
1

ITI 1120
Introduction to Computing I

Class Notes
Fall 2014

D. Inkpen

(contributors: G. Arbez, D. Amyot, S. Boyd, M. Eid

A. Felty, R. Holte, D. Inkpen, W. Li, S. Somé, A. Williams)

Not to be used or reproduced without permission of the authors

“I really hate this darn machine; I wish that they would sell it.
It won't do what I want it to, but only what I tell it.”

- The Programmer’s Lament

2

Table of Contents

• Section 1: Introduction...3

• Section 2: Introduction to Java46

• Section 3: Algorithms and Translating them to Java...91

• Section 4: Tracing and Debugging.....................................119

• Section 5: Branching..137

• Section 6: Loops and Arrays..162

• Section 7: Program Structure...213

• Section 8: Recursion..238

• Section 9: Matrices...273

• Section 10: Introduction to Objects..............................303

• Section 11: Object-oriented Design................................337

3

Section 1: Introduction

Objectives:

• Software development

• Specifications and algorithms

• Variables and expressions

“If you don’t think carefully, you might believe that programming
is just typing statements in a programming language .”

- W. Cunningham, WikiWiki inventor

4

Historical note …

• Charles Babbage, British
mathematician and engineer,
designed and built, in 1833,
parts of a machine that
contained modern
components such as: central
processing unit, memory, and
a data input device with
punch cards.

• John von Neumann, Hungarian
mathematician, participated in the
development of the first computer:
ENIAC (1945)

• The principle of the Von Neumann
architecture: the data and the
programs are encoded in the
memory

http://en.wikipedia.org/wiki/Charles_Babbage
http://en.wikipedia.org/wiki/Image:CharlesBabbage.jpg
http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/ENIAC
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Von_Neumann_architecture

5

Software Development

• This course is about solving problems using computer software.

– Real-life software can include tens of millions of lines of
program code, or it can be just a few lines of code in a life-
critical system.

– Software design teams can range from a single person to
over a thousand people.

– Software can live for decades (example: the SABRE airline
reservation system is over 50 years old) and must be
maintained to be successful.

– To produce successful software, a systematic and rigorous
development process is needed.

• Software engineering:

– The process of designing software that functions correctly,
and producing the software on time and within a budget.

6

Software Life Cycle

1. Requirements analysis
– What problem are you trying to solve?
– What are the needs of the users?
– What resources are available?

– Equipment, time, cost, people
– Develop a plan

2. Design
– Proposal for the solution of the problem within the

constraints of the requirements
– Model the software system

– Structure of the software (“architecture”)
– Organization of data

3. Algorithm development
– Determine the steps required to solve particular problems

or sub-problems.

7

Software Life Cycle(continued)

4. Implementation

– Creation of program code:

– Manually, or semi-automatically with tools.

5. Quality Assurance

– Testing: Running experiments to see if the
software has the expected functionality and
performance.

– Verification: Show that undesired functionality
is not possible (when feasible).

– Debugging: The process of determining how to
modify software to remove problems.

8

Software Life Cycle

6. Deployment

– How does the software get to the customer?

– How is the software installed and configured in the
customer’s environment?

7. Maintenance

– As customers report problems, how are the fixes
developed, tested, and deployed?

– How are new features added?

– How are obsolete features retired

• Documenting is an activity that occurs throughout the cycle.

• ITI 1120 covers this life cycle but focuses mainly on algorithm
development (#3) and implementation (#4).

– Start with problem analysis

– Produce a program to solve it.

9

Problem Analysis

• Our aim is to use a computer to solve problems.

• Problems are usually stated in a “natural language” (e.g. English),
and it is up to you, as a software designer, to extract the exact
problem specification from the informal problem statement.

• This involves understanding the problem, and clarifying:

– What data is “given” or “input” (available for use when the
problem-solving takes place)

– What results are required

– What assumptions are safe to make

– What constraints must be obeyed.

“Computers are good at following instructions, but not at reading your mind.”
- D. Knuth

10

Problem: Average of three numbers

• Informal statement:
– John wants to know the total and average cost of

the three books he just bought.

• GIVENS: descriptions and names of the values that
are known
– cost1, cost2, cost3: numbers representing the cost

of each of John’s books
• RESULTS: descriptions and names of the values to be

computed from the givens
– avg, the average of cost1, cost2, cost3

• No assumptions or constraints (for now!)

11

What is an Algorithm?

• An algorithm is a sequence of well-defined steps for solving a
problem.

• Developing an algorithm for a problem is a creative process.

• Sometimes, part of this process involves problem decomposition,
which involves deciding how to break the problem into smaller
sub-problems.

• Keep in mind:

– There can be many algorithms for the same problem, and you
may have to choose the most appropriate solution.

– There are problems for which there is no algorithm that
solves the problem.

12

Problem: Area of a Triangle

• Informal statement: Given 3 numbers representing
the lengths of the sides of a triangle, find the area
of the triangle.

• GIVENS: side1, side2, side3: numbers representing
the sides of a triangle

• RESULT: area: the area of the triangle

• ASSUMPTIONS: side1, side2, and side3 are greater
than zero.

• CONSTRAINTS: The three values side1, side2, and
side3 must form a closed triangle.

– Example: If side1 is 1, side2 is 1, and side3 is 5, a
closed triangle cannot be formed.

13

Algorithm models (I)

• Before getting into the details of coding, you should build a
model of the algorithm.

• The algorithm model we will use in this course has the following
format (important!):

GIVENS

– A list of the names of given values (with comments)
RESULTS

– The name of the result (or a list of results) (with comments)
HEADER <RESULTS> <algorithm name> (<GIVENS>)

– It specifies the name of the algorithm, an ordered list of the
givens, and an ordered list of the results.

(continued next page)

14

Algorithm models

ASSUMPTIONS

– A list of general conditions that are assumed to be
true for the algorithm. The user of the algorithm
is expected to meet these assumptions.

CONSTRAINTS

– A list of specific conditions that are assumed to be
true when the algorithm starts, usually with
respect to the values of the GIVENS. Normally,
the constraints should be checked

BODY

– A sequence of instructions which, when executed,
computes the desired results from the givens.

15

Data in Algorithm Models

• Literals: constant data values

– Two types: numeric data, and textual data

• Examples of numeric literals:

 2, 3.14159, –14, –14.0

• A character is enclosed in single quotes. The quotes are not part
of the data. Examples of character data

‘a’, ‘A’, ‘1’, ‘!’

• A string is a sequence of characters enclosed in double-quotes.
The quotes are not part of the data. Examples of strings:

″Hello″, ″ foo″, ″bar ″, ″2″, ″ ″, ″″

16

Storing values in a computer

• The computer’s memory consists of a large, but
NOT unlimited, number of storage locations, each
of which has an address to identify the location.

• A computer variable is a location in memory with
an address that contains a value.

• A variable has the following attributes:
– Name: Used by the computer as the address

in the memory.
– Value: The contents of the storage location.
– Type: Constraints on the values that can be

stored in a variable, or on the operations that
can be performed.

17

Assigning Values to Variables

• To give a value to a variable is called assignment.

• In our model notation, we use

 aVariable anExpression

 to denote assigning the value of the expression anExpression to
a variable named aVariable.

– Example: x 3

• On the right-hand side, anExpression could be a literal value, a
variable (its value is taken), or an expression involving both.

– Example: x anotherVariable

• Example: x 4, y 3, x y

– What are the values of x and y after the execution?

• The names (variables) of the GIVENS of an algorithm are called
parameters (or, formal parameters)

18

Simple Expressions

• An expression is a statement whose execution
produces a value

• An expression may use operators, for example,
arithmetic operators (+, -, * or , / or)

– Example: 40 + 10/5, * log2(32)

• An expression can also use variables

– Example: 40 + |y|/5

• The results of an expression can be assigned to a
variable

– Example: x 40 + y/5

49

19

Operators

• Operators perform some sort of calculation on values.

• The number of values an operator uses may vary:

– Binary: has two operands (values)

– Unary: has one operand

– Examples:

• Subtraction: a binary operator.

• Negation: a unary operator.

• Operators must be evaluated in a specific order, and
some operators may have precedence over others.

– For our algorithm models, we will use the order and
precedence rules from mathematics.

20

Division and remainders

• It is often useful to perform division in entirely within integers,
as opposed to using real numbers.

• Two types of division:

 Real: 11.0 / 4.0 result: 2.75

 Integer: 11 4 result: 2

• The result of integer division is truncated; the fraction is
cut off.

• When doing division in integers, it is also very useful to obtain
the remainder from the division. This is done with the mod

operator.

 11 mod 4: result: 3

• Finding the remainder has several important uses:

– The value of x mod y is always in the range from 0 to y − 1.

– The value of x mod 10 gives the last digit of x.

21

Exercise 1-1 - Algorithm for Average

GIVENS: num1, num2, num3 (three numbers)

RESULTS:

avg (the average of num1, num2, and num3)

HEADER:

BODY:

22

Exercise 1-2 - Another example

• Write an algorithm (computeP) that takes as input three values
(a, b, c) and returns the proportion of each value out of their
total.

• First solution:

23

Exercise 1-2 - Another example (cont.)

• Second solution:

24

Intermediate Variables

• Often it is useful within an algorithm to use a variable
that is neither a given nor a result used to
temporarily hold a value.

• These INTERMEDIATE variables should be listed and
described along with the givens and results at the
start of an algorithm definition.

• Their values are not returned to the calling
statement, nor are they remembered from one call to
the next.

• Intermediate variables are used mainly for improving
readability of the algorithm or for the efficiency of
the algorithm.

25

More on INTERMEDIATES

• INTERMEDIATES have values that can vary.

– They may vary depending on the problem instance (in other
words, depending on the values of the GIVENS).

– They may change during computation.

• INTERMEDIATES that do not vary are called CONSTANTS.

– Their values are fixed.

• They are the same no matter what the values of the
GIVENS are.

• Their values will not change during the computation.

– They can be given names that help document the algorithm
and make it more readable.

– Representing constants by names reduces maintenance
effort.

26

Exercise 1-3: Average out of 100

• Write an algorithm that takes three scores (each out
of 25) and computes their average (out of 100).

– (Idea: average the scores, then convert the result
to be out of 100.)

27

Exercise 1-4 - Last example…

• … Without a constant

…

Body

 …

 tax1 c1 * 0.07 // GST

 tax2 c2 * 0.07 // GST

 tax3 c3 * 0.07 // PST

 tax4 c4 * 0.07 // GST

 …

• …with constants GST and PST

28

Summary of Variables

• GIVENS are the variables that contain input values.
They vary from one call (see next slide) to another.
In other words, their values can be different for
each problem instance.

• RESULTS are the variables that contain answers that
are generated by an algorithm.

• INTERMEDIATES are the other variables used in
solving the problem.

29

Sub-program

• The sub-program consists of a sequence of computer
instructions that accomplish some task

– A sub-program typically operates on a set of
variables (givens and intermediates)

– A sub-program typically produces some results.

– The algorithm model is a model of the subprogram

– Sub-programs can be “called” from other sub-
programs – more on this in Section 3

30

Representing Input in Algorithm Models

• Would like to define algorithm models (i.e. sub-programs) to interact
with the user

• Need to define algorithms that represent the reading of values from
the keyboard and writing of strings to the console

• Lets define the following algorithm models (headers) to read from the
keyboard:
– numVar ← readReal() to read a real number from the keyboard
– intVar ← readInteger() to read an integer from the keyboard
– strVar← readLine() to read a line of input, i.e. a string from the

keyboard
– boolVar ← readBoolean() to read “true” or “false”.
– charVar ← readCharacter() to read a single character from the

keyboard.
– numVar ← random() to generate a real number greater or equal to

0.0 and less that 1.0
• Examples of “calling” the algorithms (sub-programs)

x ← readReal()
a ← readInteger()
(the above are calls to algorithm models)
(also note that we are not concerned with how the algorithm models

work)

31

Representing Output in Algorithm Models

• Lets define the following algorithm models to write to the
terminal console:
– printLine(<argument list>)

• Prints a string on a line to the console (the cursor is
moved to the next line)

– print(<argument list>)
• Prints a string to the console (the cursor is left at the

end of the printed string)
– The printed string is the concatenation of the arguments in

the <argument list>. An argument can be a string, literal, the
name of a variable, or an expression.

– Examples:
print(“Please enter the value: “)
printLine(“The result is “, x)
printLine(“Adding a to b gives “, a+b)

– The argument list is translated to a concatenation expression
in Java

32

Instruction block

• An instruction block consists of a sequence of
computer instructions

– The computer executes each instruction in
sequence

– Note that a single instruction can be made up of
many operations (+, -, ← +)

– The body of the Algorithm model is an instruction
block

33

Models vs. Computation

• We are using mathematical operators and values as a model for
computation.

• A model is only an abstraction that captures the essentials of
the problem, but not all the details. When it comes to actual
computation, additional constraints may be introduced:

– Can we use numbers of unlimited range?

– What about types of values?

– How fast are the computations performed?

– Do we have enough memory for all of the variables?

– Does an operator in a programming language work exactly the
same way as in mathematics?

34

Conversion to source code

• Coding = translating an algorithm into a particular programming
language so it can be executed on a computer.

• Do not be too quick to code! It is much better to spend time on
your algorithm, mentally checking it, thinking about it, and
“tracing” it on test data to be sure that it is correct.

• Coding is largely a mechanical process, not a creative one.

• Both algorithm development and coding require very careful
attention to detail.

“The sooner you start to code,
the longer the program will take.” - R. Carlson

35

Programming Languages

• Inside the computer, the hardware understands only
sequences of electrical signals, represented by digits
0 and 1 (“machine language”).

– This language is usually specific to a particular
computer processor.

• Since long sequences of zeros are difficult for people
to work with, programs are normally created in a
programming language, and then translated to
machine language.

• Programming languages have a very precise grammar
(“syntax”) and unambiguous meanings of statements
(“semantics”).

36

Types of Programming Languages

• Machine-level languages
– Numbers. The only language computer understands

directly

• Assembly languages
– Instructions made up of symbolic instruction codes
– Assembler converts the source code to the machine

language

• High-level languages (third generation)
– Use a series of English-like words to write instructions

• Forth-generation languages:
– Syntax closer to human language (for databses, e.g., SQL)
– Provide visual or graphical interface for creating source

code (e.g., VisualBasic.Net)

37

Programming Paradigms

High-level languages:

• imperative / procedural programming

 (e.g., Basic, Pascal, Fortran, C)

• object-oriented programming

 (e.g., Java, C++, SmallTalk)

• functional programming (e.g., Lisp, ML)

• logic programming (e.g., Prolog)

38

Programming languages

Language When invented Typical uses

FORTRAN 1956 Scientific computation

LISP 1958 Expert systems

COBOL 1960 Business

APL 1962 Mathematics, statistics

Basic 1971 Teaching, business

C 1972 Operating system creation

C++ 1984 General purpose,
communications

Java 1993 General purpose, internet
applications

39

Other languages

Language When invented Known for…

Pascal 1971 Teaching

Smalltalk 1972 Object-oriented

Prolog 1972 Logic, expert systems

Ada 1979 US Defence Dept. software
standard language

*SQL = Structured
Query Language

1979 Databases

*HTML = HyperText
Markup Language

1992 Web page formatting

*XML = eXtensible
Markup Language

1996 Internet data exchange

C# 2002 Microsoft’s answer to Java

* Special-purpose languages: not for general programming.

40

Compilers vs. Interpreters

• Compiler = a program that translates source code into
machine code. At the end of the compilation the
machine code can be executed.

• Interpreter = a program that translates each line of
code into machine language and executes it before
translating the next line.

• Differences:

– Execution of compiled code is faster.

– Compilers can do optimization.

– Interpreters used for prototyping, multiplatform.

41

Translation in Java

Java source

code

Machine

code

Java

bytecode

Java

Interpreter

(Java Virtual

Machine)

Bytecode

compiler

Java

compiler

42

Basic Program Development

errors

errors

Edit and

save program

Compile program

Execute program and

evaluate results

43

Testing, Debugging, and Maintenance

• Testing = looking for errors (“bugs”) in an algorithm
or program by executing it on test data (givens) and
checking the correctness of the results. Big
programs are usually impossible to test completely.

• Debugging = locating and correcting an error in an
algorithm or program.

• Maintenance = changing an algorithm or program that
is in use, updating, fixing errors.

44

Three Types of Errors

1. Syntax errors: These are illegal combinations of symbols that
do not obey the rules of the programming language.

• Symptom: the program will not compile.

2. Run-time errors: These are errors which result from the data
values used.

• Symptom: the program crashes while running.

3. Logic (semantic) errors: These are errors which result from
incorrect reasoning in the program. They probably occur
because the algorithm is wrong.

• Symptom: the program runs, but the results are wrong.

45

Documentation

• Documentation is all of the materials that make
software easy to understand for both software
designers, and users of the software.

• Internal documentation (such as comments,
descriptive variable names) occurs inside the
program.

