
Jl. of Interactive Learning Research (2012) 23(3), 227-249

Template Authoring Environment for the Automatic
Generation of Narrative Content

Maria Fernanda Caropreso, diana inkpen,
Fazel keshtkar, and shahzad khan

University of Ottawa, Canada
caropres@site.uottawa.ca

diana@site.uottawa.ca
akeshtka@site.uottawa.ca
shahzad@whyztech.com

natural language Generation (nlG) systems can make data
accessible in an easily digestible textual form; but using such
systems requires sophisticated linguistic and sometimes even
programming knowledge. We have designed and imple-
mented an environment for creating and modifying nlG
templates that requires no programming knowledge, and can
operate with a minimum of linguistic knowledge. it allows
specifying templates with any number of variables and de-
pendencies between them. it internally uses an existing sen-
tence realization nlG tool in order to provide the linguistic
background knowledge. We tested the performance and us-
ability of our system in the context of interactive simulation
games. We incrementally improved our system in order to ob-
tain all the capabilities needed to reproduce all the sentences
and templates manually created for already existing games.
We trained the users and measured their satisfaction with the
system by comparing the results of writing new games’ nar-
rative content manually vs. using our system. in general, the
use of the system made the task faster, more enjoyable, and
less prone to errors.

228 Caropreso, Inkpen, Keshtkar, and Khan

Introduction

natural language Generation (NLG) is the process of constructing out-
puts from non-linguistic inputs (Bateman, 2002) (reiter and dale, 2000). in
other words, the role of nlG is to produce understandable text, from some
nonlinguistic representation of information.

nlG is useful in systems in which verbal or textual interaction with
the users is required, as for example Gaming, robotics, and automatic help
desks. Using nlG systems instead of manually authored sentences would
enable the software to adapt the expressed messages to the context of the
conversation, and express past and future actions that may form this interac-
tion.

however, the use of the available nlG systems is far from simple. the
most complete systems often require extensive linguistic knowledge, as in
the case of the kpMl (koMet-penman Multilingual) system (Bateman,
1997). a simpler system, simplenlG (reiter, 2007), requires Java pro-
gramming knowledge. this knowledge cannot be assumed for the content
and subject matter experts who are members of the application development
team. however, these individuals do need to interact with the nlG system
in order to make use of the message generation capability to support their
product development efforts. it is then necessary to provide them with an
environment that will allow them to have access in a simpler way to the fea-
tures they need of a specific nlG system.

We present an environment that provides simple access to the use of
simplenlG in order to generate sentences with variable parts or templates.
We developed this nlG template authoring environment guided by the
need of templates required for generating content for a digital-based interac-
tive simulation game. the goal of this project was to provide the designers
with an accessible tool they could use to create and manipulate the nlG
templates, and thus generate sentences that would support the narrative pro-
gression of the game.

the nlG template authoring environment asks for a model sentence
and allows the user to mark the sections that are variable (i.e. dynamically
generated), which would also serve to implicitly ‘lock-down’ the static el-
ements of the generated sentences. additionally, the content-author could
then mark dependencies between variable elements. the system then dis-
plays a list of all the possible sentences that would be created from the giv-
en model with the specified variables and dependencies. after viewing this
output, the user can refine the template model adjusting it to his/her needs.

the design and performance evaluation of the nlG template author-
ing environment was guided by the requirements of a digital-based interac-

Template Authoring Environment for the Automatic Generation 229

tive simulation game. a set of sentence templates covering different aspects
were selected from the templates designed manually for that game. they
were then recreated using our system, which has to be iteratively adapted
until it was possible to implement all aspects of the templates. the usability
of our system was then tested by comparing the performance achieved and
the time required by the games’ content writers to obtain the necessary sen-
tences for two simple negotiation games, both manually and using the nlG
template authoring environment.

in the rest of this paper, we first introduce general concepts of nlG and
some of the tools available. We then introduce serious Games (or training
games) and their need for nlG. With this we motivate the development of
our nlG template authoring environment and we describe its design and
implementation. We evaluate its performance and expand the system capa-
bilities to allow covering different aspects of the templates. We then evalu-
ate the usability of our system by using it in the generation of textual con-
tent for two simple negotiation games. We finish the paper describing other
systems similar to ours, and presenting our conclusions and future work.

NATurAl lANGuAGE GENErATIoN ANd SImplENlG

as previously mentioned, the role of nlG is to produce understand-
able text from some nonlinguistic representation of information. the nlG
process can be viewed as the inverse of natural language Understanding
(nlU), as nlG maps from meaning to text, while nlU maps from text to
meaning.

an nlG system will achieve its goal by performing different tasks such
as selecting terminology and producing grammatically correct sentences. it
will go through several stages in order to generate text which looks natural
(similar to text that would be generated by a human being to express the
given concepts).

according to (dalianis, 1996), the stages of an nlG system are:
• content determination (choosing what concepts to express),
• lexicalization (choosing words to express the concepts),
• syntactic and morphological realization (producing the surface

document or text by using syntactic and morphological rules),
• sentence aggregation (merging similar sentences into one sentence),
• referring expression generation (using pronouns to replace repeated

noun phrases), and
• orthographic realization (resolving matters such as formats, casing, and

punctuation).

