Database Schema M atching using Cor pus-based
Semantic Similarity and Word Segmentation

Aminul Islam, Diana Inkpen, and lluju Kiringa

University of Ottawa, School of Information Techogy and Engineering
800 King Edward, Ottawa, ON, K1N 6N5, Canada
{mdislam, diana, kiringa}@site.uottawa,ca

Abstract. In this paper, we present a new method for databelsema match-
ing, the problem of identifying elements of two givschemas that correspond
to each other. We use two methods based on atixgeorpus: one method for
determining the semantic similarity of two targeirds and the other for auto-
matic word segmentation. We present a name-basgdest-level database
schema matching method that exploits the semaitidasity and the word
segmentation method. We also use normalized andfiewdersions of the
Longest Common Subsequence string matching algontith weight factors
to allow for a balanced combination. Our goal islewelop a schema matching
method that uses a single property (element naongpétching and achieves a
comparable F-measure score with respect to the agetthat use multiple
properties (element name, text description, datéaite, context description).
We validate our method with experimental studiks,results of which suggest
that the method is a useful addition to the sexidting schema matchers.

1 Introduction

Database schema matching is the problem of idémgifglements of two given sche-
mas that correspond to each other. It has beefothis of research since the 1970s in
the Atrtificial Intelligence, Databases, and KnovgedRepresentation communities.
Schema matching can also be defined as discovedanmntically corresponding at-
tributes in different schemas or detecting two r&that denote the same concept in a
flat ontology. Traditionally, the problem of matobischemas has essentially relied on
finding pairwise attribute correspondences. Thoaghema matching identifies ele-
ments that correspond to each other, it does nolaiexhow they correspond. For
example, it might say that FirstName and LastNamerie schema are related to
Name in the other, but it does not say that comediteg the former yields the latter.
Automatically discovering these correspondencesaiches is inherently difficult.
Today, many researchers realize that schema mgtdkira core problem in e-
commerce exchanges, in data integration / warehguaind in Semantic Web appli-
cations. Schema matching is fundamental for engldimery mediation and data ex-
change across information sources [2], [21]. Whidhema matching has always been
a problematic and interesting aspect of informatidegration, the problem is exacer-
bated as the number of information sources to tegiated, and hence the number of

integration problems that must be solved, growshSschema matching problems

arise both in “classical” scenarios such as compaasgers, and in “new” scenarios

such as the integration of diverse sets of queeyatfbrmation sources over the Web.

Purely manual solutions to the schema matchinglenolare too labor-intensive to be

scalable; as a result, there has been a greabflesdearch into automated techniques
that speed up this process by either automaticidlyovering good mappings, or at

least by proposing likely matches that are theifiedrby a human expert [9].

Rahm and Bernstein [18] point out that it is notsgible to determine fully-
automatically all the matches between two schemasarily because most schemas
have some semantics that affects the matchingierlv@t is not formally expressed or
often not even documented. The implementation@htltching should therefore only
determine match candidates, which the user canpgcrgject, or change. Further-
more, the user should be able to specify matchesléments for which the system
was unable to find satisfactory match candidates.

In this paper we present a novel approach to dagabehema matching, by using
natural language processing technigues. The papamanized as follow: Section 2
presents a short overview of different schema niragcapproaches. The corpus-based
word similarity method and the word segmentatiorthoe that we use in schema
matching are briefly described in Section 3. Oupmsed schema matching method is
described in Section 4 and examples are given atidde5. Evaluation and experi-
mental results are presented in Section 6 and welute in Section 7.

2 Classification of Schema Matching Approaches

Rahm and Bernstein [18] summarize the major apemto schema matching. There
are individual matchers: each computes a mappisgdan a single matching crite-
rion. Alternatively, combinations of individual nadiers are built, either by using
multiple matching criteria (e.g., name and typeadity) within an integratedhybrid
matcheror by combining multiple match results produceddifferent match algo-
rithms within acomposite matcher

Among the individual matchers, linguistic matchars of interest to us. They use
element names and text (sentences) to find seraiptgimilar schema elements. We
discuss here two linguistic approaches: a) namehima and b) description matching.

a. Element Name M atching

Element name-based matching matches schema elemhtequal or similar
names. Similarity of names can be defined and medsno various ways, including:

¢ Equality of name matching

« Equality of canonical name representations afensting and preprocessing

e Equality of synonyms

e Equality of hypernyms (words that are more general)

e Similarity of names based on longest common sutggr{LCS), edit distance,

pronunciation, soundex, or other string similantgasures.

