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LLMs are built out of transformers

Transformer: a specific kind of network architecture, like a 
fancier feedforward network, but based on attention



A very approximate timeline

1990 Static Word Embeddings

2003 Neural Language Model

2008 Multi-Task Learning

2015 Attention

2017 Transformer

2018 Contextual Word Embeddings and Pretraining

2019 Prompting



Transformers

Attention



Instead of starting with the big picture
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Let's consider the embeddings for an individual word from a particular layer



Problem with static embeddings (word2vec)

They are static!  The embedding for a word doesn't reflect how its 
meaning changes in context.

 The chicken didn't cross the road because it was too tired

What is the meaning represented in the static embedding for "it"?

 



Contextual Embeddings

• Intuition: a representation of meaning of a word 
should be different in different contexts!

• Contextual Embedding: each word has a different 
vector that expresses different meanings 
depending on the surrounding words

• How to compute contextual embeddings?
• Attention



Contextual Embeddings

The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too tired

The chicken didn't cross the road because it was too wide

At this point in the sentence, it's probably referring to either the chicken or the street

 



Intuition of attention

Build up the contextual embedding from a word by 
selectively integrating information from all the 
neighboring words

We say that a word "attends to" some neighboring 
words more than others



Intuition of attention: 

test



Attention definition

A mechanism for helping compute the embedding for 
a token by selectively attending to and integrating 
information from surrounding tokens (at the previous 
layer).

More formally: a method for doing a weighted sum of 
vectors.



Attention is left-to-right

attentionattentionSelf-Attention
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attentionattentionattention
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Simplified version of attention: a sum of prior words 
weighted by their similarity with the current word

Given a sequence of token embeddings:

 x1 x2   x3   x4   x5   x6   x7   xi

Produce: ai = a weighted sum of x1 through x7 (and xi)

Weighted by their similarity to xi
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Figure10.2 Information flow in a causal (or masked) self-attention model. In processing

each element of the sequence, the model attends to all the inputs up to, and including, the

current one. Unlike RNNs, the computations at each time step are independent of all the

other stepsand thereforecan beperformed in parallel.

10.1.3 Self-attention moreformally

We’vegiven theintuition of self-attention (asaway to computerepresentations of a

word at a given layer by integrating information from words at the previous layer)

and we’ve defined context as all the prior words in the input. Let’s now introduce

theself-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a

collection of other items in away that reveals their relevance in thecurrent context.

In thecaseof self-attention for language, theset of comparisons are to other words

(or tokens) within agiven sequence. Theresult of thesecomparisons isthen used to

computean output sequence for thecurrent input sequence. For example, returning

to Fig. 10.2, the computation of a3 is based on a set of comparisons between the

input x3 and itspreceding elementsx1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for

words are vectors, we’ ll make use of our old friend the dot product that we used

for computing word similarity in Chapter 6, and also played a role in attention in

Chapter 9. Let’s refer to the result of this comparison between words i and j as a

score (we’ ll be updating this equation to add attention to the computation of this

score):

Verson 1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from − • to • , the larger

thevaluethemoresimilar thevectorsthat arebeing compared. Continuing with our

example, the first step in computing y3 would be to compute three scores: x3 ·x1,

x3 ·x2 and x3 ·x3. Then to makeeffectiveuseof thesescores, we’ ll normalize them

with a softmax to create a vector of weights, ai j , that indicates the proportional

relevanceof each input to theinput element i that is thecurrent focusof attention.

ai j = softmax(score(xi,x j)) 8j i (10.5)

=
exp(score(xi,x j))

P i
k=1exp(score(xi,xk))

8j i (10.6)

Of course, thesoftmax weight will likely behighest for thecurrent focuselement

i, since vecxi is very similar to itself, resulting in a high dot product. But other

context wordsmay alsobesimilar to i, and thesoftmax will alsoassign someweight

to thosewords.

Given theproportional scores in a , wegenerate an output valueai by summing
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Intuition of attention: 

test

x1  x2  x3  x4  x5  x6  x7   xi



An Actual Attention Head: slightly more complicated

High-level idea: instead of using vectors (like xi and x4) 
directly, we'll represent 3 separate roles each vector xi plays:

• query: As the current element being compared to the 
preceding inputs. 

• key: as a preceding input that is being compared to the 
current element to determine a similarity

• value: a value of a preceding element that gets weighted 
and summed 



Attention intuition

x1  x2  x3  x4  x5  x6  x7   xi
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values



Intuition of attention: 
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An Actual Attention Head: slightly more complicated

We'll use matrices to project each vector xi into a 
representation of its role as query, key, value:

• query: WQ

• key: WK

• value: WV



An Actual Attention Head: slightly more complicated

Given these 3 representation of xi

To compute  similarity of current element xi with 
some prior element xj

We’ll use dot product between  qi and kj. 

And instead of summing up xj ,  we'll sum up vj



Final equations for one attention head



Calculating the value of a3
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Actual Attention: slightly more complicated

• Instead of one attention head, we'll have lots of them!

• Intuition: each head might be attending to the context for different purposes
• Different linguistic relationships or patterns in the context



Multi-head attention



Summary

Attention is a method for enriching the representation of a token by 
incorporating contextual information

The result: the embedding for each word will be different in different 
contexts!

Contextual embeddings: a representation of word meaning in its 
context.