230 Caropreso, Inkpen, Keshtkar, and Khan

there are two widely adopted approaches to nlG, the ‘deep-linguistic’
and the ‘template-based’ (van deemter et al., 2005). the deep-linguistic ap-
proach attempts to build the sentences up from a logical representation. the
template-based nlG systems provide scaffolding in the form of templates
that contain a predefined structure and perhaps some of the final text. the
‘deep-linguistic’ approach to nlG is designed to be flexible and should be
notionally able to express any sentence given a valid input logical form.
Wide adoption of these systems has been constrained by the sophistication
of the grammar system required, and the steep learning curve for the logical
form. an example of this type of system is kpMl.

in contrast to the flexibility of ‘real’ nlG systems, template based nlG
systems are limited in the type of output they can generate as they are de-
signed to operate with templates that must conform to a given structure. due
to the limited effort needed to create these systems, numerous examples ex-
ist, most of which are one-off developments. a commonly quoted example
is that of the Forecast Generator (FoG) system designed to generate weath-
er reports (Goldberg et al., 1994).

the ‘deep-linguistic approach’ is necessary in cases where there is no
information available about the content or the form that the expressed text
would take. this would be a requirement if nlG would be a component in a
general purpose robot, as portrayed by data in the popular star trek series.
in these scenarios, there is likely to be very little in common between differ-
ent instances of text generated by the system. in alternative scenarios, where
the text generation will have a more homogeneous (and thus constrained)
output, the simpler template based system is sufficient. indeed, some have
convincingly argued that both approaches can have similar levels of expres-
siveness if there is sufficient sophistication built into the template realiza-
tion phase (van deemter et al., 2005).

simplenlG (reiter, 2007) is an sentence realization system that allows
the user to specify a sentence by giving its content words and its grammati-
cal roles (such as subject or verb). the specification can be presented at dif-
ferent levels of detail. For example “the black cat” could be specified as a
noun phrase with no further details, or it could be specified as a noun phrase
where “cat” is the head of the phrase, “black” is a modifier and “the” is the
determiner.

simplenlG automates several tasks, such as orthography, morphology,
and grammatical realization. For the latter, it uses grammar rules to convert
abstract representations of sentences into actual text. simplenlG also per-
mits the user to specify several features for the main verb, such as: tense
(present, past or future); whether or not it is subjective, progressive, passive

Template Authoring Environment for the Automatic Generation 231

or perfect; whether or not it is in interrogative form; whether or not it is ne-
gated; and which, if any, modal to use (i.e. could, must).

simplenlG is implemented as a Java library and it requires java pro-
gramming knowledge to be used. it allows the user to define flexible tem-
plates by using programming variables in the sentence specification. the
variable parts of the templates could be filled with different values. When
templates are used without an nlG system, they are called canned-text, and
they have the disadvantage of not being very flexible, as only the predefined
variables can change. When templates are defined using simplenlG, they
keep all the functionality of the nlG system (for example, being able to
modify the verb features or the output format, and making use of the gram-
matical knowledge), while also allowing for the variable values to change.

SErIouS GAmES ANd ThE NEEd for NlG

the term ‘serious games’ refers to a sub-category of interactive simula-
tion games in which the main objective is to train the player in a particular
subject matter. the player is typically presented with challenging situations
and is encouraged to practice different strategies at dealing with them, in a
safe, virtual environment. through tips and feedback provided during and
at the end of the game, the player develops an understanding of the problem
and what are the successful ways of confronting it (French et al., 1999).

as an example of a serious game, we briefly describe distil’s game
iso 14k. the objective of this game is to train the player in the process
of implementing an environmental management system (eMs). the play-
er controls the main character of the game, who manages the implementa-
tion of a standards-based process in a simulated fictional organization. s/
he is responsible for hiring more employees, as needed, and assigning each
of them different tasks to perform. all the other characters of the game are
controlled by the computer. the player will constantly make decisions that
will result in a successful or unsuccessful implementation of the process. in
either case, the objective of the game would be reached, as the player would
have acquired new knowledge that would hopefully be useful when dealing
with a real situation.

serious games are generally content oriented and a significant amount
of information is provided to the player through images, sounds and narra-
tive. in many cases, the narrative is incorporated in the game through dia-
logues or other forms of interaction between game characters. in the game
that we used, for example, the narrative is provided as e-mail messages from
other characters to the main character.