• External documentation (such as models, user
manuals, etc.) is documentation which is outside of
the program.

“If you can't explain it simply, you don't understand it well enough.”
- A. Einstein

46

Section 2: Introduction to Java

Objectives:
• Data Types
• Characters and Strings
• Operators and Precedence
• Reading and Displaying Values
• Class Template

“The only way to learn a new programming language is by writing programs in it.”
- B. Kernighan & D. Ritchie

47

Historical note …

• In 1990, Tim Berners-Lee, researcher at
CERN in Geneva, developed the World Wide
Web technology, in order to facilitate
information access on the Internet.

• He initiated many standards, among which
the most utilised are HTTP, URL, and the
HTML language.

• Now he is working on the Semantic Web

In 1992, at Sun Microsystems, James Gosling
(born in Canada) and his team invented, the
programming language Oak, renamed Java in
1994.

http://en.wikipedia.org/wiki/Tim_berners-lee
http://en.wikipedia.org/wiki/Tim_berners-lee
http://en.wikipedia.org/wiki/Tim_berners-lee
http://en.wikipedia.org/wiki/Semantic_web
http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Java_%28Sun%29

48

Conversion to source code

• Our approach to software development consists of developing
and testing first an algorithm model and then to TRANSLATE
(convert or code) to source code using a programming language.

• Coding algorithm models is largely a mechanical process, and
requires very few decisions.

• For each instruction block of the software model, we shall study
an approach to translate into source code. The algorithms can
be translate block by block.

“When a new language will allow to program in
English, we will discover that programmers

cannot speak English.” - Anonymous

49

Java

• The programming language used in this course is Java.

• A Java program consists of a number of classes. Every class is
saved in its own file with the same name and extension .java.

• A method (e.g. main) can also call other methods, that can be
added to the class. Java methods are sub-programs designed
from problem decomposition.

• At this stage, we will develop software that uses ONE class
containing two methods. The method main will implement the
interaction with the user and the second method solves the
problem.
– You will develop two algorithm models, one for each method.
– The method main is the first method executed when the

software is started. It will call the problem solving method.

50

Data in Java

• Data items used in a Java program are represented
by LITERALS and VARIABLES.
– A literal represents a constant, such as

•123 (an integer),
•12.3 (a real number),
•'a' (a character),
•true (a Boolean value).

– A variable uses an identifier (e.g. x) to represent a
data item.
• It represents the address of the memory

location where the value is stored.
• Only after it has been initialized (assigned a

value), should you consider that its value is
“known”

51

Data Types

• Data items in Java have TYPES.

• A data type specifies:

1. Which values the data item can take.

– That is, the set of legal literals.

2. Which operations are available to manipulate this
data item, and what those operations do.

3. How this data item is to be stored in a computer.
– We will leave details of internal

representation format for another course.

52

Java Primitive data types

• A data item has a PRIMITIVE type if it represents a
single value, which cannot be decomposed.

• Java has a number of pre-defined primitive data
types. In this course, we will use the following types:

int represents integers (e.g. 3)

double represents “real” numbers (e.g. 3.0)

char represents single characters (e.g. ‘A’)

boolean represents Boolean values (e.g. true)

53

Type int

• A variable of type int may take values from
–2147483648 to 2147483647.
– Exceeding the range of legal values results in OVERFLOW, a

run-time error.

• The following operators are available for type int :
+ (addition)
– (subtraction, negation)
* (multiplication)
/ (integer division, where fraction is lost; result is an int)

Example: 7 / 3 gives 2
% (remainder from division)

Example: 7 % 3 gives 1
== != > < >= <= (comparisons: these take two

 values of type int and produces a
 boolean value)

54

Short-Hand Notation

• A very common expression is used to increment integer
variables:
int i;

i = i+1;

• This is so common in computer programs that a short-hand

notation is used:
i++;

• This will be very practical when defining loops (Section)

55

Type double (Literals)

• Type double represents “real” numbers approximately from
-1.7 10308 to 1.7 10308 with 15 accurate significant digits.
– While there are a lot of double values, the set of legal

double values is still finite, and so they are only an
approximation to real numbers.

– After a computation, the computer has to choose the closest
double value to a real result: this can introduce “round-off”
errors.

• Format of large or small values:
 12345600000000000.0 = 0.123456 1017 is 0.123456e17
 0.00000123456 = 0.123456 10-5 is 0.123456e-5

• If the value of the exponent is more negative than -308, the
result is UNDERFLOW, and the value will be replaced by zero.
This happens quietly, and is not a run-time error.

56

Type double (Operators)

• The following operators are available for type double :
+ (addition)
– (subtraction, negation)
* (multiplication)
/ (division in “real” numbers, result is a double)
> < (comparisons: these take two values of

 type double and return a boolean value)

• WARNING: Using == (or != >= <=) to compare two values of
type double is legal, but NOT recommended, because of the
potential for round-off errors.
– Instead of (a == b), use
(Math.abs(a – b) < 0.001)

 where Math.abs(x) returns |x|

57

Type boolean

• Only two literals: true and false

• The following operators are available for type
boolean:

! NOT (a unary operator, similar to a negative sign)

&& AND

|| OR

comparison : == !=

58

Type char (1)

• Characters are individual symbols, enclosed in single
quotes

• Examples
– letters of the alphabet (upper and lower case are

distinct) 'A', 'a'
– punctuation symbol (e.g. comma, period, question

mark) ',', '?'
– single blank space ' '
– parentheses '(',')'; brackets '[',']';

braces '{','}'
– single digit ('0', '1', … '9')
– special characters such as '@', '$', '*', and so

on.

59

Type char (2)

• Each character is assigned its own numeric code:

– ASCII character set (ASCII = American Standard
Code for Information Interchange)

• 128 characters

• most common character set (if you speak
American English)

• used in older languages and computers

– UNICODE character set

• over 64,000 characters (international)

• includes ASCII as a subset

• used in Java

60

Collating Sequence

• In the computer, a character is stored using a numeric code.
– The most commonly used characters in Java have codes in

the range 0 through 127.
– For these characters the UNICODE code is the same as the

ASCII code.
• Examples:

• Exercise 2-1 - The numerical order of the character codes is
called the collating sequence. It determines how the comparison
operator works on characters:

 'A' < 'a' is
 while
 '?' < ' ' is

character 'a' 'A' ' ' '0' '?'

UNICODE value 97 65 32 48 63

61

Digit and Letter Codes

• Important features of the ASCII/UNICODE codes:

– Codes for the digits are consecutive and ordered in the

natural way (the codes for '0' to '9' are 48 through 57
respectively). Thus
'2' < '7' gives true

'7' - '0' gives 7

– The same is true of the codes for the lower case letters
('a' to 'z' have codes 97 through 122 respectively). Thus

'r' < 't' gives true

– The same is true of the codes for the upper case letters
('A' to 'Z' have codes 65 through 90 respectively).

• Note they are smaller than the codes for the lower case
letters: 'b' - 'A' gives 33

62

Exercise 2-2 - Test for Upper case

• Suppose the variable x contains a value of type char.

• Write a Boolean expression that is TRUE if the value
of x is an upper case letter and is FALSE otherwise.

– Note that you don't need to know the actual code
value of the characters!

63

Special characters

• Some characters are treated specially because they cannot be
typed easily, or have other interpretations in Java.

– new-line character '\n'

– tab character '\t'

– single quote character '\''

– double quote character '\"'

– backslash character '\\'

• All of the above are single characters, even though they appear
as two characters between the quotes.

• The backslash is used as an escape character: it signifies that
the next character is not to have its “usual” meaning.

64

Type conversion

• In general, one CANNOT convert a value from one type to
another in Java, except in certain special cases.

• When a type conversion is allowed, you can ask for a type
conversion as follows (this is called “casting”):

(double) 3 gives 3.0
(int) 3.5 gives 3 (note loss of precision!)
(int) 'A' gives 65 (this is the UNICODE value)
(char) 65 gives 'A'

• WARNING: Type conversions with unexpected results have

resulted in serious software problems.
– One such error caused the self-destruction of the Ariane

501 rocket in 1996.

• The best strategy: DON’T mix types or values, unless absolutely
necessary!

65

Strings

• A STRING is a collection of characters.
– There is NO primitive data type in Java for a string.

• We will see later how to deal with strings in general.

• String literals (constants) can be used to help make your
program output more readable.
– String literals are enclosed in double quotes:

"This is a string”

• Watch out for:
– "a" (a string) versus 'a' (a character)
– " " (a string literal with a blank that has length 1) versus
"" (an empty string: a string literal of length 0)

– "257" (a string) versus 257 (an integer)
– “ ” « » are not valid quotes in Java!

66

String Concatenation

• Strings can be CONCATENATED (joined) using the +
operator:

– "My name is " + "Diana" gives
"My name is Diana"

• String values can also be concatenated to values of
other types with the + operator.

– "The speed is " + 15.5 gives
"The speed is 15.5"

– Because one of the values for the + operator is a
String, the double is converted to a String value
"15.5" before doing the concatenation.

67

Precedence of Operators

• Operators are evaluated left-to-right, with the following
precedence (all operators on the same line are treated equally):

() (expression) [] (array subscript) . (object member)
+ – (to indicate positive or negative values) ! (not)
* / %

+ - (for addition or subtraction of two values, concatenation)
< > >= <=

== !=

&&

||

= (assignment to variable)

68

Exercise 2-3 - Operator Precedence

• What is the order of evaluation in the following
expressions?

a + b + c + d + e a + b * c - d / e

a / (b + c) - d % e

a / (b * (c + (d - e)))

69

Variables in Java

• The givens, results, and intermediates, of an algorithm are
represented by variables in a Java program.

• To use a variable, you must declare it first.
– A declaration of a variable specifies its type, its name, and,

optionally, its initial value.
– A declaration reserves memory for the variable.
– Examples

int x = 0; // An int variable x with initial value 0

double d; // A double variable not initialized

char c = ' '; // A char variable initialized as a blank

boolean b1 = false; // A boolean variable initialized to false

• Variable declarations end with a semicolon.

70

Exercise 2-4 – Some Math

• To assign a value to a variable the operator “=“ is used, as in
x = 2;

• Declare the following variables:

– Three real variables: cost1, cost2, cost3

– A real variable avg

– An expression that computes the average of the variables
cost1, cost2 and cost3 and assigns the results it to avg.

• Declare the integer variables intVar1, intVar2, quotient,
and remainder

– Provide the expression that assigns the quotient of intVar1
divided by intVar2 to quotient.

– Provide the expression that assigns the remainder of
intVar1 divided by intVar2 to remainder.

71

Exercise 2-4 – Some Math

// Variable declarations

// Compute the average

// Variable declarations

// Compute quotient and remainder

72

Primitive variables

• When a variable is declared as a primitive type,

– there is a location allocated in the computer
memory to hold the value of this variable.

– The name of the variable (represents the address
of the variable) is permanently associated with
this memory location.

73

Reference variables

• If a variable is of an array type, or a user-defined type (an
“object”, to be introduced later), the variable is a reference
variable.

• This variable is used to “reference” an array, or an object.

• When the reference variable is declared, there is no memory
allocated to hold the array, or the object. You must use
operator new to create the array, or the object, and associate
the variable to this array or object (or different ones).

– The reference variable is a variable that contains an address

– Associating an array or object to a reference variable means
assigning the address of the array/object into the reference
variable

– More on reference variables later!

74

Comments

• A comment is an explanation of the meaning of your variable or
code.

• Java comments have (mainly) two forms:

– A comment starting from // to the end of a line, such as
int size = 30; // number of students in a class

– A comment between /* and */, such as
/* this program calculates the sum of N

 * numbers and displays the result.

 */

• Comments are used to help people to read the program, and are
ignored by the computer.

“Being forced to write comments actually improves code,
 because it is easier to fix a crock than to explain it.”

-- G. Steele

75

Javadoc

• The Java development kit also includes a tool called javadoc.
This tool will take specially formatted comments, and build
documentation web pages.

• A javadoc comment:

 /**

 * This text will appear on a web page.

 *

 * @author Diana Inkpen

 * @version 2009

 */

• More information at http://java.sun.com/j2se/javadoc

76

Java Methods

• As already mentioned, the Java Method is a sub-program
• Every method in Java has

– Return type: It specifies what is the type of the result of
the method. If there is no result, this type is void.

• For now always include keywords “public static” before
the return type.

– Name: To reference the method (same as the name of an
algorithm).

– Parameter list: It specifies the name and the type of the
parameters, in order.

• Note that the parameter list is a list of “variable
declarations”.

– Body: An instruction bloc consisting of a sequence of Java
instructions which is the translation of the algorithm body

• Notice the form of the instruction bloc: the use of the
braces { } and the indentation.

77

Method Template

public static double avg3(int a, int b, int c)

{

 // DECLARE VARIABLES/DATA DICTIONARY

 // intermediates and

 // the result, if you give it a name

 // BODY OF ALGORITHM

 // RETURN RESULT

 return <returnedValue>;

}

Method name Return type

 expression

(value to return)

// METHOD Name: Short description of what the

// method does, plus a description of

// variables in the parameter list

 Parameter list

78

A Java method “returns” a value

• A Java method may return no or one value.
– It is not possible to return more than one value in Java, as

can be done with our algorithm models. However...
• This value may be a primitive type or a reference type.

For example, a method may return the reference to an
array.

– For now, we shall develop algorithm models that use only one
results variable

– The Java method returns a “value”, it does not assign a value
to a variable

• The call to a Java method can be interpreted as “reading
the value of a variable” and as such, can be placed
anywhere (i.e. expressions) a variable name is used.

• In this course, to align with the algorithms, we shall
assign the return value of a method call to a variable and
in methods always declare a result variable

• More details on method calls in Section 3

79

A method with return type void

• If a method does not return a value, i.e., return type
void, then a call activates the method to do
whatever it is supposed to do.

public static void print3(int x, int y, int z)

{

 System.out.println("This method does not return any value.");

 System.out.println(x);

 System.out.println(y);

 System.out.println(z);

}

• When the method is called by
 print3(3, 5, 7);

 it simply prints these arguments to the screen.

80

“Standard” Java Methods

• Java offers “standard” classes and methods

– For example methods for doing certain math
functions

• Used Math.abs(a-b) to implement |a-b| in
slide #56. Type double (Operators).

• To translate use Math.sqrt(x)

• See section 5.10 in Liang for a list of Math
methods

– Other methods exist to read from the keyboard
and write to a terminal console

• Shall explore such methods in just a moment.

 x

81

Java Output

• Java uses a console for basic output; i.e. for communicating to
the user.

– If you run a program from a command line console (terminal),
the console (window and keyboard) is used for input and
output.

– If you run a program from a development environment (e.g.
DrJava), the console may be a special window.

• Most real-life applications use dialogs (a special window) for
output.

82

Java Output

• To output a value to the console, we will use two Java
methods from the class System.out:

System.out.println(“aaa/nbbb”)

System.out.print(...)

– Method println() will append a new-line
character to the output, while print() does not.

• Calls to these methods are unusual in that they will
accept any type of argument or no argument.

– Method call println() with no argument can be
used to print a blank line.

83

Java Input

• Input is not as simple as output.

• Basic input from the console/keyboard has been
difficult until recently.

– Java 5.0 has made this much easier.

• Many applications use dialogs for input as well:

84

Reading Input from the Keyboard

• Older versions of Java used a complicated
construction to read from the keyboard.

• To keep things simple, we provide the Java class
ITI1120, available on the course website. It is
compatible with Java 1.4, 1.5/5.0, 1.6/6.0 and 1.7/7.0.

• In your assignments, include the file ITI1120.java,
in the same directory as your program. Then you can
invoke the methods of this class in order to read a
value (or several values) from the keyboard.

85

The methods of the class ITI1120

ITI1120.readInt() : Returns an integer of type int
ITI1120.readDouble() : Returns a real number of type double
ITI1120.readChar() : Returns a character of type char
ITI1120.readBoolean() : Returns a value of type boolean
ITI1120.readDoubleLine() : Returns a array of double
ITI1120.readIntLine() : Returns an array of int
ITI1120.readCharLine() : Returns an array of char
ITI1120.readString() : Returns a string of type String

• The value returned by these methods needs to be assigned to a

variable of the right type.
• After the invocation of a method, the program will wait for the

data to be entered.
• When you input a value from the keyboard and press ENTER, the

program stores the value in a variable that you specify, and
continues the execution.

86

Examples of using the ITI1120 class

int x = ITI1120.readInt();

• If you enter 123 and press ENTER, x will be assigned
the value 123.

• The method readDouble functions in a similar way.

87

Program Template
 (To be Used for Assignments)

// Comments identifying you

// Comments describing what the program does

// and how it is used (e.g. what input is required)

import java.io.* ;

class PutYourClassNameHere

{

 public static void main (String args[])

 {

 // DECLARE VARIABLES/DATA DICTIONARY

 // PRINT OUT IDENTIFICATION INFORMATION

 System.out.println("ITI1120 Fall 2012, Assignment 0, Question 57");

 System.out.println("Name: Grace Hoper, Student# 12345678");

 System.out.println();

 // READ IN GIVENS use our ITI1120 special class for keyboard input

 // BODY OF ALGORITHM - Call to the method to solve problem

 // PRINT OUT RESULTS AND MODIFIEDS

 }

 // Put the method called by “main”.

