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Abstract. This paper proposes an unsupervised approach that auto-
matically detects and corrects a text containing multiple errors of both
syntactic and semantic nature. The number of errors that can be cor-
rected is equal to the number of correct words in the text. Error types
include, but are not limited to: spelling errors, real-word spelling errors,
typographical errors, unwanted words, missing words, prepositional er-
rors, punctuation errors, and many of the grammatical errors (e.g., errors
in agreement and verb formation).
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1 Introduction

Most approaches to text correction are for only one or at best for a few types
of errors. To the best of our knowledge, there is no fully-unsupervised approach
that corrects a text having multiple errors of both syntactic and semantic nature.
Syntactic errors refer to all kinds of grammatical errors. For example, in the
sentence, “Our method correct real-word spelling errors.”, there is an error of
syntactic nature in subject-verb agreement, whereas, in the sentence, “She had
a cup of powerful tea.”, the word ‘strong’ is more appropriate than the word
‘powerful’ in order to convey the proper intended meaning of the sentence, based
on the context. The latter is an example of a semantic error.

In this paper, a more general unsupervised statistical method for automatic
text error detection and correction, done in the same time, using the Google
Web 1T 5-gram data set [1] is presented. The proposed approach uses the three
basic text correction operations: insert, delete, and replace. We use the following
three strict assumptions for the input text that needs to be corrected: (1) The
first token is a word1. (2) There should be at least three words in an input text.
(3) There might be at most one error in between two words. We also assume
that there might be at most one error after the last word.

We also use the following weak assumption: (4) We try to preserve the in-
tended semantic meaning of the input text as much as possible.

1 Whenever we use only the term ‘word’ without an adjective (e.g., correct or incor-
rect), we imply a correct word.
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2 Related Work

Some approaches consider spelling correction as text correction. An initial ap-
proach to automatic acquisition for context-based spelling correction was a sta-
tistical language-modeling approach using word and part-of-speech (POS) n-
grams [2–5]. Some approaches in this paradigm use Bayesian classifiers and de-
cision lists [6–8]. Other approaches simply focus on detecting sentences that
contain errors, or computing a score that reflects the quality of the text [9–14].

In other text correction approaches, the prediction is typically framed as a
classification task for a specific linguistic class, e.g., prepositions, near-synonym
choices, or a set of predefined classes [15, 16]. In some approaches, a full syntactic
analysis of the sentence is done to detect errors and propose corrections. We
categorize this paradigm into two groups: those that constrain the rules of the
grammar [17, 18], and those that use error-production rules [19–22].

[23] presents the use of a phrasal Statistical Machine Translation (SMT)
techniques to identify and correct writing errors made by ESL (English as a
Second Language) learners.

The work that is closely related to ours is that of Lee’s [24], a supervised
method built on the basic approach of template-matching on parse trees. To
improve recall, the author uses the observed tree patterns for a set of verb form
usages, and to improve precision, he utilizes n-grams as filters. [25] trains a
maximum entropy model using lexical and POS features to recognize a variety
of errors. Their evaluation data partially overlaps with that of [24] and our paper.

3 Proposed Method

Our proposed method determines some probable candidates and then sorts those
candidates. We consider three similarity functions and one frequency value func-
tion in our method. One of the similarity functions, namely the string similarity
function, is used to determine the candidate texts. The frequency value function
and all the other similarity functions are used to sort the candidate texts.

3.1 Similarity and Frequency Value Functions

Similarity between Two Strings We use the same string similarity measure
used in [26], with the following different normalization from [27]:

v1 =
2× len(LCS(s1, s2))

len(s1) + len(s2)
v2 =

2× len(MCLCS1(s1, s2))

len(s1) + len(s2)

v3 =
2× len(MCLCSn(s1, s2))

len(s1) + len(s2)
v4 =

2× len(MCLCSz(s1, s2))

len(s1) + len(s2)

The similarity of the two strings, S1∈[0, 1] is:

S1(s1, s2) = α1v1 + α2v2 + α3v3 + α4v4 (1)

Here, len calculates the length of a string, LCS,MCLCS1,MCLCSn, andMCLCSz
calculate the Longest Common Subsequence, Maximal Consecutive LCS starting
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at character 1, starting at character n, and ending at the last character between
two strings, respectively. α1, α2, α3, α4 are weights and α1+α2+α3+α4 = 1.
We heuristically set equal weights for most of our experiments2.