232 Caropreso, Inkpen, Keshtkar, and Khan

the considerable amount of textual information required in serious
games can be a burden on the game designers. When the information is in-
corporated interactively, it is desirable that it simulates an exchange real-
ized by humans (lin & kraus, 2010). Given the many possible game sce-
narios and situations arising from the player decisions, manually writing
the information exchanges can account for many months of work, as there
are changes required during each iteration of the game in order to keep the
feedback consistent with the updated narrative. it is then necessary to in-
clude templates that provide the basic information, combined with variable
parts that adapt the narrative to the circumstances. other automated methods
also attempted to generate such adaptive content (rowe et al, 2008; kenny
et al, 2007; Méndez & nakayama, 2008).

the template approach to textual information generation was first tried
by distil in the game iso 14k, while the manual approach was used in a
previous version of a similar game, iso 9k. By employing templates, the
narrative was more efficiently produced and more sophisticated. While in
the previous version of the game the feedbacks were directly tied to the fail-
ure or success of the actions, in the current version of the game, the feed-
backs were systematically generated for each character and task combina-
tion available to the player. With the use of templates, the feedback avail-
able was also made scenario specific in the current version of the game, and
thus more useful information was available to the player. the development
time was reduced significantly, mainly when the same templates created for
the iso 14k game were re-used for a new version of a similar game, iso
18k. the development time and the number of textual feedbacks generated
for each game are shown in table 1.

Table 1
development time

Game Feedbacks Time

ISO 9K (Manual) 200 6 months

ISO 14K (Templates) 8,142 4 months

ISO 18K (Reuse) 8,542 one week

the following example shows a template used in the game iso 14k. in
it, pronoUn_sUBJeCtiVe would return either I or we depending on the
aCtor, pronoUn_possessiVe would return either my or our depend-

Template Authoring Environment for the Automatic Generation 233

ing on the aCtor, departMent would take a value from a list of the
company departments and representatives depending on the aCtion.

pronoUn_sUBJeCtiVe(aCtor)
felt competent to do this job because of
pronoUn_possessiVe(aCtor)
knowledge of departMent(aCtion).

Using the template in the previous example, sentences like the ones giv-
en below could be generated for actors that represent individuals (the first
sentence) or for actors that represent groups (the second sentence):
• i felt competent to do this job because of my knowledge of the hr/

training department.
• We felt competent to do this job because of our knowledge of the

operations department.

Because both pronoUn_sUBJeCtiVe and pronoUn_posses-
siVe depend in this case on the same aCtor, there is inter-dependence in
the values they can take. this type of dependency is the one we refer to in
the following sections.

the above templates were hard-coded in the game iso 14k. in our cur-
rent work, we propose the use of a more flexible way of generating tem-
plates for the dialog of the games. We present our system, nlG template
authoring environment, which takes advantage of the grammatical knowl-
edge of simplenlG in a simpler way. it does not require the user to have
either advance linguistic or programming knowledge. We used the templates
in the game iso 14k as a guideline of the minimum capabilities that our
system should provide.

NlG TEmplATE AuThorING ENvIroNmENT

With the objective of permitting the game designers to study the sen-
tence templates they would propose for the games, we have come up with
the idea of providing a natural language Generation template author-
ing environment. in the context of creating sentence templates for games
design, this system bridges the gap between the game designers’ content
knowledge and the knowledge required for the use of nlG systems.

this environment allows the user to give an example sentence, to define
what parts would be variable and what would be the possible values, and to
specify dependencies between variables. it then shows the user all the pos-

234 Caropreso, Inkpen, Keshtkar, and Khan

sible sentences that could be generated from the given template by calculat-
ing all the possible combinations of variable values that respect the specified
dependencies. the user can then refine the template by changing either the
given example or the specified variables and dependencies, in order to ad-
just the generated sentences to the needs of the game.

dESIGN

a graphical design for the nlG template authoring environment is
shown in Figure 1. this also shows a simple example of a sentence with
three variables and a dependency specified.

figure 1. nlG template authoring environment

as shown in Figure 1, the system allows the user to input an example
sentence with an identified main verb, a subject, and a complement (see
the text in the respective boxes). in addition, information for the verb (i.e.,
tense, form, modals) could be specified. By default the present tense, non-
progressive form, active voice will be used. the user has the choice of either
changing these options or adding new options.

the system allows the user to identify variables in the subject and the
complement of the sentence (see the ovals around some of the words en-
tered in the text boxes). For each of the specified variables, the user has to
indicate its type (i.e., personal pronoun, possessive pronoun, employee_
type) and which values of that type are allowed (i.e., all personal pronouns,
or only “she” and “he”). the user can also indicate dependencies between
variables (see the arc linking the variables containing “him” and “his” in the
example).

Template Authoring Environment for the Automatic Generation 235

all the information provided to create a template (the example sen-
tence, its variables and dependencies) can be saved and recovered later on
through the provided utilities saVe and load. through the use of the
Generate utility, new sentences that follow the template indicated in the
example sentence are generated and displayed back to the user. the dis-
played sentences are the result of combining the values of the variables and
the verb options (when more than one was specified) in all possible ways
while respecting the dependencies between variables.