}

88

More on Reading Input from the Keyboard
(an alternative with Java 5.0 and Java 6.0)

• Java now comes with a class called Scanner that
simplifies input.

• How to use a Scanner:
1. Create a new scanner, and assign it’s reference to

a reference variable keyboard.
2. Each time you want a value from the keyboard,

call a method via the reference variable
keyboard.

• The method that you call depends on which type of
value you want for input (see next page).
– The scanner will read the characters you type,

and convert them – if possible – to a value of the
type you requested.

89

Methods in class Scanner

nextInt(): Returns an integer of type int.
nextDouble(): Returns a “real” number of type double
nextBoolean(): Returns a value of true or false as a value

 of type boolean
nextLine(): Returns a String with the entire remaining

 contents of the line.

• The returned value of these method has to be assigned to a

variable of corresponding type.

• When your program reaches a call to one of these methods, the
program will suspend and wait for your input.

• When you enter a value from the keyboard and press ENTER, then
the program will read the input and store the value you entered
into the variable you specified.

90

Examples of using Scanner

• Initialize a scanner:

Scanner keyboard = new Scanner(System.in);

int x = keyboard.nextInt();

• If you enter 123 and press ENTER, x will have the value
123 .

boolean b = keyboard.nextBoolean();

• If you enter true and press ENTER, b will have the
boolean value true.

String s = keyboard.nextLine();

• Method nextLine puts ALL characters (including spaces)
that you type on a line into a String referenced by s.

91

Alternative Program Template

// Comments identifying you

// Comments describing what the program does

// and how it is used (e.g. what input is required)

import java.util.Scanner;

Import java.io.*;

class PutYourClassNameHere //your own algorithm name.

{ public static void main (String[] args)

 {

 // SET UP KEYBOARD INPUT

 Scanner keyboard = new Scanner(System.in);

 // DECLARE VARIABLES/DATA DICTIONARY

 // PRINT OUT IDENTIFICATION INFORMATION

 System.out.println();

 System.out.println("ITI1120 Fall 2012, Assignment 0, Question 57");

 System.out.println("Name: Grace Hoper, Student# 12345678");

 System.out.println();

 // READ IN GIVENS

 // BODY OF ALGORITHM - Call to algorithm to solve problems

 // PRINT OUT RESULTS AND MODIFIEDS

 }

 // Place the method called by ”main”.

}

92

Section 3: Algorithms and Translating
them to Java

Objectives:

• Calling Algorithms
• Information Passing
• Modified arguments
• Translating Algorithms to Java

“Don’t ask what it means, but how it is used.”
- L. Wittgenstein

93

Historical note …

• Ada Byron, countess of
Lovelace, mathematician and
collaborator of C. Babbage,
defined the principle of
successive iterations in the
execution of an operation (1840).

• She created the first computer
algorithm; she is considered the
first programmer.

• There is a programming language
named after her: Ada

http://en.wikipedia.org/wiki/Ada_Byron
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Image:Ada_Lovelace.jpg

94

Using Algorithms

• When developing an algorithm, it is a good idea to
make as much use as possible of existing algorithms
(ones you have written or that are available in a
library).

• You can put a CALL statement to any existing
algorithm wherever it is needed in the algorithm you
are developing.

• Be sure you get the ORDER of the givens, modifieds,
and results correct.

• To call an algorithm you need to know its header but
not how it works – you must just trust that it works
correctly.

95

Algorithm model calls

• When one algorithm model calls another:

– The algorithm model that is currently executing stops and
waits at the point of the call.

– Values may be “passed” to the called algorithm model.

– The called algorithm model executes.

– When the called algorithm model finishes, result values may
be passed back to the calling algorithm model .

– The calling algorithm model restarts and continues

Algorithm A

Statement A1

Call algorithm B

Statement A3

Algorithm B

Statement B1

Statement B2

Statement B3

1
2

3
4
5

6
7

3.5

6.2

96

• When calling an algorithm the call statement and the
header of the called algorithm must be identical
except for the names of the givens, modifieds, and
results. These are matched one-to-one in the order
they appear

CALL: avgOutOf25 markResult(val1,val2,val3)

HEADER: avg markResult(num1,num2,num3)

• The arrows show how information is passed. Double-
headed arrows indicate that the argument is
modified.

Information Passing

97

Invoking an Algorithm

• “Calling” is the execution of an algorithm with specific data
values.

• A “call” statement is identical to the header except for the
names of the givens and results, which are replaced with values.
theAvg markResult(10, 7, 4)

 invokes our algorithm with givens score1=10, score2=7, score3=4
and returns the results in avgPct (average).
– Note: If a variable name is used as an argument, then it is

the value contained in the variable that is passed to the
called algorithm (pass by value)

– Note: the result value is stored in the variable specified in
the call (theAvg).

• ATTENTION: Information is passed between the call statement
and the algorithm based on the ORDER of the givens and
results, not their names.

• The values passed to an algorithm are called the arguments (or
actual parameters). The arguments (actual parameters) match
the parameters (formal parameters) according to their orders.

98

Variable scope and duration

• Scope: Where you can use a variable’s name.
– General rule: Variables can be only be accessed inside their

own algorithm.
– If you use the name x in two algorithms, the names represent

two different locations in memory in each algorithm and can
contain two different values.

• Duration: The “lifetime” of a variable’s value.
– When an algorithm finishes execution, the values of all

variables are forgotten.
• The values of the RESULTS will be passed back to the

calling algorithm.
– When you call an algorithm again, new values are used for all

variables.
– How the computer works: whenever a subprogram is

executed (algorithm), a piece of Working memory is assigned
for the duration of its execution.

99

Algorithm Refinement

• If an algorithm with a complex instruction block
nested inside another block, make the inner block as a
separate algorithm.

– It is then possible to take a complex task and
divide it up into simpler tasks, for example,

• Task 1 – interact with the user (main)

• Task 2 – solve the problem

• Then the former algorithm “calls” the latter
algorithm.

• In this way, we can keep algorithms simpler, shorter
and clearer.

100

Problem Decomposition

• The best way to develop algorithms for all but the
simplest problems is by Problem Decomposition (also
called Top Down Design).

• An algorithm for problem P is developed by these
steps:
1. Identify subproblems (P1, P2, …, Pn), simpler

than P, whose results would be useful in solving P.
2. Finalize the header information (givens, results,

etc., header) for P1…Pn but do not design their
algorithms yet.

3. Write the algorithm for P assuming algorithms
exist for P1…Pn.

4. Develop algorithms for P1…Pn.

101

Program with Two Algorithm Models

• Initially we develop programs with two algorithm
models (i.e. two sub-programs)

– The first, call it main(), is used to interact with
the user

– The second (with an appropriate name) is a problem
solving algorithm

• Consider developing a program for the following
problem: calculate the average out of 100 for 3
scores out of 25.

• Have already developed the problem solving algorithm

• For the main() algorithm, use a number of “pre-
defined” algorithms for interacting with the user.

102

MarkResult Algorithm (problem solving)

Givens:

Results:

Intermediates:

Header:

Body:

score1, score2, score3 (scores out of 25)

avgPct (average of scores, out of 100)

avgPct markResult(score1, score2, score3)

1. sum score1 + score2 + score3

2. avgOutOf25 sum / 3

3. avgPct avgOutOf25 * 4

sum (sum of scores)

avgOutOf25 (average of scores, out of 25)

103

Exercise 3-1 - The main() Algorithm

• Our program execution always starts with this algorithm model
(hence translated to the Java main() method)

• No GIVENS or RESULTS – i.e. no variables are defined to
receive given values and no variable to return a result value.

• Use of intermediate variables only.

• Use the printLine(…) and print(…) algorithm models to print
messages to the console

• Use the readReal(), readInteger(), readLine(), and readBoolean()
to read values from the console.

• Basic logic:

– Get input values from the user,

– Call the problem solving algorithm to produce results,

– Print results

104

Exercise 3-1 - Main Algorithm
(interface to the user)

Givens:

Results:

Intermediates:

Header:

Body:

105

Modifying Arguments

• Some problems require the value of a variable in the argument
list of a called algorithm to be changed.
– The corresponding GIVEN variable is called a MODIFIED

parameter and is listed among the GIVENS and put in the
header like a GIVEN, but it is also described in a list of
MODIFIEDS separate from normal RESULTS.

• Example: Suppose we want to write an algorithm that swaps the
values of two variables .

• e.g. given x=7 and y=3, the algorithm would exchange the
values, resulting in x=3 and y=7.

• Shall come back to the concept later
– Modifying parameters of simple types are not possible in

Java
– This can be done with Arrays and Objects using reference

variable

106

Modified Parameters

 Algorithm
Intermediates

x y z

Modifieds

Givens

p q

Algorithm Black Box

Results

(p,q) algorithm(x,y,z)

107

Augmented Algorithm Template

GIVENS:

RESULTS:

MODIFIEDS:

ASSUMPTIONS:

CONSTRAINTS:

INTERMEDIATES:

HEADER

 (List of Results) Algorithm Name (List of Givens)

BODY

 statement

 statement

 :

 statement

(comments added for clarfication!)

(instructions can be numbered for tracing)

Instruction block

108

Exercise 3-2: Swap two values

GIVENS:

RESULTS:

MODIFIEDS:

INTERMEDIATES:

HEADER:

BODY:

109

 Variables, a summary…

• The GIVENS are variables that receive values when at the start
of the algorithm execution. There values can differ from one
call to another, i.e. for each instance of the problem resolution.

• The RESULTS are variables that contain the answers produced
by the algorithm and used to pass back values to the calling
algorithm.

• The INTERMEDIATES are other variables used during the
execution of the algorithm.

• The MODIFIEDS are a sub-set (possibly empty) of the GIVENS
whose corresponding arguments are modified by the executed
algorithm.

• NOTE: For GIVENS, RESULTS, INTERMEDIATES, the
variables exist in working memory only during the execution of
the algorithm and do not exist between calls to the algorithm.

110

Translating Algorithms
to Java

“When a programming language is created that allows programmers
to program in simple English, it will be discovered that
programmers cannot speak English.” -- Anonymous

111

Translating Algorithm Models to a Java Program

• Our approach to programming is to first develop and
test algorithms using a model and then TRANSLATE
them into code in a programming language.

• Translating algorithms into code is very much a
mechanical process, involving only a few decisions.

• Each algorithm model is translated to a Java Method.

• For the first half of the course, we shall develop
programs that consists of a single Java class with two
methods:

– main that will interact with the user

– Problem solving method to implement our problem
solving algorithm model.

112

Translated to a Program (2 methods)

import java.util.Scanner;

class AverageScores

{

 /**

 * Method: main

 * Description: Interface with the user

 */

 public static void main (String[] args)

 {

 // Instructions

 }

 /**

 * Method: markResult

 * Description: Computes the average (percent)

 * for three scores out of 25

 * Parameters (givens):

 * score1, score2, score3 The three scores

 */

 public static double markResult(double score1,

 double score2,

 double score3)

 {

 // instructions

 }

}

Instruction block

Instruction block

113

Translating Main Algorithm Model
to a Java Method

• Intermediates all get translated to Java VARIABLES.

– They all must be declared and given a type. Their
descriptions are put in the program as comments (called the
DATA DICTIONARY).

• Calls to printLine(…) and print(…) algorithm models are
translated to appropriate calls to “System.out.println(…)” and
“System.out.print(…)” Java methods.

• Calls to the readReal(), readInteger(), readLine(), and
readBoolean() to translated to appropriate calls to methods in
the ITI1120 Class or Scanner Class.

• Basic logic:

– Get input values from the user,

– Call the problem solving algorithm to produce results,

– Print results

114

Translating Statements to Java

• Assignment statement
– Model: x expression

– Java: x = expression;

• Expressions

sum score1 + score2 + score3
sum = score1 + score2 + score3;

hypothenuse
hypothenuse = Math.sqrt(Math.pow(x,2) + Math.pow(y,2));

• Call statement
average markResult(first, second, third)
average = markResult(first, second, third);

first readReal()
first = keyboard.nextDouble();

2 2x y

115

The CALL statement

Model: x avg3(10, j, k)

Java: x = avg3(10, j, k);

• Here, avg3(10, j, k) is a method call statement. The
method call statement evaluates to the value returned from
the method which is assigned to a variable

• The method call can also be used in any expression (of the right
type); values are used to evaluate the expression.

– Example:

 y = 10.2 * avg3(a, b, c) + avg3(p, q, -11)

– The use of multiple calls in a single expression is difficult
to trace! To be avoided in this course.

116

When a CALL is made ...

1. Execution of the calling method is suspended.

2. Memory is allocated for parameters and local variables of
primitive types (int, double, char, boolean) in the called
method.

3. Initial values for parameters of primitive types are COPIED
from the corresponding arguments of the call.

4. Parameters of reference types are associated to the arrays or
objects that the corresponding arguments refer to.

5. Execution of method body begins.

• When the method body finishes, the return value is COPIED
back to the calling method and the calling method resumes
execution. All other values in the called method are forgotten.

117

// PROGRAM Average--reads 3 scores and computes their average.

import java.util.Scanner;

class AverageScores

{

 public static void main (String[] args)

 {

 // SET UP KEYBOARD INPUT

 Scanner keyboard = new Scanner(System.in);

 // DECLARE VARIABLES/DATA DICTIONARY

 // READ IN Values from the user

 // Call to markResults

 // PRINT OUT RESULTS

 }

 // markResult method goes here

}

Exercise 3-3 - Translating to Java
main Algorithm to a Java Method

118

Translating Problem Solving Algorithm
to a Java Method

• Givens, Results, and Intermediates all get translated to Java
VARIABLES.
– They all must be declared and given a type. Their descriptions are

put in the program as comments (called the DATA DICTIONARY).
– Initial values for Givens will be received from main via a call to the

method.
• The result value will be returned to the main method for printing.

– IMPORTANT:
• In Java, the value of a variable is returned using the instruction

“return(aVariable);”.
• This instruction terminates the execution of the methode, an

thus must be placed only at the end of the method (last
instruction).

• You are not allowed to place this instruction anywhere else in
the method.

– Although algorithm models allow for multiple results, the Java
method can only return a single value

– For now, shall develop algorithms that return only a single result

119

// PROGRAM Average--reads 3 real numbers and computes their average.

class AverageScores

{

 // main method goes here

 // GIVENS: score1, score2, score3 scores out of 25

 public static double markResult(double score1, double score2,

 double score3)

 {

 // DECLARE VARIABLES/DATA DICTIONARY

 // Intermediate variables

 // Result variable

 // BODY OF ALGORITHM

 // RETURN RESULTS

 }

}

Exercise 3-3 - Translating to Java
Problem Solving Algorithm to a Java Method

120

Section 4: Tracing and Debugging

Objectives:

• Tracing algorithms

• Debugging tools

“To understand a program,
you must become both the machine and the program.”

- A. Perlis

121

Historical note …

• Alan M.Turing, British mathematician
and father of modern computer
science, designed, in 1936, a logic
machine able to solve all the problems
that can be formulated in algorithms
for the modern computers: the Turing
machine.

• He also proposed the Turing test, for
artificial intelligence.

• The highest distinction in computer
science now, awarded by ACM, bears
his name: the Turing Award.

http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Turing_test
http://en.wikipedia.org/wiki/Turing_Award

122

Tracing an Algorithm

• To TRACE an algorithm is to execute it by hand, one
statement at a time, keeping track of the value of
each variable. The aim is either to see what results
the algorithm produces or to locate “bugs” in the
algorithm.

• Tracing always involves a single problem instance. You
may need to do several traces (with different givens)
of the same algorithm to find bugs.
– Define test cases for your tracing, that is,

expected results for a set of given values
– You can re-use the test cases for testing your

software

123

Tracing Steps

1. Number every statement in the algorithm model.

2. Prepare a programming model (use as many pages as required) so
that you may “execute” the algorithm model.

3. Make a table. The first column will say which statement is being
executed. The other columns each correspond to a variable. There
should be one column for each given, result, and intermediate.

4. In the programming model, “create” the variables and insert initial
values into the given variables and ? in all other variables. Fill in the
first row of the table with the variables’ initial values.
– The givens will have the values supplied by the calling

statement; all other variables will have a “?”.
– Write “initial values” in column 1 of row 1.

124

Tracing Steps (continued)

5. The second row is for the first statement executed.
Put its number in column 1, and update the
programming model by changing the variable values
affected by the instruction. For every variable
whose value is changed in the programming model put
the new value in the variable’s column. Leave the
other columns blank.

6. Proceed to the next statement, make a row for it,
and continue until you reach the end of the
algorithm.

• Note: The values across a row represent the “state”
of the system at a particular point in time.