Common Word Similarity between Texts If two texts have some words in
common, we can measure their similarity based on the common words. We count
the number of words in common between the text to correct and a candidate
corrected text, normalizing the count by the size of both texts. Let us consider
a pair of texts, T1 and T2 that have m and n tokens, with δ tokens in common.
Thus, the common word similarity, S2∈[0, 1] is:

S2(T1, T2) = 2δ/(m+ n) (2)

Non-Common Word Similarity If the two texts have some non-common
words, we can measure how similar the two texts are based on their non-common
words. If there are δ tokens in T1 that exactly match with T2, then there are
m−δ and n−δ non-common words in texts T1 and T2, respectively, assuming
that T1 and T2 have m and n tokens, respectively, and n ≥ m. We remove all
the δ common tokens from both T1 and T2. We construct a (m−δ)×(n−δ)
string similarity matrix using Equation 1 and find out the maximum-valued
matrix element. We add this matrix element to a list (say, ρ). We remove all
the matrix elements which are in the row and column of the maximum-valued
matrix element, from the original matrix. We remove the row and column, in
order to remove the pair with maximum similarity. This makes the computation
manageable: in the next steps, fewer words are left for matching. We repeat
these steps until either the current maximum-valued matrix element is 0, or
m−δ−|ρ| = 0, or both. We sum up all the elements in ρ and divide by n− δ to
get the non-common word similarity, S3∈[0, 1):

S3(T1, T2) =
∑|ρ|
i=1 ρi/(n− δ) (3)

Normalized Frequency Value We determine the normalized frequency value
of a candidate text (how we determine candidate texts is discussed in detail in
Section 3.2) with respect to all other candidate texts. A candidate text having
higher normalized frequency value is more likely a strong candidate for the cor-
rection, though not always. Let us consider, we have ñ candidate texts for the
input text T : {T1, T2, · · ·Ti · · · , Tñ}

T1 = {w11, w12, · · ·w1j · · ·w(1)(m1)}
T2 = {w21, w22, · · ·w2j · · ·w(2)(m2)}

· · · · · · · · · · · · · · · · · · · · · · · ·
Ti = {wi1, wi2, · · ·wij · · ·w(i)(mi)}

· · · · · · · · · · · · · · · · · · · · · · · ·
Tñ = {wñ1, wñ2, · · ·wñj · · ·w(ñ)(mñ)}

Here, wij is the jth token of the candidate text, Ti, and mi means that the can-
didate text Ti has mi tokens. It is important to note that the number of tokens

2 We use equal weights in several places in this paper in order to keep the system
unsupervised. If development data would be available, we could adjust the weights.
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each candidate text has may be different from the rest. The number of 5-grams
in any candidate text, Ti is mi − 4. Again, let us consider that Fi is the set of
frequencies of all the 5-grams that Ti has; fij is the frequency of the jth 5-gram
of the candidate text, Ti. That is:

F1 = {f11, f12, · · · f1j · · · f(1)(m1−4)}
F2 = {f21, f22, · · · f2j · · · f(2)(m2−4)}

· · · · · · · · · · · · · · · · · · · · · · · ·
Fi = {fi1, fi2, · · · fij · · · f(i)(mi−4)}

· · · · · · · · · · · · · · · · · · · · · · · ·
Fñ = {fñ1, fñ2, · · · fñj · · · f(ñ)(mñ−4)}