Solving any task related to synonyms and hypernyamsally requires the use of
thesauri or dictionaries. These specific dictioesniequire a substantial effort to be
built up in a consistent way. But corpus-based odshcould be a better choice than

dictionary-based methods as a balanced text carpusrs a huge collection of both
domain-dependent and independent words includiagiapterms and proper nouns.

Name-based matching can identify multiple relevaiatches for a given schema
element i.e., it is not limited to finding just lratches. For example, it can match
“address” with both “home address” and “office asl”. Bright et. al. [3] discuss an
approach to assigning different weights to diffétypes of similarity relations.

b. Description matching

Often, schemas contain text descriptions of elesnémat typically explain the
meaning of elements in natural language to exghesmtended semantics of schema
elements. But the quality of these descriptionsegaa lot. These comments can also
be evaluated linguistically to determine the sinifyabetween schema elements. For
instance, this would help find that the followinigments match, by a linguistic analy-
sis of the comments associated with each schemeepte

S1: empn // employee name

S2: name // name of employee

This linguistic analysis could be as simple asaeting keywords from the descrip-
tion which are used for synonym comparison, mukl fiame matching. Some ap-
proaches consider rule-based schema matching \@héctiomain dependent [16].

Madhavan et al. [13] use name matching and desmiphatching as part of a
combined method that builds a model for each scheleraent that includes knowl-
edge about other elements in a corpus of schentagsas this model in the matching
process. Specifically, given the element in a sehémat is not in the corpus, it finds
other elements in the corpus that are an altenegtesentation of the same underlying
concept. The method uses the corpus of schemastitoage various statistics about
elements and relations in a domain to develop tetbanderstanding of the domain.
They use 4 base learners (name learner, text leaa instance learner, and context
learner) and a meta learner. For example, the neanaer first tries to identify fre-
guent word roots in the element names by firstttipdi the names of the elements
based on capitalization and stemming the resuftegments. Then it splits the names
into their corresponding n-grams to handle sharhg) incomplete names and spelling
errors that are common in schema names. Finallyntethod uses each base learner
to make a prediction of how a schema element idagirto each of the corpus ele-
ments. It combines the predictions of the basen&arinto a single similarity score.

3 Two corpus-based methods

We were motivated to use corpus-based similarithword segmentation methods for
the following reasons (by corpus here we mean gelaollection of text). First, we
focused our attention on corpus-based measuresisgecd their large type coverage.
The types that are used in real-world databasarseéements are often not found in
dictionaries. Second, some existing corpus-based segmentation methods provide
good precision score, but provide low recall, ag@ aesult low F-measure score.

3.1 Word Similarity M ethod

There is a relatively large number of word-to-wainhilarity metrics in the literature,
ranging from distance-oriented measures computedeamantic networks or knowl-
edge base (or dictionary / thesaurus-based meastoanetrics based on models of
information theory (or corpus-based measures) &hfrom large text collections. A
detailed review on word similarity can be found[19], [23]. We choose a corpus-
based similarity measure because of the largedgperage.

PMI-IR [22] is a simple method for computingrpus-based similarity of words. It
uses Pointwise Mutual Information, PMi(w,) = log pv; & wo) / pwy) p(ws).
Here,w; andw, are the two words; pg & w,) is the probability that the two words
co-occur. Ifw; andw, are statistically independent, then the probabitigt they co-
occur is given by the productval - pfv,). If they are not independent, and they have
a tendency to co-occur, themwp(& w,) will be greater than p§) - piv,). PMI-IR
used AltaVista Advanced Search query syntax toutzile the probabilities. In the
simplest case, two words co-occur when they apipeifie same document. The prob-
abilities can be approximated by the number of dwnts (hits) retrieved:

PMI-IR(wy, Wp) = hits@v; AND wy) / (hitsfwvy) hits@w,)).

