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Abstract— In this article, we present a novel statistical 

representation method for knowledge extraction from a corpus 
containing short texts. Then we introduce the contrast 
parameter which could be adjusted for targeting different 
conceptual levels in text mining and knowledge extraction. 

The method is based on second order co-occurrence vectors 
whose efficiency for representing meaning has been established 
in many applications, especially for representing word senses 
in different contexts and for disambiguation purposes. We 
evaluate our method on two tasks: classification of textual 
description of dreams, and classification of medical abstracts 
for systematic reviews. 
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I. INTRODUCTION AND BACKGROUND 

Machine knowledge extraction from text has been an 
attractive and applicable task since many years ago. We 
need a quantitative method to represent contexts in an 
expressive manner, in order to increase the performance of 
text mining and knowledge extraction. We use terms/words 
as the smallest meaningful unit of any context which plays a 
role in expressing meaning or intention through text. 
Therefore, capturing the right sense of any word in a context 
in the representation method is crucial. There are several 
hypotheses in the literature:  
- You shall know a word by the company it keeps [27]; 
- Meanings of words are (largely) determined by their 
distributional patterns (Distributional Hypothesis [24])  
- Words that occur in similar contexts will have similar 
meanings [17]; 

Most efforts on semantic extraction of words are focused 
on semantic similarity [25]: ‘Automatically acquiring a 
relative measure of how similar a word is to known words 
[…] is much easier than determining what the actual 
meaning is.’ The Distributional Hypothesis [9, 10] says that 
words which occur in similar contexts tend to be similar. 

In supervised text mining, the most common method for 
context representation is Bag-Of-Words (BOW). Texts are 
represented by the words they contain. If the absence or 
presence of a word is recorded, we call it a binary 
representation. If we use the frequency of the words, we call 
it a frequency representation. A normalized frequency 
representation is tf-idf [23]. 

In unsupervised concept learning and word sense 
disambiguation, in order to represent a given context, there 

are two approaches: first order co-occurrence vectors and 
second-order co-occurrence vectors.  

In the first order context representation [4], we build a 
vector for any context containing a certain target word with 
an ambiguous sense. Any corpus word (feature) is 
represented by a position in the vector space. In each vector, 
we can see, whether any word in the corpus directly co-
occurred with the target word (in that certain context) or not. 
Using the first order co-occurrence representation, by 
looking at the vectors, we can see which features directly 
contributed to the contexts in which the target word 
appeared. 

There are two disadvantages of this method: first, very 
similar contexts may be represented by different dimensions 
in the feature space. Second, in short instances we will have 
too many zero features for machine learning supervised 
(classification) or unsupervised (clustering) task. 

The second method for context representation, proposed 
by Schütze in 1998 [1], is called second order co-occurrence 
context representation. It is a more integrative method. 

In our proposed method, we create a word-word co-
occurrence matrix over the whole corpus (each row/column 
is a vector representation of the corresponding word) and 
then for representing any context we simply extract 
corresponding vectors for the words it contains. After 
averaging the vectors word by word, the average vector is 
called the second order co-occurrence vector of the context. 

In the second-order co-occurrence, two terms that do not 
co-occur, will have some similarity if they co-occur with a 
third term. This is similar to the relation of a friend of a 
friend in social networks [17]. Synonyms are a special 
example of this kind of relationship. Although synonyms do 
not tend to occur in the same context (i.e. a short sentence), 
but they may occur in similar contexts and with the same 
neighboring words. This method helps confronting the data 
sparsity problem. 

Although until now, the second order co-occurrence has 
been applied in variety of unsupervised purposes [4,5,6,7,8], 
for the first time we are going to apply a soft augmented 
version of it to a supervised text analysis task. We will 
specifically describe an implemented contrast parameter 
which can be helpful for representations in different tasks, 
with different targeted conceptual levels.  