Here, {f11, f21, · · · fi1 · · · fñ1}, {f12, f22, · · · fi2 · · · fñ2}, {f1j , f2j , · · · fij · · · fñj}
and {f(1)(mi−4), f(2)(mi−4), · · · f(i)(mi−4) · · · f(ñ)(mi−4)} are the sets of 5-gram
frequencies for all ñ candidate texts that are processed in the first step3, the
second step, the jth step, and the (mi − 4)th step, respectively. We calculate
the normalized frequency value of a candidate text as the summation of all the
5-gram frequencies of the candidate text over the summation of the maximum
frequencies in each step that the candidate text may have. Thus the normalized
frequency value of Ti represented as S4 ∈ [0, 1] is:

S4(Ti) =
∑mi−4
j=1 fij/

∑mi−4
l=1 maxk∈N fkl (4)

3.2 Determining Candidate Texts

Let us consider an input text, that after tokenization has m tokens, i.e., T =
{w1, w2 · · · , wm}. Our approach consists in going from left to right according
to a set of rules that are listed in Table 1 and Table 2. We use three basic
operations, Insert, Replace and Delete to list these 5-gram rules. We also use No
Operation to mean that we do not use any operation, rather we directly use the
next token from T to list a 5-gram rule.

5-gram Rules Used in Step 1 Table 1 lists all possible 5-gram rules generated
from the said operations and assumptions. We use each of these 5-gram rules to
generate a set of 5-grams and their frequencies by trying to match the 5-gram
rule with the Web 1T 5-grams. We take the decision of how many candidate
5-grams generated from each 5-gram rule we keep for further processing (say,
n̄). The 5-gram Rule #1 in Table 1 says that we take the first five tokens from
T to generate a 5-gram and try to match with the Web 1T 5-grams to generate
the only candidate 5-gram and its frequency, if there is any matching. In 5-gram
Rule #2, we take the first four tokens from T and try to insert each word from a
list of words (our goal here is to determine this list of words; it might be empty)
in between w1 and w2 to generate a list of 5-grams and try to match with the

3 By the first step, we mean the step when we process the first possible 5-grams in
the input text. Similarly, by the second step, we mean the step when we process the
next possible 5-grams (by removing the first token from the 5-grams used in first
step and adding an extra word from the input text or other way, which is discussed
in detail in Section 3.2) in the input text, and so on.
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Web 1T 5-grams to generate a set of 5-grams and their frequencies. We sort
these 5-grams in descending order by their frequencies and only keep at most
the top n̄ 5-grams and their frequencies. All I’s and R’s in Table 1 and Table 2
function similar to variables and all wi ∈ T function similar to constants. The
5-gram Rule #9 can generate a list of 5-grams and their frequencies, based on all
the possible values of R2, a set of all replaceable words of w2. We determine the
string similarity between w2 and each member of R2 using (1) and sort the list
in descending order by string similarity values and only keep at most n̄ 5-grams.

Table 1. List of all possible 5-gram rules in step 1

Rule# 5-gram Rule Generated from Rule# 5-gram Rule Generated from
1 w1 w2 w3 w4 w5 No Operation 26 w1 w3 I1 w4 w5

2 w1 I1 w2 w3 w4 27 w1 w3 w4 I1 w5

3 w1 w2 I1 w3 w4 28 w1 w2 w4 I1 w5 Single Delete +
4 w1 w2 w3 I1 w4 Single Insert 29 w1 w2 w4 w5 I1 Single Insert
5 w1 w2 w3 w4 I1 30 w1 w3 w4 w5 I1
6 w1 I1 w2 I2 w3 31 w1 w2 w3 w5 I1
7 w1 w2 I1 w3 I2 Double Insert 32 w1 w3 w4 w5 R6

8 w1 I1 w2 w3 I2 33 w1 w2 w3 w5 R6

9 w1 R2 w3 w4 w5 34 w1 w3 R4 w5 w6

10 w1 w2 R3 w4 w5 35 w1 w2 w4 R5 w6 Single Delete +
11 w1 w2 w3 R4 w5 Single Replace 36 w1 w3 w4 R5 w6 Single Replace
12 w1 w2 w3 w4 R5 37 w1 w2 w4 w5 R6