Latent Semantic Analysis (LSA) [12], a high-éinsional linear association model,
analyzes a large corpus of natural text and gemeraépresentation that captures the
similarity of words and text passages. The undeglydea is that the aggregation of
all the word contexts in which a given word doed does not appear provides a set of
mutual constraints that largely determines thelanity of meaning of words and sets
of words to each other [12]. The model tries tovarshow people acquire as much
knowledge as they do on the basis of as littlerinftion as they get. It uses the Sin-
gular Value Decomposition (SVD) to find the semamBpresentations of words by
analyzing the statistical relationships among wadnda large corpus of texthe simi-
larity of two words is measured by the cosine efdingle between their corresponding vectors.

We useSecond Order Co-occurrence PM1 (SOC-PMI) word similarity method [7] that
uses Pointwise Mutual Information to sort listsimmportant neighbor words of the two target
words from a large corpus. The method considersntrels which are common in both lists
and aggregate their PMI values (from the opposstg to calculate the relative semantic simi-
larity. We empirically evaluated this method [7] by compgtits correlation with the
human scores for the Miller and Charles’s [15] 80mpair subset and the Rubenstein
and Goodenough’s [20] 65 noun pairs. The evaluatign included the use of the
word similarity method in the task of solving 8heypym test questions from the Test
of English as a Foreign Language (TOEFL), and 5@bsym test questions from a
collection of English as a Second Language (ES&fstelhe evaluation results show
that the method outperforms several competing nastiBMI-IR and LSA).

PMI-IR used AltaVista Advanced Search quemtay to calculate the probabili-
ties. The ‘NEAR’ search operator of AltaVista is assential operator in PMI-IR
method and it is no longer in use in AltaVista;stimeans that it is practically not
possible to use PMI-IR method in the same formaw 3ystems. Also, we prefer to
SOC-PMI because it uses second-order co-occurretiheefore it can compute simi-
larity even for two words that do not co-occur Ire tcorpus. The word similarity
method is a separate module in our Schema Matdfieitnod. Therefore any other

word similarity method could be substituted insted&OC-PMI, if someone wants to
try other word-similarity methods (dictionary-basedrpus-based, or hybrid).

3.2Word Segmentation M odel

Word segmentation methods can be roughly classd®either dictionary-based or
corpus-based methods, while many state-of-theyatess use hybrid approaches. In
dictionary-based methods, given an input charastténg, only words that are stored
in the dictionary can be identified. The performan¢ these methods thus depends to
a large degree upon the coverage of the dictionetmich unfortunately may never be
complete because new words appear constantly. fbinerén addition to the diction-
ary, many systems contain special components fenawn word identification. In
particular, statistical corpus-based methods haem bvidely applied because they use
a probabilistic scoring mechanism rather than Hatiary to segment the text [6].

We use a corpus-based method for automatid wegmentation [8]. The method
formulates a generalized approach to word segnientasing maximum-length de-
scending-frequency and entropy rate. The temmaximurdength descending
frequencymeans that it chooses maximum lengtirams (sequences pbfcharacters)
that have a minimum threshold frequency; then dak&for furthern-grams in de-
scending order, based on length. If tasgrams have the same length, it chooses the
n-gram with highest frequency first and then tihgram with next-highest frequency if
any of its characters are not a part of the presysame. Following this procedure, after
some iterations, it can be in a state with someaneimg characters (they call riési-
dug that is not matched with any type in the corpissolve this, the method merges
residuewith its adjacent words to form a string of chaeas and then apply a greedy
matching from the beginning and the end of theagtrihis is an algorithm dbrward-
backward matchingype [4], in which the results are composed ardsdgmentation
optimized based on the two results. The method s®the result with lower number
of words. If the two results return same numbewofds then it uses the entropy rate
to decide which set of words to accept. The irgnitbehind using entropy rate is that
if it has a set of words with larger average fragiye(normalized frequency in the
entropy rate) than the other set of words, it isiols that the first set of words is
more meaningful than the second set of words [B¢ method obtained 89.92% word
precision rate, 94.69% word recall rate, and 92.24%@ F-measure when they tested
the segmentation method on the Brown corpus. Thelteeof other word segmenta-
tion methods ([5], [17], [10]), which are also &x$ton the Brown corpus, show that
our method outperforms these methods in termsegfigion, recall, and F-measure.

