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Abstract. We present an automatic method to disambiguate the sensesof the near-
synonyms in the entries of a dictionary of synonyms. We combine different indi-
cators that take advantage of the structure on the entries and of lexical knowledge
in WordNet. We also present the results of human judges doing the disambigua-
tion for 50 randomly selected entries. This small amount of annotated data is used
to tune and evaluate our system.

1 Near-Synonyms

Near-synonyms are words with close senses. They are described in dictionaries such as
Webster’s New Dictionary of Synonyms (Gove 1984) and Choose the Right Word (Haya-
kawa 1994) (hereafter CTRW). An entry in these dictionaries presents a cluster of near-
synonyms, explains the core meaning that they share, and makes explicit the differences
between them. The differences include stylistic, attitudinal, and denotational nuances
(see Edmonds 2000, Hirst 1995 for more details). An example of a fragment of an entry
in CTRW1 is presented in Figure 1. CTRW contains 914 such entries.

We want to disambiguate the senses of the near-synonyms in each entry, as part of a
bigger project which aims to automatically acquire knowledge of near-synonym differ-
ences from CTRW and other sources. A lexical knowledge-base of near-synonym dif-
ferences is useful in an MT system to preserve not only the meaning of the sentences but
also the nuances of meaning that words may carry and to avoid expressing unwanted nu-
ances. Similarly, the lexical choice process in an NLG system can greatly benefit such
information (Edmonds 2002). The first stage of the lexical acquisition process is pre-
sented by Inkpen and Hirst (2001).

In this paper, we present an algorithm for automatic sense disambiguation that takes
advantage of the fact that the near-synonyms can help disambiguate each other, and the
text of the entry is a rich context for disambiguation. We also present the agreement
among judges in the task of annotating a small amount of data, which we use to both
tune and evaluate our system.

2 Sense Disambiguation

Sense disambiguation means to select one or more senses in which a word is being used
in a particular context. The task of disambiguating the meaning of near-synonyms is eas-
ier than the general task of word sense disambiguation (WSD). But it is not a simple task.

1 We are grateful to HarperCollins Publishers, Inc. for permission to use CTRW in our project.



Cluster: acumen, acuity, insight, perception
These nouns all refer to a highly developed mental ability to see or understand what is not
obvious. Acumen has to do with keenness of intellect and implies an uncommon quickness and
discrimination of mind. It requires acumen to solve an intricate problem in human relationships,
or to emerge unscathed from a venture into penny stocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acuity means sharpness or keenness, and is applied exclusively to perception: visual acuity;
The intelligence test was used as a basis for judging the applicant’s mental acuity. See KEEN,
SENSATION, VISION, WISDOM. Antonyms: bluntness, dullness, obtuseness, stupidity.

Fig. 1. Part of the text of an entry in Choose the Right Word by S.I. Hayakawa. Copyright c
�

1987.
Reprinted by arrangement with HarperCollins Publishers, Inc.

As we show in section 3, disambiguating the meaning of the near-synonyms is not easy
even for humans.

For each sense we need to decide whether it is relevant for the entry or not. For exam-
ple, in Figure 1, acumen has two WordNet senses: acumen#n#1 glossed as “a tapering
point”, and acumen#n#2 glossed as “shrewdness shown by keen insight”. The deci-
sion we want to make is that the second one is relevant for the entry, and the first one is
not. More then one sense of a near-synonym can be relevant for an entry, so we view the
problem as one of binary decisions: for each sense, decide whether it is relevant for the
context or not. To disambiguate each sense, we compute the indicators described below.
Then we combine them to decide if the sense is relevant.

In our task, the context is richer than in the general case of word sense disambigua-
tion. We can use the full text of each entry (including the cross-references). For each
entry in CTRW, we consider all senses of each near-synonym. We chose to use the Word-
Net1.7 sense inventory in order to integrate our word sense disambiguation program
withother components in our project that use WordNet. The average polysemy for CTRW
is 3.18 (for 5,419 near-synonyms there are 17,267 WordNet senses).

2.1 Intersection of text and gloss

Our main indicator of sense relevance is the size of the intersection of the text of the entry
with the WordNet gloss of the sense, both regarded as bags of words. This is a Lesk-style
approach (Lesk 1986). When we intersect the text with the gloss we ignore stopwords
and the word to be disambiguated. (We experimented with stemming the words, but it
did not improve the results.) The other near-synonyms occur in the text of the entry; if
they happen to occur in the gloss, this is a good indication that the sense is relevant.