13 w1 R2 w3 R4 w5 38 w1 R2 w3 w5 w6

14 w1 w2 R3 w4 R5 Double Replace 39 w1 w2 R3 w4 w6 Single Replace +
15 w1 R2 w3 w4 R5 40 w1 R2 w3 w4 w6 Single Delete
16 w1 w3 w4 w5 w6 41 w1 I1 w2 R3 w4

17 w1 w2 w4 w5 w6 42 w1 w2 I1 w3 R4 Single Insert +
18 w1 w2 w3 w5 w6 Single Delete 43 w1 I1 w2 w3 R4 Single Replace
19 w1 w2 w3 w4 w6 44 w1 R2 w3 I1 w4 Single Replace +
20 w1 w3 w5 w6 w7 45 w1 w2 R3 w4 I1 Single Insert
21 w1 w2 w4 w6 w7 46 w1 R2 w3 w4 I1
22 w1 w3 w4 w6 w7 47 w1 I1 w2 w4 w5

23 w1 w2 w4 w5 w7 Double Delete 48 w1 w2 I1 w3 w5 Single Insert +
24 w1 w2 w3 w5 w7 49 w1 I1 w2 w3 w5 Single Delete
25 w1 w3 w4 w5 w7

Limits for the Number of Steps, ntp We figure out what maximum and
minimum number of steps we need for an input text. Taking the second assump-
tion into consideration, it is obvious that if the value of m is 3 (the number of
words would also be 3) then only rules # 6, 7 and 8 can be used to generate
5-grams. 5-grams generated from rule # 7 and 8 can not be used in the next step
as after the last word (w3); we might have at most one error and all the 5-grams,
if any, generated using these rules have this error (i.e., I2). 5-grams generated
from rules # 6 can be used in the next step (by rule # 2 in Table 2) to test
whether we can insert a word in the next step, provided that the previous step
generates at least one 5-gram. Thus, if m = 3 we might need at most 2 steps.
Now, if m = 4, then for the added word (i.e., w4) we need two extra steps to
test rules # 5 and 2, in order, on top of the previous two steps (for the first
three words), provided that each previous step generates at least one 5-gram.
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That is, each extra token in T needs at most two extra steps. We generalize the
maximum number of steps needed for an input text having m tokens as:

Max ntp = 2+(m−3)×2 = 2m−4 (5)

Again, the minimum number of steps is ensured if rules # 6 to 8 in step 1
do not generate any 5-gram. This means that, if m = 3, we might need at least
0 steps4. Now, if m = 4 then for the added word (i.e., w4) we need only an extra
step to test rule # 5 on top of the previous single step (for the first three tokens).
That is, each extra token in T needs at least one extra step, provided that each
previous step for each extra token generates at least one 5-gram.5 We generalize
the minimum number of steps needed for an input text having m tokens as:

Min ntp = m−3 (6)

In (5), the maximum number of steps, 2m−4, also means that the maximum
number of tokens possible in a candidate text is 2m. Thus, an input text hav-
ing 2m tokens can have at most m errors to be handled and m correct words,
assuming m ≥ 3 (the second assumption on page 1).

Table 2. List of All Possible 5-gram Rules in Step 2 to Step 2m− 4

Rule# 5-gram Rule Generated from Case Number
1 − − −wiwi+1 No Operation
2 − − −wiIj Single Insert 1: if the last word
3 − − −wiwi+2 Single Delete in step 1 is in T
4 − − −wiRi+1 Single Replace
5 − − wiIjwi+1 No Operation 2: if the second last word in step 1 is in
6 − − wiRi+1wi+2 No operation T and the last word is either an inserted