125

Exercise 4-1 - Tracing Example

avgPct markResult(18, 23, 19)

126

Tracing a Call

• When tracing an algorithm, every time it calls another algorithm
whose body is known you must produce a trace of the called
algorithm on the givens provided by the call. The trace for each
call of each algorithm should be done on a separate page. Each
trace should say where it was invoked (“called from page X”).

• When the statement being executed is a call you put more in
column 1 of the trace table than just the statement number -
you say where to find the trace of the called algorithm (“see
page Y”), and you put in a complete picture of the information
passing. Just as on the previous slide, write the call statement
directly above the header of the algorithm being called and draw
arrows showing how the information is passed.

• Values (results, modifieds) that are passed back when the called
algorithm terminates should be written in the columns for the
variables in the results part of the call.

127

Exercise 4-2 -Tracing a Call

• Redo the “marks out of 100” problem, but trace the
main algorithm model for the following test case
(shows interaction with the user):

Please enter three scores out of 25
23 16 21
The average is 80 percent

128

Exercise 4-2 - Tracing Main (page 1)

• Trace: main

129

Exercise 4-2 - Tracing MarkResult (page 2)

130

• Redo the “marks out of 100” problem, but this time
use the algorithm developed for the “average”
problem: avg average(num1, num2, num3)

Exercise 4-3 - Marks out of 100, again

GIVENS:

RESULTS:

INTERMEDIATES:

HEADER:

BODY:

131

Exercise 4-4 - Tracing Example (page 1)

• Trace: avgPct markResult(23, 16, 21)

132

Exercise 4-4 - Tracing Example (page 2)

133

Exercise 4-5 - Reverse Digits

• Given a 2-digit positive number, N, reverse its digits to obtain a new
number, reverseN.

• Assume there is available an algorithm with the header

 (high, low) digits(x)

 which returns the left (high) and right (low) digits of a given 2-digit
number x.

GIVENS:

RESULTS:

INTERMEDIATES:

HEADER

BODY

134

Exercise 4-6 – Trace Reverse Digits

135

Exercise 4-7 - Join Four Numbers

• Write an algorithm that takes 4 positive integers and joins them into one,
– e.g., given 11, 35, 200, and 7 it should produce 11352007.

• Trace your algorithm on these givens.

• You may assume there is available an algorithm:

 c join(a, b)

 Givens: a, b, two positive integers

 Result: c is the number having the digits

 in a followed by the digits in b.

• Example: join(120, 43) produces 12043

136

Tracing Java Programs

• When you are tracing an actual program, a useful tool is a
“debugger”. This tool can perform a trace on a running program.

– Often this requires telling the compiler to add extra
information to help the debugger.

• Two modes of operations:

– Run up to a breakpoint: the program will run at full speed up
to a pre-defined point in the source code, and then stop.

– “Single step” mode: the program will execute one statement
and stop.

• When the program stops, you can inspect the current values of
variables

– You can check if the variables’ values correspond to the
equivalent row of a manual trace.

137

Using a debugger

• Many debuggers come with four options for execution
of a stopped program.
– Step Into: If the next statement involves a call to

another algorithm, execution will go to the first
statement of the algorithm body and stop.

– Step Over: If the next statement involves a call to
another algorithm, the other algorithm will be
completely executed, and debugger will stop at the
next line in the current algorithm.

– Step Out: Execute all statements up to the end of
the current algorithm.

– Resume: Begin normal execution from the next
statement.

138

Section 5: Branching

Objectives:
• Structure Charts and Flow Charts
• Branching Instructions and Tracing
• Translating Branches to Java
• Complex Boolean Expressions

“When you come to a fork in the road, take it.”
- Y. Berra

139

Historical note …

• 1945: An insect in the circuits
blocked the computer Mark I.
The computer scientist Grace
Murray Hopper decided to call
any program malfunction
« bug »!

• 1951: Invented the first
compiler (A0) for generating
machine code from a program
source code.

• She was one of the main
creators of one of the first
programming languages: COBOL.

http://en.wikipedia.org/wiki/Mark_I_Calculator
http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Image:H96566k.jpg
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/COBOL
http://upload.wikimedia.org/wikipedia/commons/8/8a/H96566k.jpg
http://en.wikipedia.org/wiki/Image:GraceHopper.jpg

140

Branching Control Instruction

• So far in the bodies of our algorithms, we have used:

– a simple statement

– a straight sequence of simple statements

• Sometimes, we need more than a straight sequence in
our solutions, as we sometimes need to do different
computations depending on certain conditions.

• Branching instruction (condition)!

141

Problem: Larger of Two Numbers

• Write an algorithm to compute the larger of two
given numbers.

GIVENS: x, y (two numbers)

RESULT: m (the larger of x and y)

HEADER: m max2(x, y)

• We will represent this with a Branching Control
Instruction

142

Branching Control Instruction

• The shaded boxes are INSTRUCTION BLOCKS.

• Note that the branch instruction is complex and can contain
many other instructions within its instruction blocks.

– Graphical representation in our software models!

true false

Test?

143

Algorithm Model Diagrams

• Provides visual description of algorithms.

• Composed of nodes connected with arrows.

• Test node:

– Represents the testing of a condition (Boolean expression
with question mark)

• Instruction block :

– Indicates where another instruction block can be inserted.
The instruction block can contain simple or complex
instructions (and even no instructions at all)

Test?

Block

144

Contents of Instruction Blocks

• Simple instruction (call, assignment)

• Empty statement (Ø = “do nothing”)

• Branching control instruction

• Loop control instruction (coming soon…)

• Important: Each block has exactly one entrance (one
arrow in) and one exit (one arrow out).

145

Exercise 5-1 - Back to the Larger of Two
Numbers

• How would the algorithm for finding the larger (max)
of two values x and y be written in a model diagram ?

146

Exercise 5-2 - Maximum of 3 numbers

• Given three numbers x, y, and z, find the maximum of the three
values.

– Version 1: nested tests

– Version 2: sequence of tests

147

Translating Branches to Java

• Java :
 if (test)
 {

 // Instructions

 }

 else

 {

 // Instructions

 }

block2 block1

true false

Test?

Instruction block 2

Instruction block 1

Java if Instruction - Option

148

if (test)

{

// Instructions

}

else

{

// Instructions

}

The else part of the

instruction is optional.

Thus in algorithms use

only the empty statement

block in the false part

of the branch statement.

block2 Ø

true false
Test? if (test)

{

// Instructions

}

149

Exercise 5-3 – Translating Branches

Givens: x, y, z (three numbers)

Result: m (the largest given value)

Header: mmax3(x, y, z)

• Two solutions:
– sequence of branch instructions
– nested branch instructions

• Translate the latter into Java:

150

Nested Branches

false

m z m y

false
 true

true x > y ?

y > z ?

m z m x

false
 true x > z ?

151

Exercise 5-4 - Translation of
Nested Branches

152

Example of an instruction block with a branch
instruction

false

 a 4

b 0

true
 false

true x > 0 ?

y > x ?

a 5

b a + 1

a 0

b 0

153

Exercise 5-5 – Translation of
an Instruction Block

154

Tracing algorithms with branching

• When tracing an algorithm with tests (branches or
loops)

– Number the tests as well as the statements

– Include a row in the trace indicating which test is
being done and whether it is true or false.

– Indicate only the instructions executed in the
trace.

155

Exercise 5-6 - Trace of Maximum
of 3 numbers

• Trace: max3(5, 11, 8)

156

Exercise 5-7 - Movie Tickets

• Calculate the amount to charge for a person’s movie ticket given
that the charge is $7 for a person 16 or under, $5 for a person
65 or older, and $10 for anyone else.

– Version 1: nested tests

– Version 2: sequence of tests

157

Boolean Variables

• A Boolean variable is one which can have only 2
possible values: TRUE or FALSE.
– In reality represented by two values (e.g. 0 and 1),

but in high level language use only these key words
are allowed!

• An assignment statement is used to put a value into a

Boolean variable, e.g.,
x TRUE

y FALSE

• The outcome of a test (Boolean expression) can be
assigned to a Boolean variable:

x (a < 0)

158

Exercise 5-8 - Positive Value

• Write an algorithm which checks if a given number x
is positive.

159

Compound Boolean Expressions

• A compound Boolean expression consists of two or
more Boolean expressions connected by operators
AND and/or OR.

• Exercise 5–9 - Write a compound Boolean expression
that is true if a given age is between 16 and 65 (not
including 16 or 65) and false otherwise.

160

Truth Tables

• A TRUTH TABLE for a compound Boolean expression
shows the results for all possible combinations of the
simple expressions:

x y x AND y x OR y

TRUE TRUE

TRUE FALSE

FALSE TRUE

FALSE FALSE

161

Operator NOT

x NOT x

TRUE FALSE

FALSE TRUE

• NOT is an operator to negate the value of a simple or compound
Boolean expression:

• Example. Suppose age = 15. Then:

– Expression age > 16 has a value FALSE, and NOT (age > 16)
has a value TRUE.

– Expression age < 65 has a value TRUE, and NOT (age < 65)
has a value FALSE.

162

Expression Value

(x > 0) AND (NOT (y = 0))
TRUE

(x > 0) AND ((x < y) OR (y = 0))
TRUE

(NOT (x > 0)) OR ((x < y) AND (y = 0))
FALSE

NOT ((x > 0) OR ((x < y) AND (y = 0)))
FALSE

Exercise 5-10
More Compound Boolean Expressions

Suppose x = 5 and y = 10.

163

Expressions in Tests

• The TEST in a Branch or Loop may be any Boolean expression:
– Boolean variable
– Negation of a Boolean expression

• NOT (Java: !)
– Comparison between two values

• Java operators: == != < > <= >=
• The data being compared may not necessarily be
boolean, but the result of the comparison is boolean

– Join two Boolean expressions
• AND (Java: &&)
• OR (Java: ||)

• Watch out for
– confusing = with ==
– confusing AND with OR

• e.g. test if x is in the range 12..20:
 (x >= 12) && (x <= 20)

164

Section 6: Loops and Arrays

Objectives:

• Loops

• Arrays

• Translating to Java

• Tracing Arrays and Loops

• Strings in Java

• Many Examples!

“A program without a loop … isn't worth writing.”
-- A. Perlis

165

Historical note …

• Donald Knuth, American computer
scientist, a pioneer of the domain of
algorithm analysis.

• He is the author of the very respected
book The Art of Computer Programming
and of the scientific text editor TeX.

• Edsger Dijkstra, computer scientist from
Netherlands, developed the algorithm of the
shortest path (that bears his name) and the
concept of sentinel for programming and for
parallel processing.

• His 1968 article, "Go To Statement Considered
Harmful" revolutionized the utilization of the
instruction GOTO to the profit of the control
structures such as the while loop.

http://en.wikipedia.org/wiki/Knuth
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/TeX
http://en.wikipedia.org/wiki/Image:KnuthAtOpenContentAlliance.jpg
http://en.wikipedia.org/wiki/Image:Edsger_Dijkstra_large.jpg
http://en.wikipedia.org/wiki/Dijkstra
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Semaphore_%28programming%29
http://en.wikipedia.org/wiki/Go_To_Statement_Considered_Harmful
http://en.wikipedia.org/wiki/Go_To_Statement_Considered_Harmful
http://en.wikipedia.org/wiki/GOTO
http://en.wikipedia.org/wiki/While_loop

166

• Sometimes we need to repeat an instruction block. In our
algorithm diagrams, we use a loop instruction:

• The instruction block inside the loop is repeated over and over
until the test becomes false.

The Loop Instruction

Instruction block

true

false

Test?

167

Designing a loop instruction

1. Initialization
– Are there any variables to initialize?
– These variables will be updated in the loop.

2. Test condition
– A condition to determine whether or not to

repeat the loop instruction block
3. Loop instruction block

– What are the steps to repeat?
– Definite loop: know a-priori how many times the

loop is repeated – usually involves a counter
variable

– Indefinite loop: the number of times the loop will
be repeated is unknown – usually involves a flag
variable

168

Exercise 6-1: Sum from 1 to N

GIVENS:

INTEMEDIATES:

RESULTS:

HEADER:

BODY:

169

Exercise 6-1: Trace of sum1toN(3)

Instructions N Count Sum

170

Exercise 6-2: A “definite” loop

• Write an algorithm to find the factorial of a number
N, denoted as N!

• Definition of factorial (product of 1, 2,3 until N):

 N! = 1 2 … N

171

Exercise 6-2: A “definite” loop

GIVENS:

RESULTS:

INTERMEDIATES:

ASSUMPTIONS:

HEADER:

BODY:

172

Exercise 6-3: An “indefinite” loop

• Write an algorithm to determine how many times an
integer aNumber can be divided by another integer
divisor, until the result is less than divisor.

– This is the integer part of the logarithm function.

173

Exercise 6-3: An “indefinite” loop

GIVENS:

RESULTS:

INTERMEDIATES:

ASSUMPTIONS:

HEADER:

BODY:

174

Translating Loops to Java

• Java
while (Test)

{

 // Instructions

}

Instruction

Block

true

false

Test?

Instruction block

175

Algorithm: Sum from 1 to N

true
false

count ≤ n ?

count 1

sum 0

sum sum + count

count count + 1

GIVEN: n (a positive integer)

INTERMEDIATE: count (index going from 1 to n)

RESULT: sum (sum of integers 1 to n)

HEADER: sum sum1ToN(n)

BODY:

176

Exercise 6-4: Translate Loop to Java

import java.io.*;

class Sum1ToN

{

 public static int sum1ToN (int n)

 {

 // read the input

 System.out.println("Enter a positive integer N.");

 int n = CSI1100.readInt();

 // initialize counter and accumulator sum

 int count = 1;

 int sum = 0;

 // loop

 while (count <= n)

 {

 sum = sum + count;

 count = count + 1;

 }

 // output the result

 System.out.println("The sum from 1 to N is " + sum);

 }

}

177

• Test after the execution of the instruction block gives the post
test loop instruction:

• The loop instruction block is executed at least once and is
repeated over and over until the test becomes false.

The Post Test Loop Instruction

Instruction Block

true

false

Test?

178

• Java:
do

{

 // Instructions

}

while(test);

The Post Test Loop Instruction –
Translating to Java

Instruction Block

true

false

Test?

Instruction block

179

Exercise 6-5: Example of Post-Test Loop

• Use a post-test loop to develop a « main » algorithm
for computing factorial and translate to Java

GIVENS:

RESULTS:

INTERMEDIATES:

CONSTRAINTS:

HEADER:

BODY:

180

Exercise 6-5: Translation to Java

public static void main(String args)

{

 // Variables

 // Body

}

181

The FOR Loop

• Java provides another format of a loop, which is usually used when we
know how many times the loop body is to be executed (definite loop).

• The FOR loop has the following format:

for (<initialization>; <test_condition>; <increment>)

{

 // instructions

}

• In most cases, the initialization part initializes a counter, the test
condition tests if the counter is within the limit, and the increment part
modifies the counter.

• Any FOR loop can always be formed as a WHILE loop
– It does not give us any extra capability.
– However, the notation is often more convenient.

182

The FOR loop diagram

Instruction block

true

false

Test condition?

Initialization

Increment

183

Exercise 6-6: FOR loop to add 1 to N

count 1

count n ?
 true

false sum sum + count

count count + 1

sum 0

• Translate to Java:

184

A Problem with Simple Variables…

• Suppose that an algorithm reads 5 integers and displays them in
reverse order:
Body:

i1 readInteger()

i2 readInteger()

i3 readInteger()

i4 readInteger()

i5 readInteger()

printLine(i5)

printLine(i4)

printLine(i3)

printLine(i2)

printLine(i1)

• What happens with 1000 integers? X integers?

185

Computer Arrays

• “Simple” variables contain one value.
• An array has many locations, each able to contain one

value.
• An array is essentially a collection of variables of the

same type

i1

i2

i3

i4

i5

Simple Variables An Array

arr

Array

name

Variable

name

186

Computer Arrays (continued)

• If array arr has 5 positions, we refer to them using the integers
0-4, called indices or subscripts.

– e.g. arr[2] is the THIRD position with index 2.

– Note that arr[2] is equivalent to a variable name and can be
used anywhere a variable name is used, e.g. in expressions.

An Array

arr
arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

187

Computer Arrays (continued)

• Two pieces of information may be required when dealing with
arrays

– The first is the size of the array, that is the number of
positions available in the array

– The second is the number of positions that contains “values”,
that is the number of positions that have been initialized.

– When we pass arrays to algorithms, we may pass one or both
these values

– E.g. if values are in the first 3 positions (of 5 positions
available), we might pass 3 to a GIVEN aLength in an
algorithm that wishes to process the known values.

– E.g. if we want an algorithm to see all 5 positions then the
GIVEN aLength would receive 5.

– What would be valid indexes that can be used with the
array?

188

Array Name

• What does the array name represent?
• It can represent the address where the array is located in

memory
– This is similar to a variable name, but is often treated

differently to a variable name
– Approach used in languages like C
– Pictures in previous slides show this representation

• The array name can also be the name of a reference variable -
the picture becomes

• This is how we shall model arrays.