Sometimes the intersection contains only very common words that do not reflect a
real overlapping of meaning. In order to avoid such cases, we weight each word in the in-
tersection by its tf � idf score. The weight for the word i in the entry j is tf � idfi � j � ni � j log ni

N ,
where ni � j is the number of occurrences of the the word i in the entry j, ni is the num-
ber of entries that contain the word i, and N is the total number of entries. While we
could have imposed a general threshold for the intersection (if the score is lower than
the threshold, the sense is not relevant), we preferred to train a decision tree to choose a
series of thresholds to better fit the data (see section 2.6).



We also intersected the text of the entry with the glosses of related words, such as
hyponyms, hypernyms, meronyms, holonyms, pertainyms for adjectives, and cause and
entailment for verbs. The hyponym/hypernym glosses can be expected to work well be-
cause some of the near-synonyms in CTRW are in a hypernymy/hyponymyrelation with
each other.

2.2 Other words in synsets being near-synonyms

Our next indicator is the other words in each synset. They reliably indicate a sense be-
ing relevant for the entry because the near-synonyms in the entry help disambiguate
each other. For example, if the cluster is: afraid, aghast, alarmed, anxious, apprehen-
sive, fearful, frightened, scared, when examining the senses of anxious, the sense cor-
responding to the synset anxious#a#1, apprehensive#a#2 is relevant because
the other word in the synset is apprehensive, which is one of the near-synonyms.

We also used the words in the synsets of related words, where by related words we
mean words connected by a direct WordNet relation. If any of the words in the synsets
of the words related to the sense under consideration happens to be a near-synonym in
the same cluster, the sense can be judged as relevant.

2.3 Antonyms

The set of antonyms in the entry (the words following the keyword Antonyms in the
text of the entry) is intersected with the set of WordNet antonyms of the current near-
synonym. Figure 1 shows an example of antonyms in a dictionary entry. If two words
share an antonym, they are likely to be synonyms. By extension, if the sense we exam-
ine has antonyms that intersect the antonyms of the cluster of near-synonyms, then the
sense is relevant for the cluster. For this reason we can compare our results with the ones
from Senseval2.

2.4 Systematic polysemy

A word is systematically polysemous if its senses can be connected by a relation which is
also used to connect all the senses of other systematically polysemous words. For exam-
ple windowand door have both sense that denote a moving barrier that closes an opening,
and senses that denote the space in the wall.

We tested the hypothesis that if a word is polysemous in a systematic way, all its
senses are included in a dictionary entry (because these senses act more like facets of the
same sense). We did this experiment for nouns only, using CoreLex (Buitelaar 1998), a
database of systematic polysemous classes covering around 40,000 nouns from Word-
Net 1.5. The 126 semantic types are derived by a careful analysis of sense distributions.
We experimented with both the original CoreLex, and with a new version of CoreLex
we built for WordNet1.7 using the same set of semantic types. This indicator selects as
relevant all the senses of a noun that is in CoreLex (and therefore is systematically poly-
semous).
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Fig. 2. Context vectors in a 2D space for the words keen and insight, for the WordNet gloss os the
second sense of accumen,and for the CTRW entry from Figure 1.

2.5 Context vectors

Sometimes, when the intersection of text and gloss is empty, it still could be the case that
they are semantically close. For example, for the sense reserved#a#2with the Word-
Net gloss “marked by self-restraint and reticence”, the intersection with the text of the
CTRW entry aloof, detached, reserved is empty. The text of the entry happens to not use
any of the words in the WordNet gloss, but the entry contains semantically close words
such as reluctant and distant. By considering second-order co-occurrences (words that
occur with the words of the text or of the gloss) the chance of detecting such similarity
increases (Schütze 1998). One problem with this approach is that false positives can be
also introduced.

We collected frequencies from the 100-million-wordBritish National Corpus (BNC)
(http://www.hcu.ox.ac.uk/BNC/). We chose the 2,000 most frequent words as dimen-
sions, and the 20,000 most frequent words as features. By counting how many times
each feature word co-occurs with a dimension word in BNC, we can represent them in
the vector space of the dimensions. Then, the vectors of all feature words in an entry (ex-
cept the near-synonym to be disambiguated) are summed to compute the context vector
for the entry. The vectors of all words in a gloss are summed to get the context vector
for the gloss. The cosine between the two vectors measures how close the two vectors
are. The context vector for the entry will be the sum of many vectors, and it may be a
longer vector than the context vector for the gloss, but this does not matter because we
measure only the angle between the two vectors. Figure 2 presents a simplified example
of context vectors for the second sense of acumen. For simplicity, only two dimensions
are represented: plant and mental. Also, from the four content words in the gloss, three
happen to be feature words, and only keen and insight are presented in the figure. The
context vector of the gloss is sum of these two (or more) vectors. In a similar manner the
context vector for the entry is obtained, and the cosine of the angle α between the two
context vectors is used as an indicator for the relevance of the sense. Here, the cosine is
0.909, while the cosine between the context vector for the entry and the context vector
for the first sense of acumen is only 0.839.