or a replaced word

5-gram Rules used in Step 2 to 2m−4 Table 2 lists all possible 5-gram
rules generated from the said operations and assumptions for step 2 to step
2m−4. We use step 2 (i.e., the next step) only if step 1 (i.e., the previous step)
generates at least one 5-gram from 5-gram rules listed in Table 1. Similarly, we
use step 3 (i.e., the next step) only if step 2 (i.e., the previous step) generates
at least one 5-gram from the 5-gram rules listed in Table 2, and so on. In Table
2, ‘−’ means that it might be any word that is in T , or an inserted word (an
instance of I’s), or a replaced word (an instance of R’s) in the previous step.
To give a specific example of how we list the 5-gram rules in Table 2, consider
that rule #2 (w1 I1 w2 w3 w4) in Table 1 generates at least one 5-gram in step
1. We take the last four words of this 5-gram (i.e., I1 w2 w3 w4) and add the
next word from T (in this case w5), in order to form a new rule in step 2 (which
is I1 w2 w3 w4 w5). The general form of this rule (− − −wi wi+1) is listed as
rule #1 in Table 2. In step 1, I1 in rule #2 acts like a variable, but in step 2
we use only a single instance of I1, which acts like a constant. We categorize all

4 We call a step successful if it generates at least one 5-gram. Thus, if we try to
generate some 5-grams in step 1 and if we fail to generate any, then the number of
step, ntp is 0, though we do some processing for step 1.

5 If we omit the assumption that each previous step for each extra token generates at
least one 5-gram, then to determine the Min ntp is very straight forward, it is 0.
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the 5-grams generated in step 1 (i.e., the previous step) into two different cases.
Case 1 groups each 5-gram in step 1 having its last word in T . Case 2 groups
each 5-gram in step 1 having its second last word in T , and the last word not
in T . We stop when we fail to generate any 5-gram in the next step from all the
5-gram rules of the previous step.

Determining the Limit of Candidate Texts There might be a case when
no 5-gram is generated in step 1; this means that the minimum ñ possible is 0.
Table 1 shows that there are 11 5-gram rules (rules without any I’s or R’s) in
step 1 that generate at most one 5-gram per 5-gram rule. It turns out that the
remaining 5-gram rules can generate at most n̄ 5-grams per 5-gram rule. Thus,
the maximum number of candidate texts, ñ, that can be generated having only
a single step (i.e., ntp = 1) is:

Max ñ=(no. of 5-gram rules in step 1−no. of 5-gram rules in step 1 without

any I’s or R’s)× n̄+ no. of 5-gram rules in step 1 without any I’s or R’s (7)

=(49− 11)× n̄+ 11 = 38n̄+ 11 (8)

At most 2n̄ + 2 5-grams (rules #1 to 4 in Table 2) can be generated in step 2
from a single 5-gram generated in step 1 having the last word in T . There may
be at most 33 such 5-grams in step 1. At most 1 5-gram (rules #5 and 6 in Table
2) can be generated in step 2 from a single 5-gram generated in step 1 having the
second last word in T and the last word being either an inserted or a replaced
word. There may be at most 16 such 5-grams in step 1. The maximum number
of candidate texts, ñ, that can be generated having two steps (i.e., ntp = 2) is:

Max ñ = 33(2n̄+ 2) + 16× 1 (9)

We generalize Max ñ for different values of ntp as:

Max ñ≈


38n̄+11 if step = 1

33×20(2n̄+2)+16 if step = 2

33×21(2n̄+2)+66×20n̄ if step = 3
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
33×2ntp−2(2n̄+2)+66×2ntp−3n̄ if step = ntp

(10)

Simplifying (10):

Max ñ≈


38n̄+11 if step = 1

66n̄+82 if step = 2

2ntp−3(198n̄+132) if step ≥ 3

(11)

Theoretically, Max ñ seems to be a large number, but practically ñ is much
smaller than Max ñ. This is because not all theoretically possible 5-grams are in
the Web 1T 5-grams data set, and because fewer 5-grams generated in any step
have an effect in all the subsequent steps.