Experiments show that the second order context 
representation works better on limited volume of input data 
or localized scope [11], and the reason could be the high 



sparsity of the first order representation which does not 
present enough discriminative information (due to many 
zero values for some dimensions in the vector space) for any 
recognition task. The second-order co-occurrence 
representation not only contains the main features 
(words/terms) of each context, but also contains many 
second order co-occurrence features. Therefore, the feature 
by feature co-occurrence matrix and consequently the 
context representation is less sparse than BOW and the first-
order representation 

 When data is limited and sparse, exact features (as in the 
BOW method) in training and testing data, rarely occur in 
the same role. On the other hand, the second order co-
occurrence captures and applies the indirect relations 
between features as well; therefore, it provides more 
information in order to increase the system’s discriminative 
power. 

Until now, this method has been applied mostly for 
unsupervised learning tasks like word sense disambiguation 
in a given context [12, 13, and 14] or short text/context 
clustering based on specified topics [15,16,]. 

II. METODOLOGY 

We explain our Second Order Soft Co-Occurrence 
(SOSCO) method as an augmented implementation of the 
described method [1, 4] which is designed for short text 
corpus representation, (including more than one context in 
each entry) particularly for supervised text classification.  

A. Preprocessing 

In preprocessing, first all the headers, internet addresses, 
email addresses and tags has been filtered out and also all 
the extra delimiters like spaces, tabs, newline characters, 
and some characters like: “\  : ( ) ` 1 2 3 4 5 6 7 8 9 0 \  = \ [ 
]  / < > { } | ~ @ # $ \ % ^ & * _ + ” have been removed 
from each text, whereas the expressive characters like: “ - . , 
; ‘ “ ” ’ ! ? ” were kept. Punctuation could be useful for 
determining the scope of speaker’s speech. This step 
prevents us from including too many unrealistic tokens as 
features in the text representations.  

B. Soft Co-Occurrence Matrix Creation 

After preprocessing, we start tokenizing the corpus, in 
order to build a soft co-occurrence matrix in which the 
closeness of co-occurring pairs is recorded. The closeness is 
determined by considering a variety of configurations of any 
pair of words in a sentence (our window size). The 
configurations of the word pairs inside the sentences are:  
1- Two adjacent words (bigrams regardless of their order) 
2- Two consecutive words with one word in between. 
3- Two consecutive words with more than one word in 
between. 
4- Two consecutive words with coma “,” interval in 
between. 
5- Two consecutive words with semicolon “;” in between. 

6- Two consecutive words with quotation “ ' ” or “ "  ” in 
between. 
7- Two consecutive words with “\r” or “\n” in between. 

Note that we never have pairs of words with any of [. ! ? ] 
in between, in a sentence. 

 
Figure 1.  Illustrates the configurations of word pairs which can be 

extracted from a sentence.  

Normally, co-occurrence is considered in a specific 
context or in a window of a limited size such as 3 to 7 words 
before or after a target word which indeed would restrict the 
total context size from 7 to 15 words.  

We select sentences as our window size. On the other 
side, in order to minimize the noise interference on the 
matrix, we simply decrease the effect of a co-occurrence by 
increasing the above listed configuration number. In other 
words, except for the first configuration, the rest have a 
fraction of co-occurrence impact on the matrix. 

If the number of tokens in a sentence is n, the number of 
pairs extracted from a sentence can be calculated as:  
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This shows that the computational complexity of 
building the soft co-occurrence matrix is of quadratic order 
of the typical sentence length which is less than 30 words 

)90030( 2  and linear in the number of sentences in a 

corpus. We empirically observed the linear complexity, and 
it took a fraction of a second to process each short text. 

Every individual condition listed above applies an 
assigned coefficient factor (weight) for accumulative 
closeness computation of any pair of words in the soft co-
occurrence matrix. The corresponding weights for the above 
listed configurations are dramatically decreasing from top to 
bottom; the weights are assigned by adaptive learning. 

There is an Exclusive Or relation between the 
configurations from bottom to top. This means that if 
condition #3 and #4 happen at the same time, we would 
only apply the smaller weight which corresponds to the 
larger one, which is #4. 

