
Transformers

Introduction to Transformers

From: Dan Jurafsky and James
H. Martin, Chapter 9, Aug 2024

Adapted by Diana Inkpen for CSI
5386, Jan 2025

LLMs are built out of transformers

Transformer: a specific kind of network architecture, like a
fancier feedforward network, but based on attention

A very approximate timeline

1990 Static Word Embeddings

2003 Neural Language Model

2008 Multi-Task Learning

2015 Attention

2017 Transformer

2018 Contextual Word Embeddings and Pretraining

2019 Prompting

Transformers

Attention

Instead of starting with the big picture

Stacked

Transformer

Blocks

So long and thanks for

long and thanks forNext token all

…

…

…

U

Input tokens

x1 x2

Language

Modeling

Head

x3 x4 x5

Input
Encoding E

1+

E

2+

E

3+

E

4+

E

5+

…

… ………

U U U U

…

logits logits logits logits logits

Stacked
Transformer

Blocks

So long and thanks for

long and thanks forNext token all

…

…

…

U

Input tokens

x1 x2

Language

Modeling

Head

x3 x4 x5

Input

Encoding E

1+

E

2+

E

3+

E

4+

E

5+

…

… ………

U U U U

…

logits logits logits logits logits

Let's consider the embeddings for an individual word from a particular layer

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its
meaning changes in context.

 The chicken didn't cross the road because it was too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

• Intuition: a representation of meaning of a word
should be different in different contexts!

• Contextual Embedding: each word has a different
vector that expresses different meanings
depending on the surrounding words

• How to compute contextual embeddings?
• Attention

Contextual Embeddings

The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too tired

The chicken didn't cross the road because it was too wide

At this point in the sentence, it's probably referring to either the chicken or the street

Intuition of attention

Build up the contextual embedding from a word by
selectively integrating information from all the
neighboring words

We say that a word "attends to" some neighboring
words more than others

Intuition of attention:

test

Attention definition

A mechanism for helping compute the embedding for
a token by selectively attending to and integrating
information from surrounding tokens (at the previous
layer).

More formally: a method for doing a weighted sum of
vectors.

Attention is left-to-right

attentionattentionSelf-Attention
Layer

attentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

Simplified version of attention: a sum of prior words
weighted by their similarity with the current word

Given a sequence of token embeddings:

 x1 x2 x3 x4 x5 x6 x7 xi

Produce: ai = a weighted sum of x1 through x7 (and xi)

Weighted by their similarity to xi

10.1 • THE TRANSFORMER: A SELF-ATTENTION NETWORK 5

Self-Attention
Layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

Figure10.2 Information flow in a causal (or masked) self-attention model. In processing

each element of the sequence, the model attends to all the inputs up to, and including, the

current one. Unlike RNNs, the computations at each time step are independent of all the

other stepsand thereforecan beperformed in parallel.

10.1.3 Self-attention moreformally

We’vegiven theintuition of self-attention (asaway to computerepresentations of a

word at a given layer by integrating information from words at the previous layer)

and we’ve defined context as all the prior words in the input. Let’s now introduce

theself-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a

collection of other items in away that reveals their relevance in thecurrent context.

In thecaseof self-attention for language, theset of comparisons are to other words

(or tokens) within agiven sequence. Theresult of thesecomparisons isthen used to

computean output sequence for thecurrent input sequence. For example, returning

to Fig. 10.2, the computation of a3 is based on a set of comparisons between the

input x3 and itspreceding elementsx1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for

words are vectors, we’ ll make use of our old friend the dot product that we used

for computing word similarity in Chapter 6, and also played a role in attention in

Chapter 9. Let’s refer to the result of this comparison between words i and j as a

score (we’ ll be updating this equation to add attention to the computation of this

score):

Verson 1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from − • to • , the larger

thevaluethemoresimilar thevectorsthat arebeing compared. Continuing with our

example, the first step in computing y3 would be to compute three scores: x3 ·x1,

x3 ·x2 and x3 ·x3. Then to makeeffectiveuseof thesescores, we’ ll normalize them

with a softmax to create a vector of weights, ai j , that indicates the proportional

relevanceof each input to theinput element i that is thecurrent focusof attention.

ai j = softmax(score(xi,x j)) 8j i (10.5)

=
exp(score(xi,x j))

P i
k=1exp(score(xi,xk))

8j i (10.6)

Of course, thesoftmax weight will likely behighest for thecurrent focuselement

i, since vecxi is very similar to itself, resulting in a high dot product. But other

context wordsmay alsobesimilar to i, and thesoftmax will alsoassign someweight

to thosewords.