Forming Candidate Texts Algorithm 1 describes how a list of candidate
texts can be formed from the list of 5-grams in each step. That is, the output of



8 Islam and Inkpen

Algorithm 1: forming candidate texts

input : ntp, list of 5-grams in each step
output: candidate list

1 candidate list← NULL
2 for each 5-gram of step 1 do
3 k ← 1
4 candidate text[k]← 5-gram of step 1
5 for i ← 2 to ntp do
6 j ← 1
7 for each k do
8 for each 5-gram of step i do
9 next 5-gram← 5-gram of step i

10 temp candidate text[j]← candidate text[k]
11 str1 ← last four words of temp candidate text[j]
12 str2 ← first four words of next 5-gram
13 if str1 = str2 then
14 temp candidate text[j]← temp candidate text[j] . last

word of next 5-gram /* ‘.’ is to concatenate */
15 end
16 increment j
17 end
18 end
19 decrement j
20 for each j do
21 candidate text[j]← temp candidate text[j]
22 end
23 k ← j
24 end
25 for each k do
26 candidate list← candidate list+ candidate text[k]
27 end
28 end

Algorithm 1 is {T1, T2, · · ·Ti · · · , Tñ}. The algorithm works as follows: Taking
the last four words of each 5-gram in step 1, it tries to match with the first four
words of each 5-gram in step 2. If it matches, then concatenating the last word
of the matched 5-gram in step 2 with the matched 5-gram in step 1 generates
a temporary candidate text for further processing. If a 5-gram in step 1 does
not match with at least a single 5-gram in step 2, then the 5-gram in step 1 is
a candidate text. One 5-gram in step 1 can match with several 5-grams in step
2, thus generating several temporary candidate texts. We continue this process
until we cover all the steps.

3.3 Sorting Candidate Texts

It turns out from 3.2 that, if the input text is T , then the total ñ candidate
texts are {T1, T2, · · ·Ti · · · , Tñ}. We determine the correctness value, S for each
candidate text using (12), a weighted sum of (2), (3) and (4), and then we
sort in descending order by the correctness values. In (12), it is obvious that
β1 + β2 + β3 = 1 to have S ∈ (0, 1].
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S(Ti)=β1S2(Ti, T )+β2S3(Ti, T )+β3S4(Ti) (12)

By trying to preserve the semantic meaning of the input text as much as possible,
we intentionally keep the candidate texts and the input text as close (both
semantically and syntactically) as possible. Thus, we set more weight on S2

and S3. Though we set low weight on S4, it is one of the most crucial parts
of the method, that helps to identify and correct the error. If we only rely on
the normalized frequency value of each candidate text, then we have to deal
with an increasing number of false positives: the method detects an input text
as incorrect, while, in reality, it is not. On the contrary, if we only rely on the
similarity of common words, non-common words, and so on, between input text
and each candidate text, then we have to deal with an increasing number of false
negatives: the method detects an input text as correct, while, in reality, it is not.

4 Evaluation and Experimental Results

4.1 Evaluation on WSJ Corpus

Because of the lack of a publicly available data set having multiple errors in short
texts, we generate a new evaluation data set, utilizing the 1987-89 Wall Street
Journal corpus. It is assumed that this data contains no errors. We select 34 short
texts from this corpus and artificially introduce some errors, so that it requires
to perform some combinations of insert, and/or delete, and/or replace operation
to get back to the correct texts. To generate the incorrect texts, we artificially
insert prepositions and articles, delete articles, prepositions, auxiliary verbs, and
replace prepositions with other prepositions, singular nouns with plural nouns
(e.g., spokesman with spokesmen), articles with other articles, real words with
real-word spelling errors (e.g., year with tear), real words with spelling errors
(e.g., there with ther). To generate real-word spelling errors (which are in fact
semantic errors) and spelling errors, we use the same procedure as [28]. The
average number of tokens in a correct text and an incorrect text are 7.44 and
6.32, respectively. The average number of corrections required per text is 1.76.
We keep some texts without inserting any error, to test the robustness of the
system (we got only a single false positive). This decreases the number of errors
per text.