The values in the matrix are calculated based on Dice’s 
similarity measure for the closeness of a pair of words (X, 
Y) in a corpus, as follows:  
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configuration number i; 
xyidf  is the frequency of co-

occurrence of the pair (X,Y) in configuration i in the corpus; 
m is the number of distinct word pair configurations; xdf  is 

the frequency of occurrence of the word X in the corpus; 

xi
df is the frequency of occurrence of the word X in the 

configuration number i with any word in the corpus, and 

ydf is the frequency of occurrence of the word Y in the 

corpus and is calculated the same way as xdf . The values of 

XYC  in the matrix are not normalized at this stage; they will 

be normalized after building up the matrix.  
Each row of the matrix is actually a descriptive vector 

that represents the closeness of the features that co-occurred 
with the particular word indicated by the row name.  

C. General and Domain Specific Stop Words Removal 

It is obvious that if we removed the stop words from the 
text prior to determine the configuration of each pair in it, 
we would have many changes among configuration numbers 
(one to three) and consecutively the corresponding effect to 
the co-occurrence matrix. In other words, with removing 
some stopwords as the first step some words which  are 
actually located with one or more than one word in between 
could have been assigned a configuration that is adjacent or 
closer than reality, and in this way the algorithm will over 
estimate the degree of co-occurrence. In the implemented 
system, we just skip calculation when one of the pair 
members (or both) is in stoplist. We remove from the matrix 
the corresponding rows/columns in which all values are 
zeros, as we already skipped from those computations. 

There are two groups of stopwords which indeed are 
removed: 1- general and 2- domain specific stop words. 
 First, we apply a general predefined stop word list 
appropriate for the domain we are working with (i.e., 
medical domain). Second, in some cases stop words are 
determined based on their frequency distribution, as 
detected from the corpus after generating of the word-word 
soft co-occurrence matrix. We remove words with very high 
frequency relative to the corpus size and term distribution in 
both classes and do not help to discriminate between them. 
We also remove words that appear only once in the corpus, 
as they will not help the classification, since they appeared 
only with one class, possibly by chance. As the word-word 
closeness is calculated regardless of words order in co-
occurring pairs, the matrix is a symmetric matrix and the co-
occurrences of any given word can be extracted from the 
corresponding row or column of the matrix, equally. 

D. Two-Level Text Representation Vectors 

In the first level, each sentence of a short text in the 
corpus is represented by averaging1 the containing features’ 

                                                           
1 The averaging function can be changed with another aggregation function 
like maximum, upon the targeted conceptual level in the application and be 
substituted to the BOW in section [2.5]. 

vectors, which are extracted from the soft co-occurrence 
matrix. In this matrix which is symmetric over feature 
space, for each word we can see all the words that co-
occurred with it, over the corpus. At this step the soft co-
occurrence matrix does not include stop words, hence the 
stop words cannot affect the creation of the representation 
vectors. 
 We employ the second order co-occurrence vectors 
(extracted from the above matrix) to perform an averaging 
process among the vectors of the words inside a sentence. 
The sentence representation vector at this stage has several 
times more non-zero features than the BOW representation 
of the same sentence. In the next level, we calculate the text 
representation vector by averaging the vectors of the 
sentences, which have been calculated during the first level. 
Performing this aggregation function (average) is another 
step toward increasing the number of non-zero elements of 
the text representation vector. Almost 90% of the features 
are non-zero by now. Although the value of any cell in the 
vector is an indicator of the association power of the 
corresponding feature in the vector space with the 
sentence/text that contains it, this value does not show 
directly if the feature occurred in sentence/text or not; it 
globally represents the relevance level of the sentence for 
each dimension (each feature). 

E.  Contrast Parameter  

Browsing through a variety of text analysis projects, we 
see different conceptual levels targeted in each. Sometimes 
the task is to classify texts into topic classes such as 
medicine, agriculture, economy and so on. Other projects 
classify texts based on some restricted predefined 
conceptual domains or even based on sentiments or 
emotions that could be expressed by the writers. Obviously, 
for topic identification, there are some distinct keywords 
which play the essential role in the classification task, but in 
other cases such as sentiment or emotion analysis we cannot 
rely on these keywords. 

