching. In
Proceedings of the International Conference on Data Engineering (ICDE-05), (2005).

14. Melamed, I. D. Bitext maps and alignment via pattern recognition. Computational Linguis-
tics, 25, 1, (1999), 107–130.

15. Miller, G. A., and Charles, W. G. Contextual correlates of semantic similarity. Language
and Cognitive Processes, 6, 1, (1991), 1-28.

16. Milo, T., and Zohar, S. Using Schema Matching to Simplify Heterogeneous Data Transla-
tion. In Procs. of the Intl. Conf. on Very Large Data Bases (VLDB), (1998), 122-133.

17. Peng, F., and Schuurmans, D. A Hierarchical EM Approach to Word Segmentation, In
Proceedings of the Sixth Natural Language Processing Pacific Rim Symposium (NLPRS
2001), Tokyo, Japan, (2001), 475-480.

18. Rahm, E., and Bernstein, P.A. A survey of approaches to automatic schema matching. The
International Journal on Very Large Data Bases (VLDB), 10, 4, (2001), 334-350.

19. Rodriguez, M.A., Egenhofer, M.J. Determining Semantic Similarity among Entity Classes
from Different Ontologies. IEEE Trans. Knowledge and Data Eng., 15, 2, (2003), 442-456.

20. Rubenstein, H., and Goodenough, J. B. Contextual correlates of synonymy. Communica-
tions of the ACM, 8, 10, (1965), 627-633.

21. Seligman, L., Rosenthal, A., Lehner, P., and Smith, A. Data integration: Where does the
time go? Bulletin of the Technical Committee on Data Engineering, 25, 3, (2002).

22. Turney, P. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In Proceedings
of Twelfth European Conf. Machine Learning, (2001).

23. Weeds, J., Weir, D., and McCarthy, D. Characterising Measures of Lexical Distributional
Similarity. Procs. of the 20th Intl. Conf. on Computational Linguistics, (2004), 1015-1021.