intersection_text_gloss > 4.41774 : Y (406.0/59.4)
intersection_text_gloss <= 4.41774 :
| intersection_text_gloss_related_words > 23.7239 : Y (28.0/1.4)
| intersection_text_gloss_related_words <= 23.7239 :
| | words_in_related_synsets = 0:
| | | words_in_synset = 0:
| | | | intersection_text_gloss_related_words <= 4.61842 : N (367.0/62.5)
| | | | intersection_text_gloss_related_words > 4.61842 :
| | | | | intersection_text_gloss_related_words <= 4.94367 : Y (4.0/1.2)
| | | | | intersection_text_gloss_related_words > 4.94367 : N (42.0/14.6)
| | | words_in_synset = 1:
| | | | intersection_text_gloss <= 1.19887 : N (16.0/8.9)
| | | | intersection_text_gloss > 1.19887 : Y (3.0/1.1)
| | words_in_related_synsets = 1:
| | | intersection_text_gloss <= 0 : Y (24.0/4.9)
| | | intersection_text_gloss > 0 :
| | | | corelex = 0:
| | | | | cosine <= 0.856407 : Y (3.0/2.1)
| | | | | cosine > 0.856407 : N (5.0/1.2)
| | | | corelex = 1:
| | | | | intersection_text_gloss <= 3.44834 : Y (3.0/1.1)
| | | | | intersection_text_gloss > 3.44834 : N (3.0/2.1)

Fig. 3. Simplified decision tree for the combination of indicators.

2.6 Using a decision tree to combine indicators

We use decision tree learning to determine the best combination of indicators. We use
C4.5 (http://www.cse.unsw.edu.au/ � quinlan/), a tree inductionprogram, on our 904 data
points. The attributes we employ for each data point are the values of the indicators: in-
tersection text and gloss (numerical value), intersection of text and gloss of related words
(numerical value), words in synset (0 or 1), words in synsets of related words (0 or 1),
antonyms (0 or 1), membership in CoreLex (0 or 1), and the cosine between context vec-
tors (numerical value). The classification is binary: Y/N, meaning relevant or not rele-
vant for the entry. We obtain the class for each of our training examples from a standard
solution we built (see section 3 for details about the standard solution). See Figure 3 for
a simplified decision tree that combines indicators.

We experimented with manual combinations, but we decided it is better to automat-
ically derive a decision tree, because this learning mechanism has the ability to decide
which indicators have more influence on the classification, and it can completely ignore
indicators with low influence. We use the standard solution built in section 3 as training
and test data in the decision-tree learning process. We could have split this data into a
training set and a test set, but we chose to do 10-fold cross-validation, as a better method
to estimate the error rate. Another advantage of using the decision tree is that it deter-
mines the thresholds for weighted intersection and for cosine.

3 Building a standard solution

The goal of using human judges in our work was twofold: to get a measure of how dif-
ficult the task is for humans, and to build a standard solution for use in evaluation. The
standard solution also serves as training and test data for the decision tree used in section
2.6.

We had k � 6 judges (native or near-native speakers of English) doing the same job
as the WSD program. We randomly selected 50 of the 914 clusters, containing 282 near-



synonyms with 904 senses in total. The judges were presented with the text of the entry
for each cluster, including antonyms and cross-references. For each near-synonym, all
the WordNet senses (with their glosses and all the words in the synset) were listed, and
the judges had to decide whether the sense is relevant for the cluster or not. The judges
had no information about hypernyms, hyponyms, or antonyms.

There were 904 decisions the judges had to make. If we consider the decisions as
votes, for 584 decisions, the judges voted 6–0 (or 0–6), for 156 decisions 5–1, and for
108 decisions 4–2. There were 56 ties (3–3).