Regarding the algorithm for creating our text 
representation vectors, implicitly we imposed smoothness 
among the feature space, versus the extreme contrast in the 
BOW representation of the same text. In a normalized BOW 
representation of a context we can see a non-zero value if a 
certain word explicitly occurs in the context and otherwise 
the value would be zero. However in the SOSCO 
representation of the same context, a value of a feature 
could be non-zero just if there is one (or more) co-occurred 
(not necessarily occurred) word (over the corpus) in that 
context and the value is directly related to the power of the 
closeness of the word occurred in the context and the feature 
in the feature space. Comparing the results of the two 
representations on several datasets/applications, we 
observed the advantages of each of them in different 
domains. Therefore we propose to define a contrast 
parameter that allows the value of each feature to vary 
between these two end points. Hence, if we define a range 



of 0 up to 9 for the contrast parameter, we will have the 
BOW representation at the highest point of contrast (level 9) 
and the two levels (sentence and text) averaged second order 
soft co-occurrence vectors at the other end point of 
smoothness2 (level 0 of contrast). We set the maximum 
value to 9 empirically, in order to have a limited number of 
values for searching the optimum value for each application. 

We ran many experiments in a variety of applications on 
many input data with different targeted conceptual levels. 
We empirically observed that the optimum contrast value 
for the topic identification tasks is higher than the optimum 
one for some sentiment/emotion analysis tasks.   

We also observed that applying different values for the 
contrast parameter may reveal about different aspects of the 
text which being represented. Hence the contrast parameter 
not only could be used for finding the most fitted 
representation of the text in any given application but also 
could be applied for obtaining a variety of representations of 
a given text for a committee of ensemble learners. (See part 
5.2 for an example.)  

F. An Example  

If we want to illustrate the whole methodology with an 
example, we could start with a short text like (from the first 
dataset used in section 5.1): 

 “It was Sunday. I was playing with the dog. All of a 
sudden my sister screamed and I fell down into the pool!” 

We build the sentence-based co-occurrence word-by-
word matrix based on the described weights. Then, in a first 
step, we extract the corresponding vector for each word of 
the first sentence, out of the matrix which has one row for 
any word in the corpus. In second step, we calculate the 
average vector out of the three preliminary vectors for the 
three words in the first sentence. In this way, we obtain a 
representative vector for our first sentence. 

We repeat the same process for the other two sentences 
of the text. We will have three individual average vectors at 
this stage. Finally, applying the proper contrast parameter 
value for the task we will have one text representation 
vector in which each value is between the two extreme ends 
of contrast and smoothness, and it is ready for participating 
in any learning process.  

III. METHOD SPECIFICATIONS AND ADVANTAGES 

The basic co-occurrence method and its descendants 
have mostly targeted word sense disambiguation and topic 
detection tasks. Those generally were applied for 
unsupervised clustering tasks. Hence it is not easy to 
compare them with the current method, which is especially 
designed to be applied for supervised learning.  We believe 
the following are the contributions specific to our method: 

- Applying a proper value for the contrast parameter (in 
order to target different conceptual levels in different 

                                                           
2 Note that both the BOW and second order co-occurrence representation 
vectors are already normalized (contain values between 0 and 1).  

applications) can increase the discriminative power of any 
machine learning task based on this representation method.  
- The capacity of the second order representation of a text 
includes more than the local context. 
- It is robust in handling feature sparseness with only ~10% 
zero values for features (the method represents texts based 
on co-occurrence of features in the whole corpus, rather a 
specified targeted word or topic). 
- Uses soft co-occurrence, applying different weights based 
on different word-word co-occurrence configurations. 
- Increasing the representation power by building text 
representation vectors in two levels (sentence level and text 
level), instead of one level. 
- Capacity of bypassing the LSI [26] dimension reduction 
procedure which usually is the most computational- and 
time- consuming step in similar tasks, because of using the 
fully loaded text vectors with less than 10% sparsity.  
- The reduced feature space obtained after the above process 
is much more human-understandable than for LSI.  
- The steps of SOSCO algorithm can be executed 
sequentially with linear complexity. 