Given theproportional scores in a , wegenerate an output valueai by summing

10.1 • THE TRANSFORMER: A SELF-ATTENTION NETWORK 5

Self-Attention
Layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

Figure10.2 Information flow in a causal (or masked) self-attention model. In processing

each element of the sequence, the model attends to all the inputs up to, and including, the

current one. Unlike RNNs, the computations at each time step are independent of all the

other stepsand thereforecan beperformed in parallel.

10.1.3 Self-attention moreformally

We’vegiven the intuition of self-attention (asaway to compute representations of a

word at a given layer by integrating information from words at the previous layer)

and we’ve defined context as all the prior words in the input. Let’s now introduce

theself-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a

collection of other items in away that reveals their relevance in thecurrent context.

In the case of self-attention for language, theset of comparisons are to other words

(or tokens) within agiven sequence. Theresult of thesecomparisons is then used to

compute an output sequence for thecurrent input sequence. For example, returning

to Fig. 10.2, the computation of a3 is based on a set of comparisons between the

input x3 and itspreceding elements x1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for

words are vectors, we’ll make use of our old friend the dot product that we used

for computing word similarity in Chapter 6, and also played a role in attention in

Chapter 9. Let’s refer to the result of this comparison between words i and j as a

score (we’ ll be updating this equation to add attention to the computation of this

score):

Verson 1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from − • to • , the larger

thevaluethemoresimilar thevectors that arebeing compared. Continuing with our

example, the first step in computing y3 would be to compute three scores: x3 ·x1,

x3 ·x2 and x3 ·x3. Then to makeeffectiveuseof thesescores, we’ ll normalize them

with a softmax to create a vector of weights, ai j , that indicates the proportional

relevanceof each input to the input element i that is thecurrent focusof attention.

ai j = softmax(score(xi,x j)) 8j i (10.5)

=
exp(score(xi,x j))

P i
k= 1exp(score(xi,xk))

8j i (10.6)

Of course, thesoftmax weight will likely behighest for thecurrent focuselement

i, since vecxi is very similar to itself, resulting in a high dot product. But other

context wordsmay also besimilar to i, and thesoftmax will also assign someweight

to thosewords.

Given theproportional scores in a , wegenerate an output valueai by summing

Intuition of attention:

test

x1 x2 x3 x4 x5 x6 x7 xi

An Actual Attention Head: slightly more complicated

High-level idea: instead of using vectors (like xi and x4)
directly, we'll represent 3 separate roles each vector xi plays:

• query: As the current element being compared to the
preceding inputs.

• key: as a preceding input that is being compared to the
current element to determine a similarity

• value: a value of a preceding element that gets weighted
and summed

Attention intuition

x1 x2 x3 x4 x5 x6 x7 xi

query

values

Intuition of attention:

x1 x2 x3 x4 x5 x6 x7 xi

query

values
k
v

k
v

k
v

k
v

k
v

k
v

k
v

keys k
v

An Actual Attention Head: slightly more complicated

We'll use matrices to project each vector xi into a
representation of its role as query, key, value:

• query: WQ

• key: WK

• value: WV

An Actual Attention Head: slightly more complicated

Given these 3 representation of xi

To compute similarity of current element xi with
some prior element xj

We’ll use dot product between qi and kj.

And instead of summing up xj , we'll sum up vj

Final equations for one attention head

Calculating the value of a3

6. Sum the weighted

value vectors

4. Turn into � i,j weights via softmax

a3

1. Generate

key, query, value

vectors

2. Compare x3’s query with

the keys for x1, x2, and x3

Output of self-attention

W
k

W
v

W
q

x1

k

q

v x3

k

q

vx2

k

q

v

× ×

W
k

W
k

W
q

W
q

W
v

W
v

5. Weigh each value vector

÷
√dk

3. Divide score by √dk
÷

√dk

÷
√dk

� 3,1 � 3,2 � 3,3

Actual Attention: slightly more complicated

• Instead of one attention head, we'll have lots of them!

• Intuition: each head might be attending to the context for different purposes
• Different linguistic relationships or patterns in the context

Multi-head attention

Summary

Attention is a method for enriching the representation of a token by
incorporating contextual information

The result: the embedding for each word will be different in different
contexts!

Contextual embeddings: a representation of word meaning in its
context.

We'll see in the next lecture that attention can also be viewed as a
way to move information from one token to another.

Transformers

Attention

Transformers

The Transformer Block

Stacked

Transformer

Blocks

So long and thanks for

long and thanks forNext token all

…

…

…

U

Input tokens

x1 x2

Language

Modeling

Head

x3 x4 x5

Input
Encoding E

1+

E

2+

E

3+

E

4+

E

5+

…

… ………

U U U U

…

logits logits logits logits logits

Reminder: transformer language model

The residual stream: each token gets passed up and
modified

We'll need nonlinearities, so a feedforward layer

Layer norm: the vector xi is normalized twice

Layer Norm

Layer norm is a variation of the z-score from statistics, applied to a single vec- tor in a hidden layer

Putting together a single transformer block

A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d

Block 1

Block 2

Residual streams and attention

Notice that all parts of the transformer block apply to 1 residual stream (1
token).