ImplEmENTATIoN

the nlG template authoring environment has been implemented in
Java. the simplenlG library was used to automatically generate correct
sentences and provide the user with the possibility of exploring different at-
tributes to the verb.

the variables are represented by objects which store all the necessary
information, such as: variable type, default value, current value, gender
and number of the current value, and other information that is used when
generating all possible combinations. the variable type refers to a text file
containing all the possible values with their respective syntactic informa-
tion (person, number and gender) which will be used for agreement with the
verb and for dependency between variables.

once a combination of values for all the variables is generated and con-
sidered as a valid choice (after filtering according to the dependencies), the
static and variable parts of the sentence are reunited and provided to meth-
ods that use the simplenlG package in order to realize the sentences. at
this stage, all required modifications to the verb are performed, and several
possibilities could be displayed according to the user choice for the verb op-
tions. For example, if the user has indicated present, past and future as the
verb tense options, three sentences (one realizing each tense) will be dis-
played for the current combination of variable values.

INTErfACE

a user-friendly intuitive graphical interface has also been implement-
ed in Java using the swing library. a partial screenshot of this interface is
shown in Figure 2.

236 Caropreso, Inkpen, Keshtkar, and Khan

figure 2. Graphical interface

When using this interface, the user first enters an example sentence and
clicks on analyze. next the user indicates that a section is variable by giv-
ing a type or semantic class to the word in that section. as previously men-
tioned, the values of a semantic class are stored in a text file, which allows
the user to create new semantic classes as needed. restrictions to the values
that a variable can take are also indicated through the graphical interface.
dependencies can be indicated only between already declared variables.
the main verb and all its options are indicated in the section at the bottom
of the graphical interface.

in the partial screenshot shown in Figure 2, the example sentence
is “i walk my dog”, “i” is a variable of type personal pronoun, “walk” is
the main verb, “my” is a variable of type possessive pronoun, “dog” is a
variable of type animals and there is a dependency between “i” and “my”
(which will allow to make their values agree in person, number and gender
when generating all possible combinations).

in Figure 2, the user has selected the values “present and past” for the
verb tense and “normal” and “imperative” for the verb form. therefore, four
sentences will be generated for each combination of the variables’ values
(one sentence for each combination of the tense and form selections). these
sentences will have the verb negated and will use the perfect tense (as indi-
cated by the verb options in the last column).

Template Authoring Environment for the Automatic Generation 237

TESTING ThE SySTEm’S CApAbIlITIES

in order to verify the correct functioning of the nlG template author-
ing environment, we selected a set of sentence templates from the game
iso 14k. the templates were selected manually, keeping in mind the need
to cover different aspects, as for example the number and type of the vari-
ables and dependencies. the testing of these examples covers for many
more templates of the same type. the five selected sentence templates that
form our testing set are displayed in table 2.

Table 2
testing examples

 Ref.
number

Template

1 The ACTORS (ME/US) could help DEPARTMENTS.

2 The ACTORS IS/ARE now available to help.

3 I/WE struggled because of MY/OUR lack of knowledge.

4 I/WE AM/ARE pleased to report that I/WE completed the task
TASKS.

5 I/WE WAS/WERE not the greatest choice for keeping things
moving along quickly.

in these template examples, we show in capitals the variable parts of

the templates. aCtors, departMents and tasks refer to one of sev-
eral possible nouns previously defined for each of the classes with those
names. the terms in capitals separated by a “/” already display all the ac-
cepted values for that variable (for example i/We represent a variable of
type personal pronoun which could take only the selected values “i” or
“we” and the rest are filtered out).

the goal of the tests that we performed was to verify that the system
provides the minimum capabilities expected. therefore, when problems
were discovered, we improved the system in order to successfully produce
the selected templates. details of these technical issues and modifications
can be found in our previous publications.

238 Caropreso, Inkpen, Keshtkar, and Khan

TESTING ThE SySTEm’S uSAbIlITy

in order to test the template Generation authoring system’s usability,
we have trained three users. We gave them an introduction to templates and
the system’s general goal. We explained the meaning of semantic classes,
variables, and dependencies. We described the different generation options
that could be passed to simplenlG and what changes would they produce
on the resulting sentences. We finally showed them the interface and cre-
ated some example templates together. this whole training took around an
hour, after which they were able to successfully create and iteratively refine
their own templates. after allowing them to experiment with the system for
a couple of days, they were asked to complete the evaluation questionnaire
found in appendix C. according to their answers, they found the system
easy to use and they only needed a day to familiarize themselves with the
interface options and to feel comfortable using it.

For the purpose of further testing the usability of our system, we have
designed two simple negotiation games. the first game consists of negotiat-
ing the sale of a house from either the buyer or the seller perspective (sce-
nario one and two, respectively). the second game consists of negotiating
the salary and benefits of a job offer, from either the applicant or the em-
ployer perspective (again, scenario one and two, respectively).