IV. METHOD LIMITATIONS 

The described text representation method (SOSCO) is in 
contradiction with the independence assumption in some 
machine learning algorithms; therefore we will prefer to not 
use these algorithms (i.e., Naïve Bayes). Finding an 
appropriate contrast parameter value sometimes requires 
spending considerable time in the development step. 

V. EXPERIMENTS AND RESULTS 

After testing the second order soft co-occurrence 
(SOSCO) representation on a variety of short texts corpora3 
and performing some preliminary modifications for 
improving the representation power, we applied the method 
on the following two text analysis tasks.  

A. Classification of Emotional Tone of Dreams 

Most of the studies on dreams have used time-consuming 
coding systems that depend on a rater’s judgment. Hence, it 
is of interest to develop an efficient mean of scoring dreams 
that can be used with large data banks and reproduced 
across laboratories. The task of exploration of dream’s 
emotional content using automatic analysis has been 
defined. A sample of 776 dreams, reported in writing by 274 
individuals of varied age and sex, was used for word-
correlation analysis. 

 A subset of 477 texts was rated by a judge using two 0–
3 scales describing the negatively or the positive orientation 
of the dream. 

 A voting committee of different classifiers provided the 
most accurate results with the least mean squared error [19]. 

 The agreement between machine rating and the human 
judge score on a scale of 0–3 was 64% (Mean Squared Error 

                                                           
3 The method has also been applied on some languages other than English. 



0.3617), which represents 14% more than previous results 
on the same task, which was based only on the BOW 
representation method [21]. This was also significantly 
better than the chance probability of 25% and a baseline 
accuracy of 33%. The results indicate that estimates were at 
most one level away from human judge score4 and offer a 
promising perspective for the automatic analysis of dream 
emotions, which is recognized as a primary dimension of 
dream construction.  

B. Classifying Biomedical Abstracts Using Collective 
Ranking Technique 

A systematic review is a structured process for reviewing 
literature on a specific topic with the goal of distilling a 
targeted subset of knowledge or data. Usually, the reviewed 
data includes titles and abstracts of biomedical research 
articles that could be relevant to the topic. The source data is 
extracted from biomedical literature databases such as 
MEDLINE [18] by running queries with keywords selected 
by domain experts. The queries are purposefully too broad, 
so that no relevant abstracts are missed. The output includes 
around ~ 410  articles. A systematic review can be seen as a 
text classification problem with two classes: a positive class 
containing articles relevant to the topic of review and a 
negative class for articles that are not relevant.  

The selected approach is based on using committees of 
classification algorithms to rank instances based on their 
relevance to the topic of review. Experiments were 
performed on a systematic review data set provided by 
TrialStat Corporation [22]. The source data includes 23334 
medical articles pre-selected for the review. While 19637 
articles have title and abstract, 3697 articles have only the 
title. The data set has an imbalance rate (the ratio of positive 
class to the entire data set) of 8.94%. 

 A stratified repeated random sampling scheme was 
applied to validate the experimental results. The data was 
randomly split into a training set and a test set five times 
and the test set representation files have been built only 
based on the training set feature space. On each split, the 
training set included 7000 articles (~30%), while the test set 
included 16334 articles (~70%). The results from each split 
were then averaged.  

 We applied two data representation schemes to build 
document-term matrices: BOW and SOSCO representation. 
CHI2 feature selection was applied to exclude terms with 
low discriminative power. The ranking approach allows 
selecting abstracts that are classified as relevant or non-
relevant with high level of prediction confidence (not less 
than the average prediction performance of human experts). 