An Array

arr arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

address

189

Creating Arrays

• The following “standard” algorithm is used to create arrays

 anArrayRefVar makeNewArray(l)

– creates an array of l positions with unknown values in them.

– anArrayRefVar is a reference variable to which is assigned
the address to the array.

 E.g. arr makeNewArray(5)

An Array

arr arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

address

Global Memory Working Memory

190

• The index (subscript) of an array of length l may be any integer
expression that returns a value in the range 0...(l-1).

– Suppose k =2, and a references

a[2] = 5

a[k] = 5

a[2*k-1] = 7

a[a[0]+1] = 7

• a[expression] is just like any ordinary variable and can be used
anywhere an ordinary variable can be used.

• Remember a is a reference variable

Exercise 6-7: Array Indexing

2 -1 5 7

"Should array indices start at 0 or 1? My compromise of 0.5
 was rejected without, I thought, proper consideration."

-- Stan Kelly-Bootle

(length 4)

191

Exercise 6-8: Value in Middle of an Array

• Write an algorithm that returns the value in the
middle of an array A containing N numbers, where N
is odd.

• Note that that the GIVEN a receives the reference
(address) to the array.

192

Exercise 6-9: Swap Values in an Array

• Write an algorithm that swaps the values in positions
I and J of array A.

• This possible because the address is passed to the
algorithm (subprogram)

193

Exercise 6-10: Creating an Array

• Create an array containing the integers 1 to N in reverse order.
• Remember the standard algorithm
 anArrayRefVar makeNewArray(l)

 that creates an array referenced by anArrayRefVar; the array has
L positions with unknown values in them.

194

Exercise 6-10: Trace for N=3

statements n index a

initial values

195

Loop and Array Exercises

6-1 Find the sum of the numbers 1…n (1+2+…+n).

6-11 Find the sum of the values in an array containing N values.

6-12 Given a value t and an array a containing n values, check if the
sum of a’s values exceeds t.

a) Use algorithm from Exercise 6-11.
b) Efficient version which exits as soon as the sum exceeds t.

6-13 Count how many times j occurs in an array containing n values.

6-14 Given an array a of n values and a number k, see if k occurs in a

or not.
a) Use algorithm from Example 6-13.
b) Efficient version which exits as soon as k is found.

196

More Loop and Array Exercises

6-15 Given an array a of n values and a number k, find the position
of the first occurrence of k. (If k does not occur, return –1 as
the position.)

6-16 Find the maximum value in an array containing n values.

6-17 Find the position of the first occurrence of the maximum
value in an array containing n values.

a) Use algorithm from Exercise 6-16.

b) Use algorithms from any examples.

c) Version using one loop and no other algorithms.

6-18 Check if an array of n values contains any duplicates.

– Strategies?

197

Arrays in Java

• An array reference variable is declared with the type
of the members.

– For instance, the following is a declaration of a
variable of an array with members of the type
double:

double[] anArray;

• When an array reference variable is declared, the
array is NOT created. What we have is a reference
variable that can point to an array.

– anArray will contain the special value null until it
is assigned a valid reference.

198

Creating an array

• How do we translate the makeNewArray algorithm?
• To create the array in Java, operator new is used.
• We must provide the number of members in the array, and the

type of the members: e.g. new double[5]
– The number of members cannot be changed later.
– The new operator returns a reference (address) that can be

assigned to a reference variable, for example:
double[] anArray;

anArray = new double[5];
• Note: Creating an array initializes all elements to zeros (which

translates to 0, null, '\0' according to the type of the
array)

• When an array is created, the number of positions available in
the array can be accessed using a field called length with the
dot operator. For instance, anArray.length has a value 5.

• Arrays are created in “global memory”
• Reference variables are created in working memory.

199

Memory for Arrays

double[] anArray ;

anArray:

anArray = new double[3];

anArray:

? ? ?

length 3

“Thou shalt not follow
the NULL pointer,

for chaos and madness
await thee at its end.”

– H. Spencer

0 1 2

null

address

200

Accessing array members

• Array members are accessed by indices using the
subscript operator []. The indices are integers
starting from 0.

• For instance, if anArray is an array of three
integers, then:

– the first member is anArray[0]

– the second member is anArray[1],

– and the third member is anArray[2].

• The indices can be any expression that has an integer
value.

– If an index is out of range, i.e., less than 0 or
greater than length-1, a run-time error occurs.

201

Initializing array members

• Array members can be initialized individually using
the indices and the subscript operator.

int [] intArray = new int[3];

intArray[0] = 3;

intArray[1] = 5;

intArray[2] = 4;

• Array members may also be initialized when the array
is created:

int [] intArray;

intArray = new int [] { 3, 5, 4 };

202

Partial initialization of an Array

• An array may be partially initialized.

int [] intArray;

intArray = new int [5];

intArray[0] = 3;

intArray[1] = 5;

intArray[2] = 4;

– In this case, intArray[3] and intArray[4] are
undefined.

• When an array is processed, we may need another
variable (or variables) to keep track of the indices
for which we have assigned values.

203

Reference Types

• An array type is a reference type, because of the
“pointer” to the array.

• It is important to distinguish the reference (pointer)
from the “item being pointed to”.

– In the diagram below, a is the reference, and the
array is what is being pointed to.

• Java does not allow us to peek inside a to see
what is in the pointer.

A

5 2 17

length 3

0 1 2 a address

204

Reference Types

• What happens with assignment and comparison of
reference types?

– It is the references that are compared or
assigned, not the arrays.

0 3

length 2

a == b is true

a

b

a

b

a == b is false
0 3

length 2

0 3

length 2

address1

address1

address1

address2

205

Reference Types

• Assignment only copies a reference, not the object to
which is points.

• How can we make a copy of an array?

b = a

results in:

a

b

NOT:

a

b

0 3

length 2

0 3

length 2

0 3

length 2

address1

address1

address1

address2

206

Lost references

• With reference types, be careful that you don’t “lose” an object to
which a reference points.

• After the assignment, there is no reference to the second array. The
second array will be forgotten by Java and cannot be recovered.

BEFORE
b = a

a

b

0 3

length 2

5 6

length 3

19

AFTER
b = a

a

b

0 3

length 2

5 6

length 3

19

“Objects can be classified scientifically into three major categories:
those that don't work, those that break down

and those that get lost.” – R. Baker

address1

address2

address1

address1

207

Finding the maximum member in an array

• Problem (recall exercise 6-16):
– Suppose an array of numbers is given, we want to

find the maximum value of a member in this array.

• Idea:
– Use the idea of scan and update. First, set the

first member as the initial candidate to be the
maximum. Then look at the other members one by
one and keep track of the maximum value seen so
far.

• We use a loop to look at the members in the given
array.

208

The Algorithm

GIVENS: n (a positive integer)

 a (array containing N values)

INTERMEDIATE: index (indices for a)

RESULT: max (maximum member of a)

HEADER max maxInArray(a, n)

BODY

max a[index]

index index + 1

 true
index < n ?

false

Ø

false

true

max a[0]

index 1

a[index] > max ?

209

Translating 6-16 to Java

210

String Variables

• String variables have always presented a challenge
for programming languages.

– They have varying sizes, and for internal storage
purposes, the computer would prefer to predict in
advance the amount of storage needed for the
value of a variable.

• As a result, strings have often been a “special case” in
a programming language.

211

Strings in Java

• Strings in Java are also accessed using reference variables.

– They are similar to an array of characters.

– EXCEPT:

• You don’t need to use new to create a string

• You don’t use [] to access the characters in the string.

• Example:

String message = "Hello World!";

System.out.println(message);

• There is a class (data type) String that provides many useful
methods.

– This means that Strings are objects (more on objects in the
second half of the course).

212

Useful String methods

• Suppose we have
String message = "Hello World!";

 Then:
– To find the length of a string:

int theStringLength = message.length();

– To find the character at position i (numbered from 0):
int i = 4;

char theChar = message.charAt(i);

• To change any primitive data type to a String :
int anInteger = 17;
String aString = String.valueOf(anInteger);

// works for int, double, boolean, char

• To append one string after another (concatenation):
String joinedString = string1 + string2;

213

Comparing Strings

• A String is a reference type and so they are NOT compared
with ==.

• The String class has a method compareTo() to compare 2
strings.

– The characters in each string are compared one at a time
from left to right, using the collating sequence.

• The comparison stops after a character comparison
results in a mismatch, or one string ends before the
other.

– If str1 < str2, then compareTo() returns an int < 0

– If str1 > str2, then compareTo() returns an int > 0

• If the character at every index matches, and the strings
are the same length, the method returns 0

214

Exercise 6-19: Comparing Strings

• What is the value of result for these examples?

• Example 1:
String str1 = "abcde";

String str2 = "abcfg";

int result = str1.compareTo(str2);

• Example 2:
String str1 = "abcde";

String str2 = "ab";

int result = str1.compareTo(str2);

215

Section 7: Program Structure

Objectives:
• Translating Algorithms to Methods
• Arrays as Parameters
• Multiple Class Program
• Problem Decomposition (top-down)

“Everything should be made as simple as possible,
but not one bit simpler .”

-- A. Einstein

216

Historical note …

• 1976: Steve Jobs and Steve
Wozniak created the first
personal computer called Apple I.

• The computer sold for 666.66 $;
it had 256 bytes of ROM, 4 K
bytes of RAM and video output on
the television set.

• In June 1975, Bill Gates and
Paul Allen renamed their
company Traf-O-Data into
Microsoft.

• Produced MS-DOS, Windows,
Basic-Microsoft, and later
Visual Basic.

http://en.wikipedia.org/wiki/Steve_Jobs
http://en.wikipedia.org/wiki/Steve_Wozniak
http://en.wikipedia.org/wiki/Steve_Wozniak
http://en.wikipedia.org/wiki/Apple_I
http://en.wikipedia.org/wiki/Bill_Gates
http://en.wikipedia.org/wiki/Paul_Allen
http://en.wikipedia.org/wiki/Paul_Allen

217

Using Multiple Methods

• We have been using programs containing 2 sub-
programs (2 algorithms translated to 2 Java methods)
– If an algorithm contains a complex instruction

bloc nested within another bloc, the nested bloc
can be placed in a separate algorithm.

– Thus an algorithm can in turn call other algorithms.
In this fashion, algorithms can be kept simple,
short and clear.

– And thus it is possible to divide a complex problem
into multiple tasks which can in turn be subdivided
(top-down design).

218

Using Multiple Methods (continued)

• The program starts with a main method (translated
to a main method), which may read in some values and
output the result. The main algorithm calls one or
more other algorithms, each of which are translated
to Java methods.
– In this way, the main algorithm (method main)

acts as a dispatcher.
– Try to keep main as simple as possible – you should

be able to tell what the overall program by
examining main

219

Method Accessibility

• In Java,

– Methods are collected inside a “class”

– A Java program can be made up of many classes

• If a method is public, it can be called from
anywhere in a program.

• If a method is private, it can only be called from
inside the class where it is defined.

• There are two other levels of access: protected
and “package”, that are between public and private.
We will not use them in this course.

220

Arrays as Parameters

• An array is a reference type; i.e. is accessed using a reference
variable.

• Arrays are not passed from one method to another method, it is
the reference (i.e. the content of the reference variable) that
is passed to a method (or can be returned by a method).

• The result is that there are (temporarily) two references to the
same array.

• While we cannot modify the original reference variable, a called
method can modify the contents of the array. These changes to
the array contents will remain after the called method returns.
– The copy of a variable of a primitive type is trashed when

the method returns.
– For an array, it is the copy of the reference variable that is

trashed on return.

221

Passing primitive and reference types
to a method

anInt

4

anArray

5 3 2

length 3

4

At caller:
m(anInt,anArray):

At called method:
m(int x, int[] y)

copy copy

y x

222

Exercise 7-1: Trace this Program

class SwapTilYouDrop

{

 public static void main (String args[])

 { int i = 0;

 int[] a = { 2, 4, 6, 8, 10, 12 } ;

 while (i <= 2)

 {

 arraySwap(a, i, 5 - i) ;

 i = i + 1;

 }

 for (i = 0 ; i <= 5 ; i = i + 1)

 { System.out.println(“a[" + i + "] is " + a[i]); }

 }

 // arraySwap : swaps values of x at positions i,j

 // Givens: x, an array, i,j, 2 indices in x

 public static void arraySwap(int[] x,int i,int j)

 {

 // DECLARE VARIABLES/DATA DICTIONARY

 int temp ; // Intermediate, holds x[i]

 // BODY OF ALGORITHM

 temp = x[i] ;

 x[i] = x[j] ;

 x[j] = temp;

 }

}

223

Exercise 7-1: Trace (Table 1, p. 1)

Statement i a Array Output

Initial values ? ? ?

224

Exercise 7-1: Trace (Table 1, p. 2)

Statement i a Array Output

(most recent values from page 1)

225

Exercise 7-1: Trace (Table 2)

Statement x i j temp Array in Table 1

Initial values

1. temp = x[i]

2. x[i] = x[j]

3. x[j] = temp

arraySwap(a, i, 5-i)

arraySwap(x, i, j)

226

Exercise 7-1: Trace (Table 3)

Statement x i j temp Array in Table 1

Initial values

1. temp = x[i]

2. x[i] = x[j]

3. x[j] = temp

arraySwap(a, i, 5-i)

arraySwap(x, i, j)

227

Exercise 7-1: Trace (Table 4)

Statement x i j temp Array in Table 1

Initial values

1. temp = x[i]

2. x[i] = x[j]

3. x[j] = temp

arraySwap(a, i, 5-i)

arraySwap(x, i, j)

228

Programs with more than one Class

• A program may have more than one class. If you save
all classes in a program in one directory, any class may
call a public method in any other class in the same
directory.

• When a (static) method is called from another
class, use the name of the class with the dot
operator.
– For example, if we include class Library in the

same directory in an assignment program, you may
call a method such as aMethod() by
 Library.aMethod();

229

Library Classes

• Instead of putting all our methods in the same class
as main (the class that contains our program) it is
better to separate them into coherent groups and put
each group in a class of its own.

• These classes will not be programs - they have no
main method. Each will be a small library of methods
that can be used by other methods.

• Such classes can be compiled on their own but cannot
be run as standalone programs. They must be
compiled before attempting to compile any other
class that uses them.

230

Exercise 7-2: Validating numbers

• Some credit cards use the following method to determine the
validity of a card number: the number is valid if its last digit is
equal to the last digit of the sum of the other digits.

• For example:

– 5792 is invalid (5+7+9 = 21)

– 4231628 is valid (4+2+3+1+6+2 = 18)

• Problem: Write a program that checks if a card number given
by the user is valid. Use a loop to check more than one card,
until the user enters the number zero.

• Note: The credit card numbers usually have 16 digits; the type
int is not sufficient for representing such numbers (can only
represent values up to 2 147 483 647).

• Assumption: The first 4 digits of the credit card number are
not all zero.

231

Exercise 7-2: Data structure for the numbers

• A data structure is used to organize the data used in
a program.

• In this problem, we use an array of 4 integers (int) to
represent the credit card number.

– The real numbers don’t have the desired precision.

– Each integer in the array is used to represent 4
digits in the credit card.

232

Exercise 7-2: Designing the program

• A possible algorithm needs to do the following (not
all the details are provided here):

1. Read the card number input by the user (in a
separate method).

2. Check if the number is 0 (the first 4 digits).

3. If the number is not 0, check if the number is
valid or not (in a separate method).

• In order to check the validity of the number,
call a method (sub-algorithm) that computes
the sum of its first 15 digits.

• Display the result.

• Read another number input by the user.