NEGoTIATIoN GAmES

the objective of a negotiation game is to train the player in being able
to recognize and react to offers being made. the exchange of information
between the parties involved in the negotiation is limited to a certain num-
ber of turns. the issues and values to be considered vary depending on the
specific game and the selected perspective (the chosen scenario).

the goal of both parties engaged in the negotiation is to obtain the best
possible advantage from their respective perspective (i.e., in negotiating the
sale of a house, the seller would like to sell it at the highest price, while the
buyer would like to buy it at the lowest price.)

as an example, we now consider the game of negotiating the sale of a
house and the scenario in which the player is the buyer and the computer
system is the seller. the information to be exchanged by the parties could
include: the price, the closing date, whether appliances would be included
or not, and whether certain conditions (such as a mortgage approval) should
be satisfied first.

Template Authoring Environment for the Automatic Generation 239

in this game, for this scenario, the player (buyer) can make offers to
purchase the house by choosing different values to the previously mentioned
information. the computer system (seller) will reply to an offer by either
accepting it or rejecting it. in the latter case, it will provide feedback on the
reasons for the rejection. the player will then re-adjust the offer until it is
accepted, or the maximum number of exchanges is reached.

the decision made by the computer system on whether to accept or re-
ject an offer is based on a simple threshold function. For the different pos-
sible values of the information included in the offer, the computer system
attributes a score that represents its contribution to a successful sell. For
example: the minimum sell price will have a neutral contribution to the fi-
nal sale decision and therefore have a score of 0; a price higher than the
minimum will contribute positively to the sale and therefore have a positive
score; and a price lower than the minimum will contribute negatively to the
sale and therefore have a negative score. When an offer is made the comput-
er system will add the contribution scores of all the information included in
the offer and compare the result with a pre-established threshold. the offer
will be accepted if the result is higher than the threshold. in order to make
the game interesting, the threshold value and the information scores are un-
known to the player.

When considering the same game on scenario two (the player is the
seller and the computer system is the buyer), the computer system will be
making the offers and the player will be accepting or rejecting them and
providing the respective explanations.

NEGoTIATIoN GAmES’ CoNTENT GENErATIoN EvAluATIoN

We evaluated the usability of the system by creating the textual content
of the negotiation games described in the previous sub-section. We were in-
terested in comparing the performance when writing the phrases manually
and when using our templates Generation authoring system. For this rea-
son, the content generating task was done manually for the first scenario,
and using the system for the second scenario, for both games.

the content requirement for the games was explained to the content
writers and they were asked to produce all the text needed. they were pro-
vided with examples of the possible phrases and the format in which they
were required. the description of the games and the tasks provided to them
are shown in appendices a and B.

the content writers were assisted by the system’s trainer during the
generation of the sentences for the first game. they used the system unas-

240 Caropreso, Inkpen, Keshtkar, and Khan

sisted for the second game. the time invested and the errors made by the us-
ers when generating content for the negotiation games are shown in table 3.

Table 3
errors Made and time invested (minutes) when
Generating Content for the negotiation Games

User 1 User 2 User 3

Game 1
Manually

1 spelling
error
(repeated 4
times)

40 1 spelling
error
(repeated
40 times)

40 4 spelling errors
(repeated 99 times)
2 missing sentences
4 repeated sentences

32

Game 1
System

1 un-IDed
verb
1 missed
filter

21 4 missed
filters

31 1 spelling error
4 missed filters

29

Game 2
Manually

no errors
found

25 1 spelling
error
(repeated
40 times)

17 3 spelling errors
(repeated 55 times)
2 extra sentences

35

Game 2
System

1 spelling
error

20 1 template
missing

12 1 spelling error
1 missing template
2 extra templates
2 wrong semantic
classes

15

in general, the writers took less time to create the templates using the
system (that will generate all the necessary sentences, from the created
templates) than it took to create all the sentences manually. as these three
writers wrote the manual sentences first, it could be the case that the speed
up resulted from thinking through and becoming familiar with the sentenc-
es generated for the game. however this hypothesis was discarded when a
fourth content writer was asked to perform the tasks for the same two games
but creating first the templates and then the manual sentences. Using the
system first still resulted in shorter times. these results are shown in table 4.