4. Proposed Schema Matching Method

We use thdongest common subsequerL€S) [1] measure with some normalization
and small modifications for our string similarityeasure. We use three different
modified versions of LCS and then take a weighteth ©f theseé Kondrak [11]

1 We use modified versions because in our experimeatsbtained better results (precision and recall f
schema matching on a sample of data) than wheug tistnoriginal LCS, or other similarity measures

showed that edit distance and the length of thgdehcommon subsequence are spe-
cial cases oh-gram distance and similarity, respectively. Meldnjg4] normalized
LCS by dividing the length of the longest commobsequence by the length of the
longer string and called Ibngest common subsequence rafi€SR). But LCSR
does not take into account of the length of thellematring which sometimes has a
significant impact on the similarity score.

We normalize thiongest common subsequert€S) so that it takes into account
of the length of both the smaller and the longengtand call ithormalized longest
common subsequen@€LCS) which is,

_ {length (LCS (r;,s;)} ?

length (r;) x length (s;)

While in classical LCS, the common subsequence neetb be consecutive, in data-
base schema matching, consecutive common subsexignmportant for a high
degree of matching. We usgaximal consecutive longest common subsequstace
ing at character IMCLCS1 (Figure 1) andmaximal consecutive longest common
subsequencstarting at any charactar MCLCSN(Figure 2). In Figure 1, we present
an algorithm that takes two strings as input arndrns the smaller string or maximal
consecutive portions of the smaller string thatsemutively match with the longer
string, where matching must be from first chara¢odaracter 1) for both strings. In
Figure 2, we present another algorithm that takesdtrings as input and returns the
smaller string or maximal consecutive portionshef smaller string that consecutively
match with the longer string, where matching maytsrom any character (character
n) for both of the strings. We also normaliZkCLCS1landMCLCSNand call itnor-
malizedMCLCS1(v,) andnormalizedMCLCSN(vs), respectively.

We take the weighted sum of these individuyal,, andv; to determine string simi-
larity score, wheravy, w,, ws are weights andy,+w,+ws=1. Therefore, the similarity
of the two strings is: a = wyv; + WoV, + Wavs We set equal weights for our experi-
ments. Theoreticallyyvs; > v,. We then use the word similarity measure, norreailiz
and combine it with the string similarity to obtdire final similarity score.

We now describe our schema matching methockiaild Consider two given data-
base schemeéBR={R, R, ..., R, }andS={§, S, ..., S }; for each element in one
database schema, we try to identify a matching ehtrm the other schema, if any,
using element names. We assume that scliehzss elements an® is the element’s
name, where = 1 ... ¢. Similarly, schemss hasy elements and is the element’s
name wherg = 1 ... y. Note that some elementsihcan match multiple elements in
S and vice versa. So, our task is to identify whetn element nan@ OR matches

v, = NLCS (r;,s))

an element nanﬁj 0S. BothR and§ are strings of characters. Our method provides

a similarity score between 0 and 1, inclusivelythié similarity score is above a cer-
tain threshold then the elements are consideratth candidatedf we set the thresh-
old to 1 and the similarity score reaches this@abnly then are we certain about their
matching. For all other cases, we can only detegmiore or less probablaatch
candidatesThe method comprises the following six steps:

Step 1: We use all special characters, punctuationscapdal letters, if any, as initial
word boundary and eliminate all these special atiara and punctuations. After this

initial word segmentation, we pass the segmentedisvto the word segmentation
method and lemmatize to generate tokens. We asRumry, r; ..., It hasmtokens
and§ ={s;, s, ..., Sy} hasn tokens anah > m. Otherwise, we switcR; andS.

Step 2: We count the number ofs (say,0) for whichr; =g, for allr O R and for all

s Si . l.e., there aré tokens inR that exactly match witlg, whered < m. We re-

move allo tokens from both ok andS. So,R ={ry, 1> ...,rmgtand§={s;, s, ..., S
st If mo =0, we go to step 6.