We'll see in the next lecture that attention can also be viewed as a 
way to move information from one token to another.
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Transformers

The Transformer Block
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Reminder: transformer language model



The residual stream: each token gets passed up and 
modified



We'll need nonlinearities, so a feedforward layer



Layer norm: the vector xi is normalized twice



Layer Norm

Layer norm is a variation of the z-score from statistics, applied to a single vec- tor in a hidden layer 



Putting together a single transformer block



A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d

Block 1

Block 2



Residual streams and attention

Notice that all  parts of the transformer block apply to 1 residual stream (1 
token).

Except attention, which takes information from other tokens

 Elhage et al. (2021) show that we can view attention heads as literally moving 
information from the residual stream of a neighboring token into the current 
stream .



Transformers

The Transformer Block



Transformers

Parallelizing Attention 
Computation



Parallelizing computation using X

For attention/transformer block we've been computing a single 
output at a single time step i in a single residual stream. 

But we can pack the  N tokens of the input sequence into a single 
matrix X of size [N × d]. 

Each row of X is the embedding of one token of the input. 

X can have 1K-32K rows, each of the dimensionality of the 
embedding d (the model dimension)



QKT

Now can do a single matrix multiply to combine Q and KT



Parallelizing attention

• Scale the  scores, take the softmax, and then 
multiply the result by V resulting in a matrix of 
shape N × d
• An attention vector for each input token



Masking out the future

• What is this mask function?
QKT has a score for each query dot every key, 
including those that follow the query.

• Guessing the next word is pretty simple if you 
already know it! 



Masking out the future

Add –∞ to cells in upper triangle

The softmax will turn it to 0



Another point: Attention is quadratic in length



Attention again



Parallelizing Multi-head Attention



Parallelizing Multi-head Attention

or
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Transformers

Input and output: Position 
embeddings and the Language 
Model Head



Token and Position Embeddings

The matrix X (of shape [N × d]) has an embedding for 
each word in the context. 

This embedding is created by adding two distinct 
embedding for each input

• token embedding

• positional embedding



Token Embeddings

Embedding matrix E has shape [|V | ×  d ]. 

• One row for each of the |V | tokens in the vocabulary. 

• Each word is a row vector of d dimensions

Given:  string "Thanks for all the"

1. Tokenize with BPE and convert into vocab indices

w = [5,4000,10532,2224] 

2. Select the corresponding rows from E, each row an embedding

•   (row 5, row 4000, row 10532, row 2224). 



Position Embeddings

There are many methods, but we'll just describe the simplest: absolute 
position.

Goal: learn a position embedding matrix Epos of shape [1 × N ]. 

Start with randomly initialized embeddings

• one for each integer up to some maximum length. 

• i.e., just as we have an embedding for token fish, we’ll have an 
embedding for position 3 and position 17.

• As with word embeddings, these position embeddings are learned along 
with other parameters during training. 



Each x is just the sum of word and position embeddings

X = Composite

Embeddings

(word + position)
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Language modeling head
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Language modeling head
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Unembedding layer:  linear layer projects from hL
N (shape [1 × d]) to logit vector 

Why "unembedding"? Tied to ET

Weight tying, we use the same weights for 
two different matrices

Unembedding layer maps from an embedding to a 
1x|V| vector of logits



Language modeling head
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Logits, the score vector u

One score for each of the |V | 
possible words in the vocabulary V . 
Shape 1 × |V |. 

Softmax turns the logits into 
probabilities over vocabulary. 
Shape 1 × |V |. 
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language models of Chapter 3 compute the probability of a word given counts of

its occurrence with the n− 1 prior words. The context is thus of size n− 1. For

transformer language models, the context is the size of the transformer’s context

window, which can bequite large: 2K, 4K, even 32K tokens for very largemodels.

The job of the language modeling head is to take the output of the final trans-

former layer from the last token N and use it to predict the upcoming word at posi-

tion N+ 1. Fig. 9.14 showshow to accomplish this task, taking theoutput of the last

token at the last layer (the d-dimensional output embedding of shape [1⇥d]) and

producing a probability distribution over words (from which we will choose one to

generate).
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Figure9.14 The language modeling head: the circuit at the top of a transformer that maps from the output

embedding for token N from the last transformer layer (hL
N) to a probability distribution over words in the

vocabulary V.

The first module in Fig. 9.14 is a linear layer, whose job is to project from the

output hL
N, which represents theoutput token embedding at position N from thefinal

block L, (hence of shape [1⇥d]) to the logit vector, or score vector, that will havealogit

single score for each of the |V| possible words in thevocabulary V. The logit vector

u is thus of dimensionality 1⇥|V|.

This linear layer can be learned, but more commonly we tie this matrix to (the

transpose of) the embedding matrix E. Recall that in weight tying, we use theweight tying

same weights for two different matrices in the model. Thus at the input stage of the

transformer theembedding matrix (of shape [|V|⇥d]) isused to map from aone-hot

vector over the vocabulary (of shape [1⇥|V|]) to an embedding (of shape [1⇥d]).

And then in thelanguagemodel head, ET , thetransposeof theembedding matrix (of

shape [d⇥|V|]) is used to map back from an embedding (shape [1⇥d]) to a vector

over thevocabulary (shape [1⇥|V|]). In the learning process, E will beoptimized to

begood at doing both of thesemappings. Wetherefore sometimes call the transpose

ET theunembedding layer because it is performing this reverse mapping.unembedding

A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = hL
N ET (9.44)

y = softmax(u) (9.45)

We can use these probabilities to do things like help assign a probability to a

given text. But themost important usage to generate text, which wedo by sampling
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