233

Exercise 7-2: Structure diagram

main

readIntLine

isZero valid readDigits

sumDigits

ValidCardNumber.java

DigitsLib.java ITI1120.java

234

Exercise 7-2: main method
/* the main method calls the other methods in order to solve

particular tasks. */

public static void main (String [] args)

{

 int [] digits; // reference variable to array of digits

 boolean testValid; // indicates if card is valid

 // body

 digits = DigitsLib.readDigits(); // call to read the data

 while ((digits.length == 4) && (!DigitsLib.isZero(digits)))

 {

 // sends the number to the valid() method

 testValid = valid(digits);

 // print the result

 if (testValid)

 { System.out.println("This number is valid."); }

 else

 { System.out.println("This number is invalid."); }

 digits = DigitsLib.readDigits();

 }

}

235

Exercise 7-2: valid() method
/* This method validates the credit card number */

private static boolean valid(int [] digits)

{

 int firstThree; // first three digits of last group

 int lastDigit; // last digit of credit card number

 int sum; // sum of first 15 digits

 boolean isValid; // result: true if number is valid

 // find the first 3 digits pf the last group

 firstThree = digits[3] / 10;

 // find the last digit of the number

 lastDigit = digits[3] % 10;

 // find the sum of the first 15 digits

 sum = DigitsLib.sumDigits(digits[0])

 + DigitsLib.sumDigits(digits[1])

 + DigitsLib.sumDigits(digits[2])

 + DigitsLib.sumDigits(firstThree);

 // determines the validity

 isValid = (sum % 10 == lastDigit);

 return isValid;

}

236

Exercise 7-2: isZero() method

//first version: only the first digits need to be 0

public static boolean isZero(int [] digits)

{

 boolean flag; // result

 flag = digits[0] == 0;

 return(flag);

}

//second version: all 16 digits need to be 0

public static boolean isZero(int [] digits)

{

 return ((digits[0] == 0) &&

 (digits[1] == 0) &&

 (digits[2] == 0) &&

 (digits[3] == 0));

}

237

Exercise 7-2: readDigits() method

/* This method asks the user to input a credit card
number as 4 integers, that will be placed in an
array. This method calls readIntLine() from the
class ITI1120 to read the array in integers. */

public static int [] readDigits()

{

 int [] intArray; // reference to array

 System.out.println

 ("Please input the credit card number as four ");

 System.out.println

 ("numbers of four digits, separated by spaces;");

 System.out.println("or press 0 to finish.");

 intArray = ITI1120.readIntLine();

 return intArray;

}

238

Exercise 7-2: sumDigits()

// Returns the sum of the digits of a number x

public static int sumDigits(int x)

{

 int sum; // result – sum of digits

 // Body

 sum = 0;

 while (x != 0)

 {

 sum = sum + x % 10;

 x = x / 10;

 }

 return sum;

}

239

Exercise 7-2: Combine all of them !

import java.io.* ;

class ValidCardNumber

{

 public static void main (String [] args) { … }

 private static boolean valid (int [] digits) { … }

}

import java.io.* ;

class DigitsLib

{

 public static boolean isZero (int [] digits) { … }

 public static int [] readDigits() { … }

 public static int sumDigits (int x) { … }

}

• Replace the { … } by the modules from the previous pages, and save them

in two files (ValidCardNumber.java and DigitsLib.java)
• Also put the ITI1120.class in the same directory.
• Now you can validate credit cards

240

Section 8: Recursion

Objectives:

• Defining and Illustrating Recursion

• Template for Recursion

• Examples

“Inside every large problem is
a small problem struggling to get out.”

-- C.A.R. Hoare

241

Historical note …

• Charles Antony Richard (Tony)
Hoare, British computer
scientist, developed, in 1960,
the sorting algorithm (recursive)
the most used: Quicksort.

• He also developed the Hoare
logic used in software
engineering for program
verification and for
programming by contracts.

• He is at the origin of the
concurrent programming
language CSP (Communicating
Sequential Processes).

http://en.wikipedia.org/wiki/C._A._R._Hoare
http://en.wikipedia.org/wiki/C._A._R._Hoare
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Hoare_logic
http://en.wikipedia.org/wiki/Hoare_logic
http://en.wikipedia.org/wiki/Communicating_Sequential_Processes
http://en.wikipedia.org/wiki/Communicating_Sequential_Processes

242

Recursion

• Recursion is a problem-solving technique which uses smaller sub-
problems of problem P; the parameter of the sub-problem is
“smaller” (typically an integer).

• In recursion the sub-problems are similar to problem P, but are
simpler versions of it.

• When the parameter is small enough (the base case), the sub-
problem is solved directly.

• If the parameter is large, the problem is reformulated in terms
of a sub-problem with a smaller parameter.
– The solution to the larger problem is found using the solution

of the smaller sub-problem.
– If the parameter of the sub-problem is still to large, then it

must be reduced until we reach the base case.
• The problem and sub-problems are solved using multiple

executions of a single subprogram (algorithm/method) which
calls itself
– Each execution of the subprogram can be viewed as an

instance of its execution.

243

Recursion Example 1: basic idea

• What is the maximum value in positions
0…(n-1) of array x?

• (the maximum value in the shaded area is m)

• Answer: the maximum of m and position n-1

 8

0 x-1
x

244

Recursion: Example 2 (basic idea)

• What is the sum of the numbers in positions 0…(n-1)
of array x?

• (the sum of all values in the shaded area is s

• Answer:
– The sum is s + the value at index n-1

 8

0 n-1
x

245

Example for x = {2, 5, 4, 8}

{2, 5, 4, 8} 11 + 8 = 19

{2, 5, 4} 7 + 4 = 11

{2, 5} 2 + 5 = 7

{2} 2

reduce

reduce

reduce result

result

result

solve directly

246

Recursive Calls

Find the sum of the elements in an array of

size 4

Find the sum of the elements in an array of

size 3

Find the sum of the elements in an array of

size 2

Find the sum of the elements in an array of

size 1

results

reduce

reduce

reduce

results

results

Algo. sum(x, 4)

Algo. sum(x, 3)

Algo. sum(x, 2)

Algo. sum(x, 1)

247

Components of Recursion

There are 3 components to recursion:

1. A test to see if the problem is simple enough to
solve directly (i.e. non-recursively): the “base case”

2. The solution for the base case.

3. A solution to the problem which involves solving one
(or more) smaller versions of the same problem.

248

Template for recursive algorithms

Create the solution for
the larger case using
results from the
simpler case

Solve directly
the Base Case

Reduce problem to a
simpler case

Find solution to the
simpler problem using
one or more recursive
calls.

false

true

Test: base case?

249

• Write a recursive algorithm to find the sum of the
values in array positions 0…(N-1):

GIVENS: x (referenced an array of integers)

 n (number of elements to sum in a)

RESULT: s (sum of n elements in the array)

INTERMEDIATES:

 m (set to n – 1; smaller)

 partialS (partial sum of first m elements in

 the array)

HEADER:

 s recSum(x, n)

Exercise 8-1: Recursive Sum of Array (I)

250

BODY:

Exercise 8-1: Recursive Sum of Array (II)

251

• m can be substituted directly in the call

Exercise 8-1: Simplified Version

252

Exercise 8-1: Trace for this value of x:

5 3 2 length 3
x

253

Exercise 8-1: Trace Table 2

254

Exercise 8-1: Trace, Table 3

255

Recursive Algorithms and
Recursive Methods

• An algorithm that calls itself, with different
GIVENS, is called a recursive algorithm.

• A Java method that calls itself, with different
arguments, is called a recursive method.

• We can also have circular recursion, which is more
difficult to detect and manage

– Ex: a calls b, b calls c and c calls a.

– Not studied in this course.

256

Template for Recursive Java Method

public static typeOfReturn recursiveMethod
 (int size, <otherParameters>)

{

 typeOfReturn result;

 typeOfReturn partialResult;

 if (baseCase(size))

 { <Find the result directly > }

 else

 {

 { < Reduce to an instance with smaller >; }

 < partialResult > =

 resursiveMethod(smaller, < otherParameters >);

 { < Calculate result, using partialResult > }

 }

 return result;

}

Comment: There are NO loops!

257

Exercise 8-2: Translate the Recursive
recSum to Java

258

Variation

• Having the base case do nothing is variation that is fairly
common.

• For example, in the algorithm recSum, we can use the base case
n=0 and that the result is 0.

• In this case the method recSum becomes:

 public static int recSum(int [] x, int n)

 {

 int s = 0; // RESULT

 if (n >= 1)

 {

 s = recSum(x, n - 1);

 s = s + x[n - 1];

 }

 return s;

 } // Is this easier to read or understand…?

259

Recursion Examples

Example 1 - What is the maximum value in positions 0…(n-1) of
array x?

8-1 What is the sum of the numbers in positions 0…(n-1) of array x?
(Exercise 8-2 – Translation to Java)

8-3 Find xn where x and n are integers and n 0, x 1.
(a) Direct algorithm
(b) Alternative algorithm based on fact:

 xn = xi * xn-i

– Choose I to get most efficient version.

8-4 Given an array a of more than n numbers, return TRUE if all
the numbers in positions 0…n of a are equal, and false
otherwise.

260

More Recursion Examples

8-5 Calculate n !

8-6 Find the sum of 1+2+…+n.

8-7 Given an array a of n characters, reverse the values
stored in positions Start to Finish.

8-8 Sort an array of numbers in increasing order.

261

Exercise 8-3: Find xn (version 1)

262

Exercise 8-3: Find xn (version 2: more
efficient)

263

Exercise 8-3: Reducing the problem size

• The second version of xn is
more efficient because we
cut the problem size in half,
instead of reducing it by one.

• This leads to fewer recursive
calls:

power(2,5)

power(2,4)

power(2,3)

power(2,2)

power(2,1)

power(2,0)

power(2,5)

(4x4)x2 = 32 (n odd)

power(2,2)

(2x2)=4 (n even)

power(2,1)

(1x1)x2 = 2 (n odd)

power(2,0)

1

4

8

2

16

32

1

4

2

32 recursive call

return value

264

Exercise 8-8: Sort an array of numbers,
version 1

• General idea: “insertion sort”: insert last value into previously
sorted array.

– First, sort array of size n-1 using recursive call

– Second, determine where the value in last array position
should go

– Third, move over values, and insert last value

2 3 4 6 7 5

3 6 4 2 7 5

2 3 4 6 7 5

2 3 4 5 6 7

265

Exercise 8-8: Sort an array of numbers,
version 2

• General idea: “selection sort”: select largest element, and put
in correct position.

– First, find position with maximum value in array

– Second, swap this position with last position

– Third, use recursion to sort “smaller” array

3 6 4 2 7 5

3 6 4 2 7 5

3 6 4 2 7 5

3 6 4 2 5 7

2 3 4 6 5 7

266

Exercise 8-8: Recursive selection sort

267

Exercise 8-8: Recursive location of
largest value

268

Exercise 8-8: Recursive location of largest value

3 6 4 2 7 5 locateLargestValue(x, 6)

3 6 4 2 7 5

3 6 4 2 7 5

3 6 4 2 7 5

locateLargestValue(x, 4)

locateLargestValue(x, 3)

locateLargestValue(x, 5)

3 6 4 2 7 5 locateLargestValue(x, 2)

3 6 4 2 7 5 locateLargestValue(x, 1) (base case)

269

Exercise 8-8: Recursive location of largest value

3 6 4 2 7 5

3 6 4 2 7 5

return to
locateLargestValue(x, 4)

return to
locateLargestValue(x, 3)

3 6 4 2 7 5 return to
locateLargestValue(x, 2)

3 6 4 2 7 5 repeated from previous page
locateLargestValue(x, 1)

(base case)

3 6 4 2 7 5

3 6 4 2 7 5

(compare)

(choose)

(compare)

(choose)

3 6 4 2 7 5

(compare)

(choose)

270

Exercise 8-8: Recursive location of largest value

3 6 4 2 7 5 repeated from previous page
locateLargestValue(x, 4)

3 6 4 2 7 5

(compare)

(choose)

3 6 4 2 7 5 return to
locateLargestValue(x, 5)

3 6 4 2 7 5

(compare)

(choose)

3 6 4 2 7 5 return to
locateLargestValue(x, 6)

3 6 4 2 7 5

(compare)

(choose)

done!

271

When does the problem actually get solved?

• In the previous example, we needed the result of a recursive call
first.

– Therefore, recursive calls were made without doing any
“work” until the base case was reached.

– It was after the recursive calls started returning that the
actual comparisons were done, and the problem was solved.

• This is not always the case. The following illustration of the
selection sort method illustrates the situation where the “work”
is done before the recursive call, and when we reach the base
case, the problem is solved.

– However, we still have to return from all the recursive calls!

272

Exercise 8-8: Recursive selection sort

3 6 4 2 7 5 sort(x, 6)

3 6 4 2 5 7 sort(x, 5)

3 6 4 2 5 7

3 5 4 2 6 7

sort(x, 4)

3 2 4 5 6 7

3 2 4 5 6 7

3 5 4 2 6 7

3 2 4 5 6 7

sort(x, 3)

(find largest)

(swap with last position)

(find largest)

(swap with last position)

(find largest)

(swap with last position)

(find largest)

(swap with last position)

273

Exercise 8-8: Recursive selection sort

sort(x, 2)

sort(x, 1)

3 2 4 5 6 7

3 2 4 5 6 7

sort(x, 3)

(repeated from
 previous page)

3 2 4 5 6 7

2

3

4 5 6 7

2 3

4

5 6 7 (base case)

(find largest)

(swap with last position)

(find largest)

(swap with last position)

2 5 6 7 return to
sort(x, 2)

3

4

274

Exercise 8-8: Recursive selection sort

3 4 2 5 6 7 return to
sort(x, 3)

3 4 2 5 6 7 return to
sort(x, 4)

3 4 2 5 6 7 return to
sort(x, 5)

3 4 2 5 6 7 return to
sort(x, 6)

done!

275

Section 9: Matrices

Objectives:

• Matrices = arrays of arrays

• Declaration, access, and modification

• Adjacency Matrices

“The Matrix is a system, Neo”
-- from The Matrix

276

Historical note …

• 1998: Larry Page and
Sergey Brin, founded a
company that revolutionized
the world of search engines
and the Internet: Google!

• Many applications, such as
GoogleMaps.

• 450 000 servers.

• More than a billion
queries per day!

http://en.wikipedia.org/wiki/Larry_Page
http://en.wikipedia.org/wiki/Sergey_Brin
http://www.google.ca/intl/en/options/
http://www.google.ca/intl/en/options/

277

Matrices

• An r c matrix has r rows and c columns.

• Example. A 4 x 6 matrix of integers

 m[rix][cix] is the entry at row rix and column
cix. (Indices start from 0).

71 62 33 89 85 74

68 65 75 84 70 72

87 0 1 90 92 88

58 72 66 57 76 73

m

278

Matrices and
2-dimensional Arrays

• A matrix is represented in algorithms by a 2-dimensional array,
i.e., an array of arrays.

• Exercise 9-1: The matrix m is an array of 4 arrays, each with 6
members. If m is regarded as a reference to a 2-dimensional
array, then

m[1][2] is

m[2][5] is

m[4][1] is

m[3] is

71 62 33 89 85 74

68 65 75 84 70 72

87 0 1 90 92 88

58 72 66 57 76 73

m

279

Exercise 9-2: Max value in a matrix (p. 1)

• Write an algorithm to find the maximum value in a
matrix.

280

Max value in a matrix (p. 2)

BODY:

281

Exercise 9-2: Alternative Algorithm

BODY:

282

Diagonal Matrices

• A square matrix has the same number of rows and
columns. If all its “off-diagonal” values are 0 it is a
diagonal matrix.

• For example, in the following matrices,

• m1 is a diagonal matrix and m2 is not a diagonal
matrix.

• Write an algorithm that checks if a given square
matrix is diagonal.

2 0 0 2 4 0

1 0 5 0 2 3 5 0

0 0 0 0 0 1

m m

283

Exercise 9-3: Diagonal-check algorithm

284

Exercise 9-3: Efficient Version

285

2D Arrays in Java

• A 2D array in Java is literally an array of arrays
(each entry in the array is a reference to an array).

m
68 75 65

71 63 -9

87 0 90

66 57 74

length 3

length 3

length 3

length 4

length 3

286

Declaring a 2D Array

• To declare m to be a reference variable to a 2-dimensional array of
integers:

 int [][] m;

• To create a 2x3 instance of a 2D array (i.e. allocate memory for the
array and all the sub-arrays) and assign its reference to m :

 m = new int[2][3];

• To create an initialized 2 x 3 2-dimensional array :
int [][] m;

m = new int[][] { {1, 2, 3}, {4, 5, 6} };

int [][][] c = new int [][][] { {{1,2}, {3,4} },

 {{5,6}, {7,8} } }

• You may use length to find the dimension of a 2-dimensional array, or
any sub-array:

m.length is
m[0].length is
What about m[0][0].length?

287

Exercise 9-3: Max value in a matrix in Java

• Translate the algorithm for the maximum value in a matrix to
Java:

– Note: Integer.MIN_VALUE is the most negative allowable
integer for a Java int, and can be used for –.

288

Exercise 9-4: Reading in a Matrix

• Write Java code to read in a matrix row by row (first it reads
in the number of rows and columns, then it asks for the values
in row 0, then it asks for the values in row 1, etc.). All values
are read one per line using ITI1120.readInt().

289

Adjacency Matrix

• Escape Airlines has flights between certain cities.
The flights and their costs can be represented as a
graph in which an edge between city x and city y with
a weight (label) of w means Escape Airlines has a
flight between x and y costing w dollars.

Ottawa (0)

400

Madrid (4)

Toronto (3)

Singapore
 (1)

Paris (2)

 450

300

300
700

500

900

290

Matrix Representation

• This graph can be represented with an adjacency matrix. There
is a row and a column for each city, and cost[x][y] is the cost of
a flight from x to y if one exists and is infinity () if there is
no such flight.

• Here, “infinity” is actually a very large number, greater than any
number.
– In Java: a predefined constant is available for the largest

possible integer: Integer.MAX_VALUE

0 500 450 300 700

500 0 900

cost 450 0 400

300 900 400 0 300

700 300 0

291

Finding the Cheapest Direct Flight

• Suppose you live in one of Escape’s cities and have $d to spend.
Write an algorithm that returns an array of the cities you can
afford to fly to directly.