Step 3: We construct anf-0)x(n-6) matching matrixsay,M; = (ij)m-s)xrn-5)) Using the
following process: we assume any tokepD R has z characters, i.e.r; =

{ciC,...cyand any tokensj g Sj hasy characters, i.eg = {CiC; ... ¢, Jwherez <#. In

other wordsy, is the length of the longer token ani$ the length of the smaller token.
We calculate the followingsv; < NLCHr;, §) V, < NMCLCS1r;, §)

V3 — NMCLCSNrj, §) ajj < WyVy + WoVp + WaVg
i.e., a; is a weighted sum o, V,, andv; (equal weights). We put; in rowi and col-
umnj position of a matrix Mfor alli = 1.m-¢ andj = 1.n-4.
Step 4: We construct an-0)x(n-0) similarity matrix (say,M, = (5j)m-s)xn-5)) Using the
following process: We puf; (the SOC-PMI similarity score) in rowand columnyj
position of a matrix Mforalli=1 ..mdandj=1 ...n-d.
Step 5: We construct anothemd)x(n-o) joint matrix (say,M = (j)m-a)xn-) UsingM
— yM; + oM, (i.e.,y; = yaj + ¢f;) wherey is thematching matrixveight factor g is
the similarity matrixweight factor, angs + ¢ = 1. Setting any one of these factors to 0
means that we do not include that matrix. Settioth lof the factors to 0.5 means we
consider them equally important.

After constructing thgoint matrix, M, we find out the maximum-valued matrix-
element,;. We add this matrix element to a list (sayandp < p U y;) if y; > ¢ (we
will discuss about the similarity thresholgdin next section). We remove all the matrix
elements of th row andj’th column fromM. We repeat the finding of the maximum-
valued matrix-element;; adding it top and removing all the matrix elements of the
corresponding row and column until eithg ¢, or m-d-|p| = 0, or both.

Step 6: We sum up all the elements gnand add to it to get a total score. We multiply this
total score by the reciprocal harmonic meanmmo@nd n to obtain a balance similarity score
between 0 and 1, inclusively.

10|
(6+2, p)x(m+n)

2mr

Similarity Score(R;,S;) =

Choosing the values of {and ¢

{ is the minimum number of characters for which watmue the matching process.
Theoretically{ could be any value between 1 andnclusively. We sef to 1. If we
set{to 1 then we can get expected matching resulrfmll-length tokens. E.g., if we
have three sample tokens nanmih, maxandsimilarity and we sef to 1. The pair
min maxreturnsm and the paimin similarity returns @ when we udCLCS1 When
we useMCLCSN the first pair returnsn and the second pair returms. But if we set

{ to 2, the paimin maxreturns @ for bottMCLCS1andMCLCSN If we set{ to 3,
the pairmin similarityreturns & for bottMCLCS1andMCLCSN

Theoretically,¢ could be any value between 0 and 1, but we ussattyclose to O
(we setg = 0.01 for all of our experiments). All matrix elents having values lower
thang may have negative impacts to the matching, thissaéetter to omit them.

Algorithm MCLCS1
Input: r;, 5 // r ands are two input strings wheng| =7, |g| =# andz < » as mentioned.
1. |, n<1sl
2. while|rj|>¢ /I we usually sefto 1. Details are discussed in next section.
3. ifr oS e, S r =r
|] j i i

4. returnr;

5. dseri<—r;\c, [/ i.e., remove the right-most character firpm
6. end if

7. end while

Output: r; //r;is the Maximal Consecutive LCS starting at charatte
Figure 1. Maximal Consecutive LCS starting at character 1.

Algorithm MCLCSN
Input:ri,5 //r; ands are two input strings wherg| =7, || =» andz < 7.
1. whileJr;|>¢ // we usually sefto 1.

2. determine alt-grams fronr; wheren=1 .. ;| andl[; is the set of-grams

3. it XO's; where &| XOT,, x=Max (T,)}

Il is the number ofi-grams and Max[;) returns the maximum lengthgram fromT,
4. return x

5. dsel; « I \x //removex from setI;
6. end if
7.end while
Output: x //xis the Maximal Consecutive LCS starting at anyrabern
Figure2. Maximal consecutive L CS starting at any character n

5. Example

We provide an example that describes the proposthan and determine the similar-
ity score. We use two simple element names fromtaltise schema, for brevity.

LetR = “maxprice”,§ = “High_Price”.

Step 1. After eliminating all special characters and guations, if any, and then
using word segmentation method and lemmatizing gei® = {max price} and § =
{high, price} wherem = 2 andn = 2.

Step 2: Because only one token (i.price) in R exactly matches wit§ we set to
1. We removeprice from bothR andS. So,R = {max and § = {high}. As m—J #

0, we proceed to next step.