Except attention, which takes information from other tokens

 Elhage et al. (2021) show that we can view attention heads as literally moving
information from the residual stream of a neighboring token into the current
stream .

Transformers

The Transformer Block

Transformers

Parallelizing Attention
Computation

Parallelizing computation using X

For attention/transformer block we've been computing a single
output at a single time step i in a single residual stream.

But we can pack the N tokens of the input sequence into a single
matrix X of size [N × d].

Each row of X is the embedding of one token of the input.

X can have 1K-32K rows, each of the dimensionality of the
embedding d (the model dimension)

QKT

Now can do a single matrix multiply to combine Q and KT

Parallelizing attention

• Scale the scores, take the softmax, and then
multiply the result by V resulting in a matrix of
shape N × d
• An attention vector for each input token

Masking out the future

• What is this mask function?
QKT has a score for each query dot every key,
including those that follow the query.

• Guessing the next word is pretty simple if you
already know it!

Masking out the future

Add –∞ to cells in upper triangle

The softmax will turn it to 0

Another point: Attention is quadratic in length

Attention again

Parallelizing Multi-head Attention

Parallelizing Multi-head Attention

or

Transformers

Parallelizing Attention
Computation

Transformers

Input and output: Position
embeddings and the Language
Model Head

Token and Position Embeddings

The matrix X (of shape [N × d]) has an embedding for
each word in the context.

This embedding is created by adding two distinct
embedding for each input

• token embedding

• positional embedding

Token Embeddings

Embedding matrix E has shape [|V | × d].

• One row for each of the |V | tokens in the vocabulary.

• Each word is a row vector of d dimensions

Given: string "Thanks for all the"

1. Tokenize with BPE and convert into vocab indices

w = [5,4000,10532,2224]

2. Select the corresponding rows from E, each row an embedding

• (row 5, row 4000, row 10532, row 2224).

Position Embeddings

There are many methods, but we'll just describe the simplest: absolute
position.

Goal: learn a position embedding matrix Epos of shape [1 × N].

Start with randomly initialized embeddings

• one for each integer up to some maximum length.

• i.e., just as we have an embedding for token fish, we’ll have an
embedding for position 3 and position 17.

• As with word embeddings, these position embeddings are learned along
with other parameters during training.

Each x is just the sum of word and position embeddings

X = Composite

Embeddings

(word + position)

Transformer Block

J
a
n

e
t

1

w
ill

2

b
a
c
k

3

Janet will back the bill

th
e

4

b
ill

5

+ + + + +

Position

Embeddings

Word

Embeddings

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Unembedding layer: linear layer projects from hL
N (shape [1 × d]) to logit vector

Why "unembedding"? Tied to ET

Weight tying, we use the same weights for
two different matrices

Unembedding layer maps from an embedding to a
1x|V| vector of logits

Language modeling head

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding

 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L

N and outputs a

distribution over vocabulary V

Logits, the score vector u

One score for each of the |V |
possible words in the vocabulary V .
Shape 1 × |V |.

Softmax turns the logits into
probabilities over vocabulary.
Shape 1 × |V |.

16 CHAPTER 9 • THE TRANSFORMER

language models of Chapter 3 compute the probability of a word given counts of

its occurrence with the n− 1 prior words. The context is thus of size n− 1. For

transformer language models, the context is the size of the transformer’s context

window, which can bequite large: 2K, 4K, even 32K tokens for very largemodels.

The job of the language modeling head is to take the output of the final trans-

former layer from the last token N and use it to predict the upcoming word at posi-

tion N+ 1. Fig. 9.14 showshow to accomplish this task, taking theoutput of the last

token at the last layer (the d-dimensional output embedding of shape [1⇥d]) and

producing a probability distribution over words (from which we will choose one to

generate).

Layer L

Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding layer

U = ET

y1 y2 y|V|…

u1 u2 u|V|…

Language Model Head

takes h
L
N and outputs a

distribution over vocabulary V

Figure9.14 The language modeling head: the circuit at the top of a transformer that maps from the output

embedding for token N from the last transformer layer (hL
N) to a probability distribution over words in the

vocabulary V.

The first module in Fig. 9.14 is a linear layer, whose job is to project from the

output hL
N, which represents theoutput token embedding at position N from thefinal

block L, (hence of shape [1⇥d]) to the logit vector, or score vector, that will havealogit

single score for each of the |V| possible words in thevocabulary V. The logit vector

u is thus of dimensionality 1⇥|V|.