Template Authoring Environment for the Automatic Generation 241

Table 4
errors Made and time invested (minutes) when
Generating Content for the negotiation Games

(user 4 created the sentences using the system first)

User 4

Game 1
Manually

1 spelling error (repeated 4 times)
3 missing verbs

29

Game 1
System

no errors found 22

Game 2
Manually

1 spelling error (repeated 25 times)
1 wrong sentence (repeated 11 times)

46

Game 2
System

extra information in 6 templates 30

For the four content writers, some errors were introduced by the use
of the system, the most common being forgetting to define a filter. this er-
ror will result in the generation of extra sentences that were not required
and that will never be used by the game. it will not affect the quality or the
availability of the required sentences.

spelling errors were less common when using the interface. in addition,
spelling errors that appear in the manually generated sentences repeat them-
selves many times given the tendency of the content writers to copy-and-
paste text. Correcting the manually-generated spelling mistakes will imply
re-writing the word each time the error was repeated. Whereas correcting
the spelling mistakes in the templates will require only one manual inter-
vention and the automatic re-generation of all the sentences. this is also
true for any change required in the sentences due to the iterative refinement
of the narrative.

the content writers answered an evaluation questionnaire after generat-
ing the text for the negotiation games. the questionnaire is shown in ap-
pendix d. according to their answers, using the system to create the tem-
plates was “more enjoyable” and “less of a headache” than manually writ-
ing all the sentences. this was even more evident during the evaluation with
the second game. While manually-generating the sentences for the second
game, the writers re-used the sentences from the first game, many changes
were involved and the process was still time consuming. When using the
system, the writers re-used the semantic classes from the first game, adapt-
ing them as needed. the new templates were rapidly created given the pre-
vious similar experience.

242 Caropreso, Inkpen, Keshtkar, and Khan

CompArISoN wITh oThEr SySTEmS

in this section we present other systems that, given some visual and
philosophical similarities in the provision of a point-and-click interface for
novice users, might seem closely related to ours. the difference between
these systems and ours are explained.

wySIwym SymbolIC AuThorING SySTEmS

WYsiWYM (What You see is What You Meant) is a natural language
based technique used to create and update objects in knowledge bases (pow-
er and scott, 1998). it has been used in symbolic authoring systems that
allow the user to create symbolic representations from which documents in
different languages can be generated.

symbolic authoring systems implemented using the WYsiWYM tech-
nique provide the user with an interface that describe in natural language the
content of a knowledge base (i.e., which data objects are contained in it and
what is their current completeness status). they also allow the user to add
new data objects or edit already present ones in order to complete general
sentences in the displayed text. each time the knowledge base is updated
through this process a new text that reflects its current state is generated and
displayed. the final product of the process will be the desired document
generated from the resulting knowledge base. By using the WYsiWYM
technique, the symbolic authoring systems are accessible to users who are
not experts in knowledge representation or computational linguistics.

it must be noted that the general sentences (or templates) that are com-
pleted through the use of the interface have to be embedded in the system,
and therefore a new system has to be generated for each application.

the interface of these systems and the fact that options are selected
from pop up menus to complete sentences according to different object
types can make them look similar to our system. however the goal and final
product of our system are very different. the goal of our system is for the
user to design templates from scratch, which makes them domain indepen-
dent. By looking at all the possible sentences that could be generated from
a given template, the user can refine the template in order to obtain all and
only the required sentences for a specific need. the final sentences produced
by the template (generated through this process) are made available to the
user. these sentences are then incorporated in the narrative of the many dif-
ferent events that follow possible scenarios and actions taken in a digital
game.

Template Authoring Environment for the Automatic Generation 243

NATurAl lANGuAGE mENuS (NlmENuS)

nlMenus (tennant et al., 1983) is a concept used in some systems that
allow the user to access resources by asking for information using natural
language, such as consulting an airport database. the use of nlMenus al-
lows users to be ‘guided’ to valid queries without extensive training.

instead of letting the user express any possible query that the system
might not understand, with nlMenus the user is restricted to ask only ques-
tions that follows the systems internal grammar. this is realized through
a system-initiated process that facilitates the creation of nl queries. in
each step, options to complete the query are presented to the user in popup
menus. according to the choices made, the query is extended and new op-
tions are made available if appropriate. internally, all possible parse trees
are typically generated and kept track of during the query generation pro-
cess.

the grammars used by these nlMenus are restricted to the system’s
topic and desired queries, and only those queries that the system will be
able to reply to are allowed to be generated. even the vocabulary used is
restricted by the grammar.

in contrast, our system uses the general english grammar from sim-
plenlG. the sentences created using our system are therefore much less
restricted by the grammar, and the vocabulary itself has no limitations. even
the values of the semantic classes used for the template variables are speci-
fied by the user.

CoNCluSIoNS ANd fuTurE work

We have identified the need for an nlG template authoring environ-
ment that allows game content designers without linguistic and program-
ming background to experiment with and finally design language templates.

We have designed a system that allows the user to specify an example
sentence together with variables, its dependencies, and verb options that
complete the template. this system shows the user all the possible sentences
that could be generated with the specified template. it can be used to refine
the template until it satisfies the user’s needs.

We have implemented a system that makes use of the simplenlG java
library which provides us with correct sentences and the possibility of in-
cluding many verb variations, such as tense, form and modals.

We have evaluated the capabilities of our nlG template authoring
environment in a set of sentence templates from a digital-based interactive
simulation game that covered different characteristics.