Step 3: We construct a 1xInatching matrix M;. Consider themax high pair

wheren = 4 is the length of the longer tokemgh), = 3 is the length of the smaller

token max and 0 is the maximal length of the consecutivetipos of the smaller
token that consecutively match with the longer tok&o,v; = v,=v3 = 0 anda;;,= 0.
high
Mi= max [0
Step 4: We construct a 1x&imilarity matrix M,. Here,4 = 20 as we used the
SOCPMImethod.
high
M, = max [0.326]

Step 5: We construct a 1xjbint matrix, M and assign equal weight factor by set-

ting bothy andgy to 0.5.
high
M= max I: 0.163

We find the only maximum-valued-matrix-elemeRt= 0.163 and add it tp asy;
> ¢ (we useg = 0.01 in this example). Sp, = {0.163}. The newM is empty after
removingi’th (i = 1) row and'th (j = 1) column. We proceed to next stepras-|p| =
0. (Herem=2,0=1andg|=1.)

ol
6+ % p)x(m+

Step 6: Similari S) = i= =(1+0.163) x4/8 =0.582
ep 6: SimilarityScor¢ R) 2mn ()

6. Evaluation and Results

We now present experimental results that demomestinat performance of our method.
All the schemas we used in our experiments are fviadhavan et al. [13], where they
used web form schemas from two different domaango andreal estate Web form
schema matching is the problem of identifying cepending input fields in the web
forms. Each web form schema is a set of elementsfar each input. The properties
of each input include: the hidden input name omelet name that is passed to the
server when the form is processed, the descripgixtnand sample values in the option
box. We tested on the same data as Madhavan Et34l.all of it, while they used
75% of it, randomly selected. We could not repradte exact 75% that they used.

In each domain, they manually created mappings d@twandomly chosen schema
pairs. The matches weomemany i.e., an element can match any number of elements
in the other schema. These manually created mappirgused asgold standardo
compare the mapping performance of the differenthods, including our method.
Table 1 provides detailed information about eactheftwo domains and our results.
For each domain, we compared each predicted mapgirgagainst the manually
created mapping pair. For our experiment, we osiduelement names for matching.
We used eleven different similarity thresholds raggrom 0 to 1 with interval 0.1.
For example, using thauto domain when we used similarity threshold 0.1, our
method matched 961 elements, out of which 628 alesneere among the 769 manu-
ally matched elements. The last three columns etdble show the precision, recall,
and F-measure for the two domains, for the vartbtesshold values. A low similarity
threshold £ 0.2) gives the best F-measure score.

The reason for a lower similarity thresholdototain a better F-measure score is
that we always take into accounts both the stringlaity and the semantic word
similarity measures. If two strings have perfeehaetic word similarity score (i.e:

1) and no string similarity score (i=.0), which is practically a perfect matching (e.g.,
car and vehicle), the total similarity score wil lower. Again, we multiply this total
score by the reciprocal harmonic mean of m and ohi@in a balanced similarity
score; this also lowers the final similarity valWghen we use string similarity thresh-
old score of 1 (i.e., matching the element namegthx therefore no semantic simi-
larity matching is included), we obtain recall veguof 0.133 and 0.107 for the auto
and real estate domains, respectively. We can dengiese as baselines.

Table 1. Characteristics of the evaluation domains and our results.