The performance is measured using Recall (R), Precision (P), F1 and Accu-
racy (Acc). We asked two human judges, both native speakers of English and
graduate students in Natural Language Processing, to correct those 34 texts. The
agreement between the two judges is low (the detection agreement is 53.85% and
the correction agreement is 50.77%), which means the task is difficult even for
human experts. Table 3 shows two examples of test texts. The results in Ta-
ble 4 show that our method gives comparable recall value for both detection and
correction, whereas human judges give better precision value for both detection
and correction. Since a majority of the words in the evaluation data set are cor-
rect, the baseline is to propose no correction, achieving 76.28% accuracy. Taking
this baseline accuracy as a lower limit and the accuracy achieved by the human
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Table 3. Some examples.

Example 1 Example 2
Incorrect All funding decisions is made the What his believed to the next
Correct All funding decisions are made by the What is believed to be the next
Judge 1 All funding decisions is made by the What is believed to be next
Judge 2 All funding decisions are made the What he believed to be the next
Our Method All funding decisions are made by the What is believed to be the next

Table 4. Results on the WSJ corpus.

Detection Correction
Acc.

R P F1 R P F1

Our Method 90.0 75.00 81.82 78.33 65.28 71.21 84.98
Judge 1 65.0 88.64 75.00 58.33 79.54 67.31 86.56
Judge 2 90.0 93.10 91.53 83.33 86.21 84.75 92.89

judges as an upper limit, we conclude that the automatic method realizes about
half of the possible improvement between the baseline and the human expert
upper bound (76%-84%-92%, respectively).

4.2 Evaluation on JLE Corpus

We also evaluate the proposed method using the NICT JLE corpus [22], to
directly compare with [24]. The JLE corpus has 15,637 sentences with annotated
grammatical errors and their corrections. We generated a test set of 477 sentences
for subject-verb (S-V) agreement errors, and another test set of 238 sentences for
auxiliary agreement and complementation (AAC) errors by retaining the verb
form errors, but correcting all other error types. [24] generated the same number
of sentences of each category.

[24] used the majority baseline, which is to propose no correction, since the
vast majority of verbs were in their correct forms. Thus, [24] achieved a majority
baseline of 96.95% for S-V agreement and 98.47% for AAC. Based on these
numbers, it can be determined that [24] had only 14 or 15 errors in the S-V
agreement data set and 3 or 4 errors in the AAC data set. Our data set has
a majority baseline of 80.5% for S-V agreement and 79.8% for AAC. It means
that we have 93 errors in the S-V agreement data set and 48 errors in the AAC
data set. The small number of errors in their data set is the reason why they get
high accuracy even when they have moderate precision and recall. For example,
if their method fails to correct 2 errors out of the 3 errors in the S-V agreement
data set (i.e., if true positive is 1 and false positives are 2), then their recall
would be 33.3%, even then their accuracy would be 99.16%. Table 5 shows that
our method generates consistent precision, recall, and accuracy.

5 Conclusion

The proposed unsupervised text correction approach can correct one error, which
might be syntactic or semantic, for every word in a text. This large magnitude of
error coverage, in terms of number, can be applied to correct Optical Character
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Table 5. Results on the JLE corpus.‘—’ means that the result is not mentioned
in [24].

Detection Correction
Acc.

R P F1 R P F1

Lee (S-V) — 83.93 — 80.92 81.61 — 98.93
Lee (AAC) — 80.67 — 42.86 68.0 — 98.94
Our (S-V) 98.92 96.84 97.87 97.85 95.79 96.81 98.74
Our (AAC) 97.92 94.0 95.92 95.83 92.0 93.88 97.48

Recognition (OCR) errors, to automatically-mark (based on grammar and se-
mantics) subjective examination papers, etc. A major drawback of our proposed
approach is the dependence on the availability of enough 5-grams. The future
challenge is how to tackle this problem, while keeping the approach unsupervised.
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