The percent agreement among our judges was 85%. To get a more accurate measure
the agreement among the k judges, we used the well-known kappa statistic (Siegel and
Castellan 1988), (Carletta 1996), which factors in the agreement by chance. The chance
agreement is 50 � 2%in our case. Therefore the kappa coefficient is κ � 0 � 699. The figures
of agreement between pairs of two judges vary from 90% (κ � 0 � 80) to 78 � 8% (κ �
0 � 57). If we leave out one of the judges, who expressed a particular bias, we get a higher
agreement of 86 � 8% (κ � 0 � 73).

We had the judges meet to discuss the ties. The discussion had a very small influ-
ence on the agreement figures (because the number of cases discussed was small), but
it helped clarify the sources of disagreement. Senses which are “instances” or “proper
names” (e.g. the sense “the United States” for the near-synonym union) were rejected by
some judges as too specific, even if they were mentioned in the text of the entry. There
was disagreement about intransitive senses of some transitive verbs (or the other way
around). Another problem was posed by mentions of extended senses (literal or figura-
tive senses) in the text. For example, the CTRW entry for bombastic, orotund, purple,
turgid mentions that “these adjectives are used to describe styles of speaking or writing”;
and later on: “turgid literally means swollen or distended”. The question the judges had
to ask themselves is whether this literal sense is included to the entry or not. In this par-
ticular case maybe the answer is negative. But it is not always clear whether the extended
sense is mentioned by the lexicographer who designed the entry because the extended
sense is very close and should be included in the meaning of the cluster, or whether it
is mentioned so that the reader will be able to distinguish it. Some judges decided to in-
clude more often than exclude, while the other judges excluded the senses when they
thought appropriate. If we omit one of the judges who expressed singular opinions dur-
ing the discussion, we get a higher agreement of 86 � 8% (κ � 0 � 73).

In the standard solution, we decided to correct a few of the 56 cases of ties, to correct
the apparent bias of some judges. We decided to include senses that are too specific or in-
stances, but to exclude verbs with wrong transitivity. We produced two solutions: a more
inclusive one (when a sense is mentioned in the entry, it was included) and a more exclu-
sive solution (when a sense is mentioned, it was included only if the judges included it).
The more inclusive solution was used in our experiments, but the results would change
very little with the more exclusive one, because they differ only in 16 points out of 904.

4 Results and Evaluation

Table 1 presents the results of using each indicator alone and in combinations with other
indicators. We compare the results of our method with a standard solution (section 3



Method Accuracy
Baseline (select all senses) 53.5%
Antonyms 47.0%
Cosine (decision tree) 52.7%
CoreLex 54.2%
Words in synsets of hypernyms and hyponyms 56.4%
Intersection text & gloss of hypernyms and hyponyms (tf � idf) 61.0%
Words in synsets of related words 61.3%
Words in synset 67.1%
Intersection text & gloss of related words (tf � idf) (decision tree) 70.6%
Intersection text & gloss (no tf � idf) 76.8%
Intersection text & gloss (tf � idf) (decision tree) 77.6%
Best combination (no decision tree) 79.3%
Best combination (decision tree) 82.5%
Best combination (decision tree – Resnik’s coefficient included) 83.0%

Table 1. Accuracy for different combinations of indicators

explains how the standard solution was produced). For the most of the indicators, we
use the standard solution to quantify their potential. We define accuracy for our task as
the number of senses correctly classified over the total number of senses.

For the indicators using tf � idf and for the cosine between context vectors we use a
decision tree to avoid manually choosing a threshold; therefore the figures in the table
are the results of the cross-validation. By manually combining indicators, the best accu-
racy we obtained was 79.3% for the attributes: intersection text and gloss (with a fixed
threshold), words in synsets, and antonyms.

We found the best combination of indicators by training a decision tree as described
in section 2.6. We achieve an accuracy of 83%, computed by 10-fold cross-validation.
The indicators that contribute the most to improving the accuracy are the ones in the
upper-part of the decision tree (Figure 3): the intersection of the text with the gloss, the
intersection of the text with the glosses of the related words, the words in the synset, and
the words in the synsets of the related words. The ones in the lower part (CoreLex and
the cosine between context vectors) have less influence on the results. Their contribution
is likely to be included in the contribution of the other indicators.

If the evaluation is done for each part-of-speech separately (see the first row in Table
2), it can be observed that the accuracy for nouns and verbs is higher than for adjectives.
In our data set of 50 randomly selected near-synonym clusters, there are 276 noun senses,
310 verb senses, and 318 adjective senses. There were no adverbs in the test set, because
there are only a few adverbs in CTRW.