• What you know (Givens)

1. The city where you live.
2. The cost of flight between two cities.
3. The total number of cities.
4. The amount you can spend.

• What you want (Result)

– An array of cities that can be visited.

• Idea:

– First, find the number of cities that can be visited.

– Then, create an array of the right size.

– Finally, place cities that can be visited in the array.

292

Exercise 9-5: Find Cheap Direct Flights (p. 1)

293

Find Cheap Direct Flights (p. 2)

294

Exercise 9-5: Translate to Java (p. 1)

295

Exercise 9-5: Translate to Java (p. 2)

296

Alternative Solution

• To simplify the problem, we could use separate algorithms to
find first the number of cities that can be visited and then fill
in the array.

• Algorithm findNumber

• Find number of cities that can be visitied

• Algorithm findCities

• Find the cities that can be visited

• Algorithms only require one row of the cost matrix; the one
corresponding to the city where you live.

• New main body:

numCities findNumber(cost[home], d, n)

cities makeNewArray(numCities)

findCities(cost[home], d, n, cities)

297

Deleting rows and columns

• Escape Airlines has decided to stop flying to and
from city x (e.g. Paris, x=2), and the city numbers
greater than x have all been reduced by 1 (e.g. Madrid
is now city 3).

– This problem can be solved by deleting a row and a
column that correspond to the city.

• Write two algorithms, one to delete a row from a
matrix, the other to delete a column.

• We are not going to change the size of the matrix,
but we are going to shift the rows and columns up and
put zeros in the last row and column.

298

Delete a row

• Idea:

– To delete row i of a square matrix, we shift rows
from bottom up and put zeros in the last row.

– Shall develop a separate algorithm to copy
elements of one row to the row above it,
overwriting its values.

• Thus our first algorithm only needs a a loop that
copies row i + 1 into row i, row i + 2 into row i + 1,
…, row n-1 into row n - 2.

– We use a separate algorithm to put zeros in the
elements of the last row.

299

Exercise 9-6: Algorithm deleteRow (1)

300

Exercise 9-6: Algorithm deleteRow (2)

301

Exercice 9-6: Algorithme moveUp

302

Exercice 9-6: Algorithm putRowToZero

303

Exercise 9-6: Translation to Java

304

Delete a column

• Delete a column of a matrix. Use a similar approach.
To do, as an exercise!

• Another possible exercise is to generalise the
problem: Delete a row or column from a matrix which
is not necessarily square.

305

Section 10: Introduction to Objects

Objectives:

• Records

• Classes and Objects

• Information Hiding

• Accessors and Modifiers

“Politics is the skilled use of blunt objects.”
-- L.B. Pearson

306

Historical note …

• Barbara Liskov was the first women
to have obtained her Ph.D. in
computer science in US (in 1968,
from Stanford University).

• She was at the origin of CLU, the
first language that supported
abstract data types (1975), that
influenced many object-oriented
languages, including Java.

• In 1993, she and Janette Wing have
developed a specific definition of
sub-types, the Liskov principle of
substitution, used in object-
oriented programming.

http://en.wikipedia.org/wiki/Barbara_Liskov
http://en.wikipedia.org/wiki/CLU_programming_language
http://www.cs.cmu.edu/~wing/
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://pmg.lcs.mit.edu/%7Eliskov/index0.html

307

Student Information

• How can we store a all the information about each student in a
course?
– ID (student number) (integer)
– midterm mark (real)
– final exam mark (real)
– is taking this course for credit (Boolean)

• Exercise 10-1: What is the problem with the following

solutions:
– Each value is stored in a separate variable:

– Put all the values into an array:

308

Records

• Like an array, a “record” allows several values of different type to be
stored in one variable.
– Another view is that a record is a group of variables of different

type
• Records differ from arrays in 2 ways:

– The values/variables (called fields) in a record can be of different
types.

– Each field in a record has a NAME. A value is accessed by
specifying the field name (not a subscript).

• Example (a single record with 4 fields):

id 1234567

midterm 60.0

exam 80.0

forCredit TRUE

field name field value

309

Using Records

• Suppose the preceding record was stored in a variable
named r.

• To access the midterm mark:
 r.midterm

• This refers to one field inside record r. A field can be
used anywhere a variable of that type is allowed, e.g.,

 t r.midterm + r.exam

 r.forCredit false
• The whole record can be used in an assignment

statement or passed as a parameter:
 x r
(not in Java – this occurs in other programming

languages like C)

310

Defining a Record Type

• When we discussed primitive types, we looked at:
– What values does the type allow?
– What operations one can do with values of that

type?

• A record is a “user-defined” type that is built using
types we have already:
– Primitive types
– Other user-defined types.

• Creating a record also has the two elements of

primitive types:
– What are the components of a record value?
– What operations can we do with the record?

311

Records and Classes/Objects

• Some languages allow you to create records, without
the capability to define operations on those records.

– Examples:

• The language Pascal has “records”

• The language C has “structures”

• Some languages allow you to also define operations on
user-defined data types.

– The record types are then usually referred to as
“classes”, and specific records are called “objects”

– Examples:

• “Classes” in the language C++ and Java

312

Classes and Objects

• An object can be considered to be like a record, in that there is
a set of “attributes” – named data values (variables) stored in
the object.

• Each object is created from a class. An object is referenced
from a reference variable (like an array).

• A “class” can be used as a template to create objects with

identical sets of attributes.
– The class can also contain methods (algorithm models) to

perform calculations on the attributes of objects created
from the class (and/or external data).

• A method is called on an object using the . operator, in a similar

manner to accessing a record field
result ← anObject.aMethod(aParameter)

313

Class Diagrams

• This form of diagram is from a notation called the
“Unified Modelling Language” or UML

NameOfClass

attribute1: type1
attribute2: type2

“Attributes” are like
 the field variables in
a record

method1(parameter1 : type1) : returnType1

method2(parameter2 : type2) : returnType2

314

Translation to Java

public class <Class Name>

{

 // Declaration of Variables

 // public <type> <name>;

 // Methods

}

• The class is a “template” for how to construct
objects.
– Objects must be created using the new statement
– Objects are referenced with a reference variable
// Declaring the reference variable

<Class Name> refVar;

// creating the object

aStudent = new <Class Name>();

315

Exercise 10-2: First version of a Student Class

• For each student, we want to store their ID number,
their midterm score, their exam score, and whether
or not the student is taking the course for credit. We
shall deal with the final mark later.

Student

(no methods yet!)

316

Exercise 10-2: Translation to Java

public class Student

{

 // methods

}

// Declare aStudent reference Variable

// Create a Student object referenced by aStudent

317

Exercise 10-3: Object usage in Java

Student aStudent; // declare reference variable

aStudent = new Student(); // create new object

aStudent.id = 1234567;

aStudent.midterm = 60.0;

aStudent.exam = 80.0;

aStudent.forCredit = true;

Student meToo;

meToo = new Student();

meToo.id = 81069665;

meToo.midterm = 73.0;

meToo.exam = 77.0;

meToo.forCredit = false;

318

Exercise 10-3: Object usage in Java

format:
<class name>

(the underlining shows
that this is an instance
diagram)

 .

Reference

Variables

319

Information hiding

• Suppose we want to modify the Student class to keep the course
final mark, which is 20% of the midterm mark plus 80% of the
final mark.
– We could add a field finalMark to our class.

• We want to make sure that

finalMark = (0.2 × midterm + 0.8 × exam)

is always true for consistency.

• It would be useful to prevent anyone else from setting the value
of finalMark arbitrarily.
– Instead, if the final mark is to change, it should be done by

changing the value of either midterm or exam.

• Restricting access to data is called “information hiding”.

320

Private fields in a class

• The – in front of the variable indicates that the attribute is
private.

• By declaring a field to be private, only methods declared inside
the class are allowed access to the field value (either for
viewing the value, or changing the value).

Student

– id : int
– midterm : double

– exam : double

– forCredit : boolean

– finalMark : double

321

Information Hiding

• The field names and types represent an implementation of a
class.

– To ensure relative independence relative to other parts of
your program (which helps reduce the effort of
maintenance), fields are (almost) always private.

– This information hiding is also called data abstraction and
also encapsulation).

• The private fields and methods cannot be accessed directly but
only from methods in the class.

• If (and only if) necessary, can define a few public methods to
allow other parts of the program to access fields.

• The public methods represent the interface of the class relative
to other parts of the program.

322

Second version of the Student Class

• This time, use encapsulation.

public class Student

{

 // were previously public

 private int id;

 private double midterm;

 private double exam;

 private boolean forCredit;

 private double finalMark; // new field

 // methods

}

323

How do we use the second version?

• If we try the following:

 Student aStudent = new Student();

 aStudent.id = 1234567 ; // error!

 the compiler returns an error since access to id is no
longer allowed from outside the class.

• However, we can create additional access methods in
the class Student:

– “accessor”: requests to see the value of a private
field.

– “modifier”: requests to modify the value of a
private field.

324

Accessors and Modifiers

• Accessor

– A public instance method (called using a reference to an
object);

– Returns the value of the field of the object;

– Has no parameters;

– Often called getFieldName (also called a getter method).

• Modifier

– A public instance method (called using a reference to an
object);

– Assigns a value to a field;

– Accepts values in a parameter of the same type as the field;

– Often called setFieldName (also called setter method).

325

Accessors and Modifiers

• Examples for the forCredit field in the class:

+ getForCredit() : boolean

– method to return the value of forCredit

– the + indicates that the method has public visibility
– the return type is boolean, and in UML notation,

appears at the end of the method.

+ setForCredit(newValue : boolean)

– method to change the value of forCredit

– one parameter newValue, of type boolean
– no return value

326

Class diagram with accessors and modifiers

Student

– id : int
– midterm : double

– exam : double

– forCredit : boolean

– finalMark : double

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

327

Back to Information Hiding

• To implement our strategy of hiding the finalMark field, we can
do the following:

– We will provide an accessor method for finalMark, but NOT a

modifier method.

– We can provide a method recalculateFinalMark() to recalculate
the final mark if the midterm or exam marks are changed.

– The modifier methods setMidterm() and setExam() will call
recalculateFinalMark() so that they automatically update the
final mark.

• We should also restrict access to recalculateFinalMark() because
it isn’t meant for use outside the class.

328

Student class with Information Hiding

Student

– id : int
– midterm : double

– exam : double

– forCredit : boolean

– finalMark : double

+ getId() : int

+ setId(newID : int)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

– recalculateFinalMark() private
method

no modifier
for this value

329

Translation to Java

public class Student

{

 // Attributes

 private int id;

 private double midterm;

 private double exam;

 private boolean forCredit;

 private double finalMark;

 // Methods

 public int getId()

 {

 // insert code here

 }

 public void setId(int newId)

 {

 // insert code here

 }

 public double getMidterm()

 {

 // insert code here

 }

 public void setMidterm(double newMark)

 {

 // insert code here

 }

 // continued at right

 // continued from left side

 public double getExam()

 {

 // insert code here

 }

 public void setExam(double newMark)

 {

 // insert code here

 }

 public boolean getForCredit()

 {

 // insert code here

 }

 public void setForCredit(boolean newValue)

 {

 // insert code here

 }

 public double getFinalMark()

 {

 // insert code here

 }

 private void recalculateFinalMark()

 {

 // insert code here

 }

} // end of class Student

330

Calling Java Accessor and Modifier Methods

• Again, use the dot operator (.)
• The following code causes errors, why?

Student aStudent = new Student();

aStudent.id = 1234567; // error here!

int myId = aStudent.id; // error here!

System.out.println(myId);

• The compiler enforces the private access to id .

• Solution: Instead, use the modifier and accessor methods.

Student aStudent = new Student();

aStudent.setId(1234567); //ok!

int myId = aStudent.getId(); //ok!

System.out.println(myId);

331

Implementing Java accessors and modifiers

public class Student // not all attributes/methods shown!

{

 // attribute

 boolean forCredit;

 // … other attributes declared

 // accessor: return the requested value

 public boolean getForCredit()

 {

 return this.forCredit ;

 }

 // modifier: save the requested value in object’s
 // attribute

 public void setForCredit(boolean newValue)

 {

 this.forCredit = newValue;

 }

 // …other methods are similar

}

332

Where did this come from?

• When the fields of our Student class were public, we
distinguished between the same field in two record objects with
the variable name and the dot operator:
– aStudent.forCredit versus meToo.forCredit

• Likewise, when a method inside the class wants to work with “the
value of the field for the object on which I was called”, this
refers to the called object.

• During the call aStudent.getForCredit(),
this is a reference to aStudent
– … and so this.forCredit is aStudent.forCredit,

which is true.

• During the call meToo.getForCredit(),
this is a reference to meToo
– … and so this.forCredit is meToo.forCredit, which

is false.

333

Methods Operate on Object Data

• Adding a method to a class such as Student provides operations
on the data in the objects created with the class (user defined
types).

• Note that we have called the method getForCredit without
parameters in two different cases
– Each different case calls to the methods are associated to

different objects and thus we get different results.

• An analogie:
– With integers: 3 + 5 and 4 + 3; the same operation (+) is

invoked, but with different values which gives different
results

– With Students: the same operation (getForCredit), but on
different objects different results

334

Implementing Information Hiding

• The following implements our strategy where the final mark can only be changed by
modifying the midterm or exam values.

public class Student

{

 // attributes and other methods would go here

 public void setMidterm(double newValue)

 {

 this.midterm = newValue;

 this.recalculateFinalMark();

 }

 public void setExam(double newValue)

 {

 this.exam = newValue;

 this.recalculateFinalMark();

 }

 private void recalculateFinalMark()

 {

 this.finalMark = 0.2 * this.midterm + 0.8 * this.exam;

 }

 }

335

Benefits of Information Hiding (1)

• One of the most common causes of problems
historically has been when all parts of a program have
access to all program variables.

– For example, when someone makes a change to a
large program, the new code may make changes to
data that some other part of the program assumed
would not be modified.

• With information hiding, we can keep the code better
partitioned so that changes will be less likely to cause
unwanted side effects.

“Successful software always gets changed.” - F. Brooks

336

Benefits of Information Hiding (2)

• We can also make changes inside a class that will not affect users of
the class.

• Example: Suppose we decide that the finalMark field really doesn’t need
to be stored in the Student class.
– Instead, we can calculate the final mark when anyone asks for it:

 public double getFinalMark()

 {

 return 0.2 * this.midterm + 0.8 * this.exam;

 }

– This means we can remove the method recalculateFinalMark(), and
the calls to it in setMidterm() and setFinal().

• Making these changes will not affect any user of the class:

– For example, meToo.getFinalMark() still behaves as it did before.
– Since recalculateFinalMark() was private, code outside the class was

not able to call this method, and therefore it can be safely
removed.

• So we don’t have to change any code outside the class!

337

Compare Versions

Student

– id : int
– midterm : double

– exam : double

– forCredit : boolean

– finalMark : double

+ getId() : int

+ setId(newID : int)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

– recalculateFinalMark()

Student

– id : int
– midterm : double

– exam : double

– forCredit : boolean

+ getId() : int

+ setId(newID : int)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

338

this, again

• In most cases, we don’t actually have to use this to
refer to the object on which a method is called.

– Inside the Student class:

• exam can be used instead of this.exam.

• recalculateFinalMark() can be used
instead of this.recalculateFinalMark().

• There are 2 occasions when we really do need this:

1. An object wants to pass itself as a parameter to
a method of another class.

2. An object wants to return a reference to itself
as the result of a method.

339

Section 11: Object-oriented design

Objectives:

• Constructors

• Array fields in classes

• Classes versus instances

• Class design

“A class, in Java, is where we teach objects how to behave.”
-- R. Pattis

340

Historical note …

• The Xerox Palo Alto Research Center (PARC), founded in 1970,
is at the origin of many important contributions:
– The first workstation (Alto) with graphical user interface

(GUI, with windows and icons) and mouse
– The first text editor WYSIWYG
– The InterPress language (predecessor of PostScript) for

describing pages to be printed
– The Ethernet protocol for local area networks
– The Smalltalk object-oriented programming language, with

graphical development environment (designed by Alan Kay)
– The laser printer
– ...

http://en.wikipedia.org/wiki/Xerox_PARC
http://en.wikipedia.org/wiki/Xerox_PARC
http://en.wikipedia.org/wiki/Xerox_Alto
http://en.wikipedia.org/wiki/InterPress
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Smalltalk_programming_language
http://en.wikipedia.org/wiki/Alan_Kay
http://en.wikipedia.org/wiki/Laser_printer

341

Object-orientation

• The approach we have taken with our student class is an “object
oriented” approach:
– We have a class that is a template for the creation of objects.

• Student objects can be referred to as INSTANCES of the
CLASS Student.

– Object instances have instance methods that use the field
values for a specific object

• e.g. getFinalMark() will have different results for different
objects because this.exam is different for different
objects

– If you want the object to do something for you, you have to
ask it by calling a method on that object.