244 Caropreso, Inkpen, Keshtkar, and Khan

We have also provided the system with a user-friendly intuitive graphi-
cal interface that allows the user to iteratively make changes to the sentence,
variables and dependencies definitions, and to set and modify the verb op-
tions. in the future we will extend this interface in order to allow the user to
create new semantic classes without having to manually edit the text files.
We plan to also offer the user a syntactic analysis of the example sentence
and suggestions for the type of variables to be used.

the convenience of using this interface was evaluated in the context of
the development of two negotiation games. the games’ content writers were
trained in the use of the system, were introduced to the negotiation games
concepts, and were provided with specifications for the sentences that need-
ed to be generated. they wrote the sentences for different scenarios of the
game either manually or using the system. the time spent in the tasks and
the quality of the obtained outputs were compared. in general, the use of the
system made the task faster, more enjoyable and less prone to errors.

Current research has attempted to employ the ability to generate in-
teraction content to support the illusion of emotions (strong et al., 2007;
stearn, 2002; alexandrova et al., 2010). We are studying the possibility of
using our system in the generation of feedbacks that account for the charac-
ters’ personality and mood. With this in mind, we are using machine learn-
ing in order to generate lists of expressions that denote formal/informal and
friendly/unfriendly discourse. the words in these lists could be used as vari-
ables of the respective semantic class to change the tone of the generated
feedback. a new type of agreement will have to be implemented for these
classes.

references

alexandrova, i.V., Volkova, e.p., kloos, U., Bülthoff, h.h. & Mohler, B.J.
(2010) Virtual storyteller in immersive Virtual environments Using Fairy
tales annotated for emotion states. proceedings of the Joint Virtual reality
Conference of euroVr.

Bateman, J.a. (1997). enabling technology for multilingual natural language
generation: the kpMl development environment. Journal of natural lan-
guage engineering, 3(1):15-55.

Bateman, J.a. (2002). natural language Generation: an introduction and open-
ended review of the state of the art.

dalianis, h. (1996). Concise natural language Generation from Formal speci-
fications, ph.d. thesis, department of Computer and systems sciences,
royal institute of technology, stockholm University. report series no. 96-
008, issn 1101-8526, srn sU-kth/dsV/r 96/8 se.

Template Authoring Environment for the Automatic Generation 245

van deemter, k., krahmer, e. & theune, M. (2005). real versus template-
Based natural language Generation: a False opposition? in Computation-
al linguistics, 31(1): 15-24.

French, d., hale, C., Johnson, C. & Farr, G. (1999). internet Based learning:
an introduction and framework for higher education and business. london,
Uk: kogan page.

Goldberg, e., driedger, n. & kittredge, r. i. (1994). Using natural language
processing to produce Weather Forecasts. ieee expert: intelligent systems
and their applications. 9(2): 45-53.

kenny, p., hartholt, a., Gratch, J., swartout, W., traum, d., Marsella, s. &
piepol, d. (2007) Building interactive Virtual humans for training envi-
ronments. proceedings of the interservice/industry training, simulation &
education Conference (i/itseC)

lin, r. & kraus, s. (2010) Can automated agents proficiently negotiate with hu-
mans? Communication of the aCM. 53 (1): 78-88.

Méndez, d.J.r., nakayama, k. (2008) adaptive self-feeding natural language
Generator engine. proceedings of intelligent Virtual agents, 533-534.

power, r. & scott, d. (1998). WYsiWYM: knowledge editing with natural
language Feedback. proceedings of the 13th Biennial european Confer-
ence on artificial intelligence (eCai-98).

reiter, e. & dale, r. (2000). Building natural language Generation systems
(studies in natural language processing), Cambridge University press.

reiter, e. 2007. simplenlg package: http://www.csd.abdn.ac.uk/ereiter/simplnlg
rowe, J.p., ha, e.Y. & lester, J.C. (2008) archetype-driven Character dialogue

Generation for interactive narrative. in intelligent Virtual agents, springer.
stearn, a. (2002) Creating emotional relationships with Virtual Characters. in

emotions in humans and artifacts, robert trappl, paolo petta, sabine payr
(eds.). Mit press.

strong, C., Mishra, k., Mehta, M., Jones, a. & ram, a. (2007) emotionally
driven natural language Generation for personality rich Characters in in-
teractive Games proceedings of the third Conference on artificial intelli-
gence for interactive digital entertainment (aiide-07), stanford, Ca.

tennant, h. r., ross, k. M., saenz, r. M., thompson, C. W. & Miller, J. r.
(1983). Menu-Based natural language Understanding. proceedings of the
21st annual meeting on association for Computational linguistics.