Another indicator that we implemented after the previous experiments were done
is Resnik’s coefficient, which measures how strongly a word sense correlates with the
words in the same grouping (in the case when we have groups of similar nouns). The
algorithm was originally proposed by Resnik (1999) in a paper that presented a method
for disambiguating noun groupings, using the intuition that when two polysemous words
are similar, their most informative subsumer provides information about which sense of



Method All Nouns Verbs Adjectives
All indicators except Resnik’s coefficient 82.6% 81.8% 83.2% 78.3%
All indicators including Resnik’s coefficient 83.0% 84.9% 84.8% 78.3%
Only Resnik’s coefficient 71.9% 84.0% 77.7% –

Table 2. Accuracy per part-of-speech.

which word is the relevant one. The method exploits the WordNet noun hierarchy, and
uses Resnik’s similarity measure based on information content (Resnik 1999) (but see
(Budanitsky 2001) for a critique of the similarity measure). We also implemented the
same algorithm for verbs, using the WordNet verb hierarchy.

When we add Resnik’s coefficient as a feature in the decision tree, the total accuracy
(after cross-validation) increases slightly, to 83%. If Resnik’s coefficient is included, the
accuracy is improved for nouns and verbs (84.9% for nouns and 84.8% for verbs). The
accuracy for adjectives is the same, because Resnik’s coefficient is not defined for adjec-
tives. If the only feature in the decision tree is Resnik’s coefficient, the accuracy is high
for nouns, as expected, and very low for verbs and for all parts of speech considered
together.

In conclusion, the disambiguation method presented here does well for nouns and
verbs, but it needs improvement for adjectives.

5 Comparison with Related Work

Senseval (http://www.itri.brighton.ac.uk/events/senseval/)had the goal of evaluating word
sense disambiguation systems. We will refer here only to the experiments for the English
language. Senseval2 used WordNet1.7 senses; therefore we can compare the Senseval2
results with my results, while bearing in mind that the words and texts are different (be-
cause of the nature of our task). Senseval2 had two tasks: all content words and selected
words (the last one seems closer to our task). The precision and recall reported by the
participating systems were all below 70%, and fancy supervised or unsupervised algo-
rithms could beat a Lesk-baseline by only 2%. Our WSD program performs at least 13%
better, reflecting the fact that our task is relatively easier than the general WSD task. We
report accuracy figures, but this is equivalent to reporting precision and recall, since we
disambiguate all the near-synonyms (that is our algorithm handles all the instances). If
we apply the method of computing precision and recall used Senseval2 to our case, we
obtain the accuracy as we define it in section 4 (because in our task several senses of
the same word can be considered correct, conjunctively). Our value for inter-annotator
agreement (85%) is comparable to that of Senseval2 (85.5% for the English lexical sam-
ple task, according to the Senseval2 webpage).

Combining classifiers for WSD is not a new idea, but it is usually done manually, not
on the basis of a small amount of annotated data. Stevenson and Wilks (2001), among
others, combine classifiers (knowledge-sources) by using a weighted scheme.

An adapted Lesk-style algorithm for WSD that uses WordNet, but in a different man-
ner, is presented by Pedersen and Banerjee (2002). They intersected glosses of all words



in the context of a target word. The intersection is done pairwise, also considering in-
tersections between glosses of a word and words related to the second word (by hyper-
nymy, hyponymy, meronymy, etc.). They achieve an accuracy of 32%. Unlike Pedersen
and Banerjee, we focus only on the target word (we do not use glosses of words in con-
text), when we use the gloss of a near-synonym we include examples in the gloss, and
we achieve high accuracy.

Schütze (1998) uses context vectors to cluster together all the contexts in which a
word is used in the same sense. In this way it is possible to distinguish among word
senses without using a sense inventory from a lexical resource. We use the context vec-
tors as a measure of the semantic relatedness between the text of an entry and the gloss
of a synset.

6 Conclusion and Future Directions

We have presented a method to disambiguate senses of the near-synonyms in dictionary
entries. We also presented the inter-annotator agreement for the human task and ana-
lyzed the sources of disagreements. We built a standard solution and used it to tune and
evaluate our automatic program.

We plan to reuse our WSD program in other components of our system. For example,
nouns that describe situations have associated semantic roles; we can extract them by
finding verb senses with the same meaning as the nouns. Moreover, we can use a similar
WSD algorithm for disambiguating senses of peripheral concepts (nuances) expressed
by near-synonyms.
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