® ST = .2 S)
g = >0l @5 |23 | g 5
§ |58 |88 | g8 532|255, |38 |8 |3
S | S8 |52 |582 |Eog| °E5|B2 |8 e g
2 c o a [e)) = e = [n IS
e 5| % |cfs |Hhe=|28°2| s8 | o L
€ | 2 Ja g 3 3 Z g
T < ©
0 | 33114 76S] 0.0 1.0(0.0%
0.1 961| 628] 0.6¢ 0.82 0.7%
0.2 76¢| 596| 0.7¢ 0.7¢ 0.7¢
o E 701| 564] o0.8C 0.7% 0.77
E 0.4 68¢ | 55| 0.81 0.7% 0.77
< 30| 95 769 [0E| 642] 53C| 0.8: 0.6¢ 0.7t
0.€ 501| 424 0.8F 0.5¢ 0.67
0.7 438 | 382] 087 0.5(0.62
0.8 20C | 192] 0.9¢ 0.2¢ 0.4C
0.¢ 17€ | 17€] 1.0C 0.27 0.37
1.C 102 | 103 1.0C 0.1% 0.2
0 4262] 28C| 0.0 1.0(0.1z
0.1 364 | 232] 0.6 0.87 0.72
I 0.2 31C| 211 O0.6¢ 0.7¢ 0.72
g 0.3 248 | 17€] o1 0.67 0.67
e 0.4 228 | 173| o0.7¢ 0.62 0.6¢
B 20| 57 280 0.5 203 | 164 0.81 0.5¢ 0.6¢
@ 0.€ 158 | 13C| 0.8/ 0.4€ 0.6(
0.7 124 | 105| 0.8 0.3¢ 0.52
0.8 59 55 0.97 0.2C 0.32
0.¢ 48 48 1.0(0.17 0.2¢
1.C 30 30 1.0 0.11 0.1¢

Madhavan et al. [13] used three methods: direghtgnd augment. They selected
a random 25% of the manually created mappings ¢h damain as training data and
tested on the remaining 75% of the mappings. Inatlgment method, they used dif-
ferent base learners such as name learner, texielealata instance learner, context
learner and then used a meta-learner to combinprédictions of the different base
learners into a single similarity score. To trailearner, the augment method requires
learner specific positive and negative examplestlierelement on which it is being

trained. The direct method uses the same basesksatyut the training data for these
learners is extracted only from the schemas beiatgmed. Pivot is the method that
computes cosine distance of the interpretationoveaif the two elements directly.

For the auto domain, the direct, pivot and augmeethods achieved precision of
around 0.76, 0.74 and 0.92, recall of around 07243, 0.72 and F-measure of around
0.73, 0.74 and 0.78 respectively. We achieved at@un8 as precision, recall and F-
measure with 0.2 as similarity threshold. For tbal estate domain, the direct, pivot
and augment methods achieved precision of 0.78, 8nd 0.76, recall 0.69, 0.74,
0.81 and F-measure of 0.71, 0.71 and 0.78, respdctiWe achieved precision of
0.68, recall of 0.75, and F-measure of 0.72, withgame threshold.

Generally, it seems that precision matters ntioae recall in the schema matching
problem. But pragmatically it is not possible totetenine fully-automatically all
matches between two schemas, and the implementaitie matching therefore only
determine match candidates that are then verified buman expert. If a human ex-
pert is involved in the verification procedure thegall is as important as precision.

Note that our algorithms assumed that mostete names are tokenizable, but not
all of them. There are indeed types of data whieveas nearly impossible to obtain
matches using element name matching. For such ,casegot very low similarity
values. However, even by considering cases likedhe, we obtained good results on
our experimental data sets, which is from real-diaveb data sources. This means
that this type of data is not very frequent in 1eatld web data sources.

6. Conclusions

Our schema matching method uses a single propgegtydlement name) for matching
and achieves a comparable F-measure score withatetgpthe methods that use mul-
tiple properties (e.g., element name, text dedonptdata instance, context descrip-
tion). If we use a single property instead of nplétiproperties, it can speed up the
matching process which is important when schemahiray is used in Peer-to-Peer
(P2P) data management or online query processiRg@environments. Our method
is scalable, in the sense that, if needed, we calglol add other properties (i.e., text
description and context description) to obtain #idseschema matching result. To deal
with non-tokenizable cases, we also plan to combirename-based schema matcher
with other existing matchers, in order to addrgsscsic situations that our method
does not cover. When the element names are notswwréfagments of words, then
we need to use an instance matcher that looke ayple of the values in two columns,
or at the values of the instances. If the instaacesvords, we can re-use our semantic
and string similarity matching at the level of timstances. Sometimes two columns
might match if similar words are used to denotéedént fields in two different data-
bases. In such cases, the precision of the matdainge increased by matching the
text descriptions of the columns, when availablevakd-level similarity measure can
be used to determine the similarity level of twsagtion texts.

References

1. Allison, L., and Dix, T. I. A Bit-String LongesEtommon-Subsequence Algorithm. In Infor-
mation Processing Letters. 23, (1986), 305-310.