This linear layer can be learned, but more commonly we tie this matrix to (the

transpose of) the embedding matrix E. Recall that in weight tying, we use theweight tying

same weights for two different matrices in the model. Thus at the input stage of the

transformer theembedding matrix (of shape [|V|⇥d]) isused to map from aone-hot

vector over the vocabulary (of shape [1⇥|V|]) to an embedding (of shape [1⇥d]).

And then in thelanguagemodel head, ET , thetransposeof theembedding matrix (of

shape [d⇥|V|]) is used to map back from an embedding (shape [1⇥d]) to a vector

over thevocabulary (shape [1⇥|V|]). In the learning process, E will beoptimized to

begood at doing both of thesemappings. Wetherefore sometimes call the transpose

ET theunembedding layer because it is performing this reverse mapping.unembedding

A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = hL
N ET (9.44)

y = softmax(u) (9.45)

We can use these probabilities to do things like help assign a probability to a

given text. But themost important usage to generate text, which wedo by sampling

The final transformer
model

wi

Sample token to

generate at position i+1

feedforward

layer norm

attention

layer norm

U

Input token

Language
Modeling

Head

Input

Encoding E

i+

…

logits

feedforward

layer norm

attention

layer norm

Layer 1

Layer 2

h1
i = x2

i

x1
i

h2
i = x3

i

feedforward

layer norm

attention

layer norm

hL
i

hL-1
i = xL

i

y1 y2 y|V|…Token probabilities

u1 u2 u|V|…

softmax

wi+1

Layer L

wi

Sample token to

generate at position i+1

feedforward

layer norm

attention

layer norm

U

Input token

Language
Modeling

Head

Input

Encoding E

i+

…

logits

feedforward

layer norm

attention

layer norm

Layer 1

Layer 2

h1
i = x2

i

x1
i

h2
i = x3

i

feedforward

layer norm

attention

layer norm

hL
i

hL-1
i = xL

i

y1 y2 y|V|…Token probabilities

u1 u2 u|V|…

softmax

wi+1

Layer L

Transformers

Input and output: Position
embeddings and the Language
Model Head

	Slide 1: Transformers
	Slide 2: LLMs are built out of transformers
	Slide 3: A very approximate timeline
	Slide 4: Transformers
	Slide 5: Instead of starting with the big picture
	Slide 6: Problem with static embeddings (word2vec)
	Slide 7: Contextual Embeddings
	Slide 8: Contextual Embeddings
	Slide 9: Intuition of attention
	Slide 10: Intuition of attention:
	Slide 11: Attention definition
	Slide 12: Attention is left-to-right
	Slide 13: Simplified version of attention: a sum of prior words weighted by their similarity with the current word
	Slide 14: Intuition of attention:
	Slide 15: An Actual Attention Head: slightly more complicated
	Slide 16: Attention intuition
	Slide 17: Intuition of attention:
	Slide 18: An Actual Attention Head: slightly more complicated
	Slide 19: An Actual Attention Head: slightly more complicated
	Slide 20: Final equations for one attention head
	Slide 21: Calculating the value of a3
	Slide 22: Actual Attention: slightly more complicated
	Slide 23: Multi-head attention
	Slide 24: Summary
	Slide 25: Transformers
	Slide 26: Transformers
	Slide 27: Reminder: transformer language model
	Slide 28: The residual stream: each token gets passed up and modified
	Slide 29: We'll need nonlinearities, so a feedforward layer
	Slide 30: Layer norm: the vector xi is normalized twice
	Slide 31: Layer Norm
	Slide 32: Putting together a single transformer block
	Slide 33: A transformer is a stack of these blocks so all the vectors are of the same dimensionality d
	Slide 34: Residual streams and attention
	Slide 35: Transformers
	Slide 36: Transformers
	Slide 37: Parallelizing computation using X
	Slide 38: QKT
	Slide 39: Parallelizing attention
	Slide 40: Masking out the future
	Slide 41: Masking out the future
	Slide 42: Another point: Attention is quadratic in length
	Slide 43: Attention again
	Slide 44: Parallelizing Multi-head Attention
	Slide 45: Parallelizing Multi-head Attention
	Slide 46: Transformers
	Slide 47: Transformers
	Slide 48: Token and Position Embeddings
	Slide 49: Token Embeddings
	Slide 50: Position Embeddings
	Slide 51: Each x is just the sum of word and position embeddings
	Slide 52: Language modeling head
	Slide 53: Language modeling head
	Slide 54: Language modeling head
	Slide 55: The final transformer model
	Slide 56: Transformers