• That is, you can’t sneak inside an object from outside the
class and change the private field values.

– You also can’t call an instance method, without using an object
reference:
 x 3.0 + getFinalMark() is meaningless. Whose final mark

are we referring to?

342

Initialization of Objects

• When we create a new Student, we will usually want to
provide values for all the fields in the object.

aStudent = new Student();

aStudent.id = 1234567;

aStudent.midterm = 60.0;

aStudent.exam = 80.0;

aStudent.forCredit = true;

• A special kind of method called a CONSTRUCTOR,
can be used to initialize values inside an object as the
object is being created.
aStudent = new Student(1234567, 60,0, 80.0, true);

343

Constructors

• A constructor is a special method in a class used to
create an object.

– the name of the method is the same as the class;

– no return type

– usually public;

– may or may not have parameters.

• The parameters, if any, in a constructor are used to
initialize the values of the object.

• Because there may be different ways to initialize an
object, a class may have any number of constructors,
distinguished from each other by different
parameter lists.

344

Implementation in Java

• The following is a constructor that sets a value for all of the
fields in the Student:

class Student

{

 // ... fields would be defined here ...

 public Student(int theId, double theMidterm, double theExam, boolean

 isForCredit)

 {

 this.id = theId;

 this.midterm = theMidterm;

 this.exam = theExam;

 this.forCredit = isForCredit;

 }

 // ... Other methods ...

}

• This constructor could be used as follows:

 Student aStudent = new Student(1234567, 60.0, 80.0, true);

345

Constructors of class Student

• If we are doing course registrations, we may only want to
provide the ID number and whether the student is taking the
course for credit. (We don’t know the student’s marks yet!)

• We could also provide the following constructor:

 + Student(theID : int, isForCredit : boolean) UML

public Student(int theID, boolean isForCredit)

{

 this.id = theID;

 this.midterm = 0.0; // a “safe” value

 this.exam = 0.0; // a “safe” value

 this.forCredit = isForCredit;

}

• When there is more than one constructor, they must have
parameter lists that can be distinguished by the number, order,
and type of parameters.

346

Add Constructors to the Class

 Student

– id : int
– midterm : double

– exam : double

– forCredit : boolean

+ Student(theID : int, theMidterm : double, theExam : double, isForCredit: boolean)

+ Student(theID : int, isForCredit: boolean)

+ getId() : int

+ setId(newID : int)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

347

Constructors of class Student

• Here is a constructor with no parameters:

 + Student()

public Student()

{

 this.id = 0;

 this.midterm = 0.0;

 this.exam = 0.0 ;

 thisl forCredit = false;

}

• A constructor without parameters is called a default constructor.
– It is recommended to always define a default constructor that sets

every field to a “safe” value.

• If, and only if, a class does not define any constructor, the Java
compiler invisibly creates a default constructor that does nothing.

348

Exercise 11-1: Using Constructors

• Show how objects are created and referenced by the
following main method.

public class Section11

{

 public static void main(String [] args)

 {

Student aStudent; // reference variable

Student meToo; // another reference variable

Student bStudent; // a third reference variable

 ●

 ●

aStudent = new Student(1234567,60.0,80.0,true);

meToo = new Student(7654321,true);

bStudent = aStudent;

 ●

 ●

 ●

 }

}

349

Exercise 11-1: Using Constructors

Reference

Variables

350

Array Fields in Classes

• A field of a class may
have any type. In
particular, a class may
have a field of an
array type (reference
variable).

• Add an array of
double to class
Student representing
assignment marks:

• Remember, arrays are
not created
automatically! The
array assignments will
have to be created
after a Student
object is created.

Student

– id : int
– midterm : double

– exam : double

– forCredit : boolean

– assignments : double[]

+ Student(theID : int, theMidterm : double,

 theExam : double, isForCredit: boolean)

+ Student(theID : int, isForCredit: boolean)

+ getId() : int

+ setId(newID : int)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

351

Array Fields in Classes

public class Student

{

 private int id ;

 private double midterm ;

 private double exam ;

 private boolean forCredit;

 private double[] assignments;

 // methods

}

• The array reference variable assignments contains
the value null.

352

Array field initialization

• Here is a constructor that creates and initializes an array in an
object. The constructor has a parameter that is the number of
assignments.

public Student(int numberOfAssignments)

{

 this.id = 0;

 this.midterm = 0.0;

 this.exam = 0.0 ;

 this.forCredit = false;

 this.assignments = new double[numberOfAssignments];

 // loop to initialize each item in array

 int index;

 for (index=0; index < numberOfAssignments; index = index+1)

 {

 this.assignments[index] = 0.0;

 }

}

353

Accessors for an Array Field

• An accessor for an array field could:
– Return a reference to the entire array

+ getAssignments() : double[] UML

public double [] getAssignments()

{

 return assignments;

}
– Return one of the values in the array, with an extra

parameter to select the array index.
+ getAssignment (assignNumber: int) : double UML

public double getAssignments(int assignNumber)

{

 return assignments[assignNumber];

}

• Which approach is better?

354

Exercise 11-2: Calculation of the Final Mark

• Write Java methods calcAssignAvg() and getFinalMark() for
our Student class that returns a double with a student’s final mark,
where:

– The final mark is 55% of the exam, plus 20% of the midterm, plus
25% of the average of 5 assignments.

 public double calcAssignAvg()
{

}

355

Exercise 11-2: Calculation of the Final Mark

• Write Java methods calcAssignAvg() and getFinalMark(
) for our Student class that returns a double with a student’s
final mark, where:

– The final mark is 55% of the exam, plus 20% of the midterm,
plus 25% of the average of 5 assignments.

 public double getFinalMark()
{

}

356

Course information

• Now that we have a class that stores information
about one Student, how can we use this create a class
Course that stores information about all students?

Course

+ Course(code: String, title: String)

+ addStudent(theID : int, isForCredit : boolean)

– code : String

– title : String

– students: Student []

…

357

Exercise 11-3: Arrays of objects

• Show how objects are created and referenced
by the following main method.

public class Section11

{

 public static void main(String [] args)

 {

Course aCourse;

aCourse = new Course(“ITI1120”,”Intro. to Comp.”);

aCourse.addStudent(123456,true);

aCourse.addStudent(654321,false);

 }

}

358

Exercise 11-3: Array of Student Objects

aCourse

359

Common values for a Class

• For our student and course objects, we have been
using instance variables, and creating instance
methods.
– There is a set of instance variables created for

each new object.
– The instance methods use the instance variables

for the object on which they are called.

• Suppose we have a value that we want every student
object to know about.
– Examples: The weights of the final exam,

midterm, and assignments for calculating a
student’s final mark.

360

Adding weights as attributes

Student

– assignWeight : double = 0.25

– midtermWeight : double = 0.20

– examWeight : double = 0.55
– id : int
– midterm : double

– exam : double

– forCredit : boolean

– assignments : double []

+ Student(theID : int, theMidterm : double,

 theExam : double, isForCredit: boolean)

+ Student(theID : int, isForCredit: boolean)

+ getId() : int

+ setId(newID : int)

+ getAssignment(assignNum : int) : double

+ setAssignment(assignNum : int,

 newMark : double)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

– calculateAssignAverage() : double

• The problem with this approach is
that EVERY Student object will have
copies of assignWeight,
midtermWeight, and examWeight,
which takes up extra storage for
each student

– How much extra storage would
this take if there were one
object for every ITI 1120
student?

• If the weights change, every object
would have to be updated.

• We want the weights to be
consistent among all Student objects.

361

Class Variables

• Another type of variable we can have with a class is a
“class variable” (also known as “static variable ”).

• Class variables are NOT stored inside individual
objects, because they belong to the entire class.

– Instead, they are stored with the class.

• EVERY object created from the class has access to
the class variables, even if they are private.

– If class variables are public, then methods outside
the class also have access to the class variables.

362

Class and Instance variables

(to class variables)

id 8106966

midterm 73.0

exam 79.0

forCredit false

assignments

assignWeight 0.25

midtermWeight 0.20

examWeight 0.55

Class Student
(to class variables)

id 1234567

midterm 60.0

exam 80.0

forCredit true

assignments

meToo : Student

aStudent : Student

363

Class variables in UML diagrams

• Class variables are
underlined; instance
variables are not.

• Note that the initial
values of the class
variables has been
specified.

Student

– assignWeight : double = 0.25

– midtermWeight : double = 0.20

– examWeight : double = 0.55
– id : int
– midterm : double

– exam : double

– forCredit : boolean

– assignments : double []

+ Student(theID : int, theMidterm : double,

 theExam : double, isForCredit: boolean)

+ Student(theID : int, isForCredit: boolean)

+ getId() : int

+ setId(newID : int)

+ getAssignment(assignNum : int) : double

+ setAssignment(assignNum : int, newMark : double)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

– calculateAssignAverage() : double

364

Translation to Java

public class Student

{

 // Class variables (applies to all students)

 static private double assignWeight = 0.25;

 static private double midtermWeight = 0.20;

 static private double examWeight = 0.55;

 // Instance variables (one copy per student object)

 private int id ;

 private double midterm ;

 private double exam ;

 private boolean forCredit;

 private double[] assignments;

 public double getFinalMark()

 {

 double assignAvg = this.calculateAssignAverage();

 double finalMark = Student.midtermWeight * this.midterm

 + Student.examWeight * this.exam

 + Student.assignWeight * this.assignAvg;

 return finalMark;

 }

}

365

Class Methods

• Now we can change the final mark calculation for all students by
changing the value of the weights.

• We want to write a modifier method for each weight.
– This modifier should be a CLASS method, because the values

are associated with the class instead of the objects.
– We can also set the weights before creating any student

objects.

• A class method is called as follows:
ClassName . aMethodName()

– Just like the Math class!

• A class method CANNOT use any instance variables, because it
is not associated with any particular object.

366

Class methods in UML diagrams

• Class methods are
underlined; instance
methods are not.

Student

– assignWeight : double = 0.25

– midtermWeight : double = 0.20

– examWeight : double = 0.55

– id : int
– midterm : double

– exam : double

– forCredit : boolean

– assignments : double []

 + getAssignWeight () : double

+ setAssignWeight (newWeight : double)

+ getMidtermWeight () : double

+ setMidtermWeight (newWeight : double)

+ getExamWeight () : double

+ setExamWeight (newWeight : double)

+ getId() : int

+ setId(newID : int)

+ getAssignment(assignNum : int) : double

+ setAssignment(assignNum : int, newMark : double)

+ getMidterm() : double

+ setMidterm(newMark: double)

+ getExam() : double

+ setExam(newMark: double)

+ getForCredit() : boolean

+ setForCredit(newValue : boolean)

+ getFinalMark(): double

– calculateAssignAverage() : double

367

static methods in Java

• As with class variables, class methods are indicated
by the keyword static.

– Note that main is always a class method.

• Write Java class methods for Student to set the
values of the weights for the assignments, midterm,
and final exam
public static void setExamWeight(double newWeight)

{

 Student.examWeight = newWeight ;

}

public static void setMidtermWeight(double newWeight)

{

 Student.midtermWeight = newWeight ;

}

public static void setAssignmentWeight(double newWeight)

{

 Student.assignWeight = newWeight ;

}

368

Exercise 11-4 – Using Class Variables and
Methods

• What output would be produced by the following main method.
public class Section11

{

 public static void main(String [] args)

 {

 int anum;

 Student aStudent; // reference variable

 Student meToo; // another reference variable

 aStudent = new Student(1234567,60.0,80.0,true);

 meToo = new Student(7654321,54.5, 83.4, true);

 for(anum=0 ; anum<5 , anum=i+1)

 {

 aStudent.setAssignment(anum, 60.0);

 meToo.setAssignment(anum, 65.0);

 }

 System.out.println(“The mark for student “+aStudent.getId()+

 “ is “+ aStudent.getFinalMark();

 Student.setMidWeight(0.30);

 Student.setAssignmentWeight(0.15);

 System.out.println(“The mark for student “+meToo.getId()+

 “ is “+ meToo.getFinalMark();

 System.out.println(“The mark for student “+aStudent.getId()+

 “ is “+ aStudent.getFinalMark();

}

}

369

Exercise 11-4 – Using Class Variables and
Methods

Terminal Window

370

Summary of Class Design (1)

• In an object-oriented language such as Java, designing a class is
a large part of the effort to create software.

• Decisions have to be made as to:
– What information should be in the class?

• What fields should each object have?
• What fields should be associated with the class?
• What type are the fields?
• How do we initialize, set, and change the fields?

– What are the operations we may want to ask the class to
perform?

• What other instance methods are needed?
• What other class methods are needed?
• What are the algorithms for all of these methods?

“Classes struggle, some classes triumph, others are eliminated.” --Mao Zedong

371

Summary of Class Design (2)

• Some things to keep in mind when making class design
decisions:

– How might the class be modified in the future?

• Is there anything in the class that is “hard
coded” that perhaps should be a variable?

– Safety:

• Is there a chance that a variable is used before
it receives a value?

• When a method is called, what does the method
assume about the parameter values? Are those
assumptions checked?

372

Example of a Class Design: Fraction

• We shall define class from which objects represent objects
such as 2/3, (-1)/5, or 7/4.

• Since 2 / 3 = 4 / 6 = 6 / 9, and (-1) / 2 = 1 / (-2), etc., fractions
with different numerators and denominators can still represent
the same fraction.

• We shall store fractions in a « standard form »:

1. The numerator and denominator do not have any common
factor other than 1 or -1.

2. The denominator must be positive.

• In math, the denominator of a fraction can never be 0. But we
may not prevent users from creating a fraction with a 0
denominator. Java has a mechanism called exception handling
which handles error conditions (such as divide by 0). We shall
NOT study exception handling in this course.

373

Specification for a Fraction class

• A fraction consists of a numerator and a denominator.
• The numerator of a fraction is an integer.
• The denominator of a fraction is an integer not 0.

– If the denominator is not specified at creation, it is assumed
to be 1.

• A fraction is always in “standard form”; that is
– The greatest common divisor (GCD) of the numerator and

denominator is always 1
– The denominator is always positive.

• Example: 6/-9 should be represented as -2/3
• Special case: if the numerator is 0, the fraction is

represented as 0/1
• A fraction with denominator 1 should be displayed as the

equivalent integer; otherwise in the form
numerator/denominator.

374

Exercise 11-5: Designing a Fraction class

• What information do we need to store in a Fraction?

– numerator

– denominator

• What operations do we need?
– [Aside from creating fractions, the only mathematical operation we

will implement is addition of two fractions]

– constructor(s)

• When constructing a Fraction, we may need some additional
methods

– display()

– addTo()

375

Exercise 11-6: Simplify Fraction to Standard
Form

• To make sure that each Fraction instance will be in lowest terms, a
method simplify will be used.

• Assume that you have a method gcd(a,b) that will return the greatest
common divisor of two integers.

• Write Java methods to put a fraction into standard form.

376

Exercise 11-7: Method for GCD

• A recursive GCD algorithm for gcd(a,b):
– If a mod b is 0, gcd(a, b) is b

• a mod b is the remainder when a is divided by b
– Otherwise, gcd(a,b) is gcd(b, a mod b)

• Question: will this algorithm always reach the base case?
– Note that a mod b is at most b – 1.

• Careful: what if b is set to 0?

377

Exercise 11-8: Fraction Constructors

• Write constructors for a Fraction that:
– take 2 integers: the numerator and the denominator
– takes 1 integer, representing an integer that is to be

converted to a Fraction

378

Exercise 11-9: Displaying Fractions

• Write a Java method to display a Fraction.
• Sample usage:

– Fraction f1 = new Fraction (6, -9);

– f1.display();

• Result: -2/3
public void display()

{

 if (denominator != 1)

 {

 System.out.print(numerator + " / " + denominator);

 }

 else

 {

 System.out.print(numerator);

 }

}

379

Exercise 11-10: Adding Fractions

• Write a Java method that will add two Fractions.
– Sample usage:

Fraction f1 = new Fraction(1, 2);

Fraction f2 = new Fraction(1, 3);

Fraction sum = f1.addTo(f2);

sum.display();

– Result: 5/6

380

Exercise 11-11: Adding an Integer
to a Fraction

• Write a method that will and an integer to a Fraction:

Fraction f1 = new Fraction(5, 2);

Fraction sum = f1.plus(3);

sum.display();

– Result: 11/2

381

Other Arithmetic Operations

• As an additional home exercise, try to create similar
methods for other operations (subtraction,
multiplication and division) on two fractions and with a
fraction and integer.

• What is special about division?

382

Some final words…

• "At the source of every error which is blamed on the
computer, you will find at least two human errors, one
of which is the error of blaming it on the computer. "

– Anonymous

• "We shall do a much better programming job,
provided we approach the task with a full appreciation
of its tremendous difficulty, provided that we
respect the intrinsic limitations of the human mind
and approach the task as very humble programmers. "

– Alan Turing