246 Caropreso, Inkpen, Keshtkar, and Khan

AppENdIx A

house purchase Negotiation Game Content Generation

Background:
a negotiation game is being created to train the player in being able to
recognize and react to offers being made. it is designed to focus on the
issues, and purchase offers only.

house purchase offers
- price [260000, 270000, 280000, 290000, 300000]
- Closing date [2 weeks, 4 weeks, 6 weeks, 8 weeks]
- appliances [included, not_included]
rejections reasons:
- price: too_low, no_problem
- Closing: too_early, no_problem, too_late
- appliances: included, no_problem

Scenario 1: (create manual output)
Purchase of a house [Player is the buyer; Computer AI is the seller]
You have offered to purchase the house for 260000, with appliances
included, with a proposed closing date of two weeks from now.
Congratulations, you are the new owner. the closing is in four weeks, the
appliances are not included, and it costs you 300000.
Your offer was rejected. the seller said that the price was too_low and the
appliances were included.

Scenario 2: (create templates using tool)
Sale of a house [Player is the seller; Computer AI is the buyer]
an offer was made to buy the house for 260000, with appliances included,
with a proposed closing date of two weeks from now.
Congratulations, you have sold your house. the closing is in four weeks, the
appliances are not included, and they paid you 300000.
You have rejected the offer because the price was too_low and the
appliances were included.

Example of generated Game XML:
<sent price: 260000, closing: 2 weeks, appliances: included>
You have offered to purchase the house for 260000, with appliances
included, with a proposed closing date of two weeks from now. </sent>

Template Authoring Environment for the Automatic Generation 247

<sent price: 260000, closing: 2 weeks, appliances: not included>
You have offered to purchase the house for 260000, with appliances not
included, with a proposed closing date of two weeks from now. </sent>
. . .
<sent price: 300000, closing: four weeks, appliances: not included>
Congratulations, you are the new owner. the closing is in four weeks, the
appliances are not included, and it costs you 300000. </sent>
. . .
<sent price: too low, closing: no problem, appliances: included>
Your offer was rejected. the seller said that the price was too_low and the
appliances included. </sent>

AppENdIx b

Job offer Negotiation Game Content Generation

Note: Outputs and Templates from scenario 1 and 2 may be reused as this
also involves similar game actions available to players
Job offers:
- salary [60k, 70k, 80k, 90k, 100k]
- start date [2 weeks, 4 weeks, 6 weeks, 8 weeks]
- rrsp Co-payment [included, not_included]
rejection reasons:
- salary: too_high, no_problem
- start date: too_early, no_problem, too_late
- rrsp Co-payment: included, no_problem

Scenario 1: (create manual output).
Negotiate salary and benefits for new job [Player is the job seeker;
Computer AI is the employer]
You have offered to join the firm for 100k, with rrsp Co-payment
included, with a proposed start date of two_weeks from now.
Congratulations, you obtained the job. the start date is in four_weeks,
rrsp Co-payment is not included, and you have a salary of 60k.
Your offer to join the firm was rejected. the employer said that the salary
was too_high and that the rrsp Co-payment was included.

Scenario 2: (create templates using tool)
Negotiate salary and benefits for new job [Player is the employer;

248 Caropreso, Inkpen, Keshtkar, and Khan

Computer AI is the job seeker]
You offered the candidate to join the firm for 100k, with rrsp Co-
payments included, and a proposed starting date of two weeks from now.
Congratulations, the candidate accepted the job. the starting date is in four
weeks, rrsp Co-payment is not included, and the salary is 100k.
You rejected the candidate’s offer to join the firm because the salary was
too_high and the rrsp Co-payment was included.

AppENdIx C

Templates Generation System Evaluation Survey

(answered by content writers after training).
after receiving training, is the interface easy to use? 1 (very complicated) -
5 (very easy)
how long did it take you to learn to use the interface? 1 hour - 1 day - 1
week - 1 month
how long did it take you to feel comfortable using the interface? 1 hour - 1
day - 1 week - 1 month
how clearly are options presented in the interface?
1 (not clear) - 5 (very clear)
indicate the type of sentences you have created:
•	 short sentences / long sentences
•	 one subject / several subjects
•	 one verb / several verbs
•	 one variable / several variables
•	 with many/few dependencies / without dependencies
•	 facts / negations / questions
•	 progressive / passive / perfect
•	 form: normal / imperative / infinitive
•	 verb agreement: default / plural / variable

With respect to the generated sentences:
are them always correct? in which types (from above) they were not cor-
rect? please give examples of errors in generation.
is there any other type of sentences you would like to create?
how useful do you consider the system?
1 (not really useful) - 5 (very useful)
please explain why you do/don’t consider the system useful.
What would make the system more useful?

Template Authoring Environment for the Automatic Generation 249

AppENdIx d

Templates Generation System Evaluation Survey

(answered by content writers after using it for generating the content for
scenario 2 of both negotiation games.)
advantages and disadvantages of writing the sentences manually.
advantages and disadvantages of using the system.
advantages and disadvantages between:
a) creating all the different rejection templates
b) having all the combinations already in a semantic class and using it for
generating only one rejection template.

Acknowledgment

We thank Carrie lavis for her insights on the negotiation games;
Waqqas abdul-Basit for programming the visual interface; and the system’s
users for helping us on testing the system.