We needed to achieve a high level of recall and precision 
of the Positive class. Applying the optimum contrast 
parameter could not help us achieve the acceptable level of 
both recall and precision. For this reason, we decided to 

                                                           
4 Literature shows between 57- 80% agreement among the human judgment 
in this area and range. 

focus on two tails of certainty (the certainty of being 
Positive or Negative) in our classification. We observed that 
the highest-contrast BOW representation performed well on 
the part with the high certainty for the Positive class (700 
abstracts), while the SOSCO representation with contrast 
parameter zero, has better performance on the part with the 
high certainty for the Negative class (8000 abstracts). 

Therefore, the prediction zone consists of 8700 articles 
(700 top-zone articles and 8000 bottom-zone articles) that 
represent 37.3% of the whole corpus (53.3% of test set). At 
the same time, the gray zone includes 7634 articles (32.7% 
of the corpus, which is left for human experts to classify; 
this can save considerable time for them, since usually 
systematic reviews are done entirely manually). A 
committee of five classifiers was applied on the BOW and 
the SOSCO representation, individually, and then the results 
were combined through a voting scheme [20]. 

The results after voting are presented in Table 1. The 
table is a confusion matrix where only the prediction zone 
articles are taken in to account. Positive articles included in 
the top zone are true positives (TP), while positive articles 
included in the bottom zone are false negatives (FN). 
Negative articles in the top zone are false positives (FP), and 
negative articles in the bottom zone are true negatives (TN). 

TABLE I.  CONFUSION MATRIX ON THE PREDICTION ZONES APPLYING 
ENSEMBLE BOW AND SOSCO BY VOTING IN A COMMITTEE OF 
CLASSIFIERS. 

Zone Number of 
Abstracts 

Correctly 
Classified 

Incorrectly 
Classified 

Top 700 590 (TP) 110 (FP) 
Bottom 8000 7946 (TN) 54 (FN) 
 

Table 2 presents the recall and the precision results for the 
Positive class (the class of interest), based on the prediction 
zone confusion matrix from Table 1. Table 2 also includes 
the average recall and precision results for human expert 
predictions (considered individually). This shows that our 
method achieves a significant workload reduction (37.3%), 
while maintaining the required performance level.  

TABLE II.  PERFORMANCE EVALUATION 

Performance 
Measure 

Machine Learning results 
on the prediction zone 

Average human 
reviewer's results 

Recall on the 
Positive Class 91.6% 90-95% 
Precision on the 
Positive Class 84.3% 80-85% 

 
We verified the performance of using ensemble method 

over data representation techniques. We ran classifiers 
committee on the SOSCO data representation; after that we 
ran classifiers committee on the BOW data representation, 
and finally, we ran the classifiers committee on both data 
representations together. The results are shown in Table 3 
and 4. The number of misclassifications, both False 



Positives and False Negatives, is significantly less for the 
ensemble of data representation techniques, than for either 
of them used alone. In the tables we can see the 
performance of each representation at each tail of certainty. 

TABLE III.  FALSE POSITIVES WITH RESPECT TO DATA 
REPRESENTATION METHODS. 

Split 
Number SOSCO BOW 

Ensemble (SOSCO 
and BOW) 

1 138 127 110 
2 138 186 108 
3 118 117 101 
4 143 119 113 
5 160 130 119 

Average 139.4 135.8 110.2 

TABLE IV.  FALSE NEGATIVES WITH RESPECT TO DATA 
REPRESENTATION METHODS. 

Split 
Number SOSCO BOW 

Ensemble (SOSCO 
and BOW) 

1 55 78 53 
2 55 119 48 
3 55 96 55 
4 71 72 50 
5 68 101 62 

Average 60.8 93.2 53.6 
 
Since the machine learning prediction performance is 

generally on the same level as the human prediction 
performance, using the described system will lead to 
significant workload reduction for the human experts 
involved in the systematic review process. 

VI. CONCLUSION AND FUTURE WORK 

In the future, we are planning to add one step of context 
detection in order to determine our window size 
dynamically and build the representation vectors based on 
its component contexts, as currently our window size is 
based on sentences. Our proposed SOSCO method, with a 
proper contrast parameter value, can be used in different 
levels of semantic, sentiment and conceptual analysis tasks. 
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