2. Batini, C., Lenzerini, M., and Navathe, S. Bcédmparative analysis of methodologies for
database schema integration. ACM Computing Sunie;s4, (1986), 323-364.

3. Bright, M. W., Hurson, A. R., and Pakzad, S.Adtomated resolution of semantic hetero-
geneity in multi databases. In Trans on Databasee8s (TODS), 19, 2, (1994), 212-253.

4. Dale, R., Moisl, H., and Somers, H. HandbookNattural Language Processing. Marcel
Dekker, Inc. New York, (2000), 22-26.

5. de Marcken, C. The Unsupervised Acquisition oEexicon from Continuous Speech.
Technical Report Al Memo No. 1558, M.I.T., Cambdd/A, (1995).

6. Gao, J., Li, M., Wu, A. and Huang, C.-N. Chinesard segmentation and named entity
recognition: a pragmatic approach. Computationaguistics, 31, 4, (2005).

7. Islam, A., and Inkpen, D. Second Order Co-o@nge PMI for Determining the Semantic
Similarity of Words. In Proceedings of the Inteioatl Conference on Language Resources
and Evaluation, Genoa, Italy, (2006).

8. Islam, A., Inkpen, D., and Kiringa, |I. A Genézad Approach to Word Segmentation using
Maximum Length Descending Frequency and Entropg RatProcs. of the 8th Intl. Conf.
on Intelligent Text Processing and Comp. Linguss{icICLing 2007), (2007), 175-185.

9. Kang, J., and Naughton, J. F. On Schema MatahitiyOpaque Column Names and Data
Values. In Proceedings of SIGMOD 2003, San Diegh, (2003).

10. Kit, C., and Wilks, Y. Unsupervised LearningWwbrd Boundary with Description Length
Gain. In Proceedings CoNLL99 ACL Workshop. Berggr999).

11. Kondrak, G. N-gram similarity and distance.Rrocs of the 12h Intel. Conf. on String
Processing and Information Retrieval, Buenos Aitegentina, (2005), 115-126.

12. Landauer, T. K., Foltz, P. W., and Laham, Ordduction to Latent Semantic Analysis.
Discourse Processes, 25, 2-3, (1998), 259-284.

13. Madhavan, J., Bernstein, P., Doan, A., and\Wala. Corpus-based Schema Matching. In
Proceedings of the International Conference on Bagineering (ICDE-05), (2005).

14. Melamed, |. D. Bitext maps and alignment vi&tgra recognition. Computational Linguis-
tics, 25, 1, (1999), 107-130.

15. Miller, G. A., and Charles, W. G. Contextualretates of semantic similarity. Language
and Cognitive Processes, 6, 1, (1991), 1-28.

16. Milo, T., and Zohar, S. Using Schema Matchimgimplify Heterogeneous Data Transla-
tion. In Procs. of the Intl. Conf. on Very LargetB@ases (VLDB), (1998), 122-133.

17. Peng, F., and Schuurmans, D. A Hierarchical Aiproach to Word Segmentation, In
Proceedings of the Sixth Natural Language ProcgsBawific Rim Symposium (NLPRS
2001), Tokyo, Japan, (2001), 475-480.

18. Rahm, E., and Bernstein, P.A. A survey of apphes to automatic schema matching. The
International Journal on Very Large Data Bases (8),010, 4, (2001), 334-350.

19. Rodriguez, M.A., Egenhofer, M.J. Determiningraetic Similarity among Entity Classes
from Different Ontologies. IEEE Trans. Knowledgaldbata Eng., 15, 2, (2003), 442-456.

20. Rubenstein, H., and Goodenough, J. B. Contegtuselates of synonymy. Communica-
tions of the ACM, 8, 10, (1965), 627-633.

21. Seligman, L., Rosenthal, A., Lehner, P., andtlgsm\. Data integration: Where does the
time go? Bulletin of the Technical Committee on@B&ngineering, 25, 3, (2002).

22. Turney, P. Mining the Web for Synonyms: PMIs&sus LSA on TOEFL. In Proceedings
of Twelfth European Conf. Machine Learning, (2001).

23. Weeds, J., Weir, D., and McCarthy, D. Charéitegy Measures of Lexical Distributional
Similarity. Procs. of the 20th Intl. Conf. on Contational Linguistics, (2004), 1015-1021.

