Introduction to Transformers

Transformers From: Dan Jurafsky and James
H. Martin, Chapter 9, Aug 2024

Adapted by Diana Inkpen for CSI
5386, Jan 2025

LLMs are built out of transformers

Transformer: a specific kind of network architecture, like a
fancier feedforward network, but based on attention

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar™ Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | YLukasz Kaiser”
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

A very approximate timeline

1990 Static Word Embeddings

2003 Neural Language Model

2008 Multi-Task Learning

2015 Attention

2017 Transformer

2018 Contextual Word Embeddings and Pretraining
2019 Prompting

Attention

Transformers

Instead of starting with the big picture

Let's consider the embeddings for an individual word from a particular layer

Next token long and thanks for all
i)))
Language | | | | |
M d I ogits ogits ogits ogits ogits
Pond U U U U U
A A A A A j
[—— [—— | — [—— | —
—— /;I
TA—] T
Stacked @00
Transformer | S | | et — =t || ==
Blocks :E —; [— — —
a1 — i
C——1 C——1 C———1
————— = —

\—
Input S<{1] N H<{3] v
Encoding $ $ / I% \ $ $

Input tokens So long and thanks for

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its
meaning changes in context.

The chicken didn't cross the road becaus@was too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

* Intuition: a representation of meaning of a word
should be different in different contexts!

* Contextual Embedding: each word has a different
vector that expresses different meanings
depending on the surrounding words

* How to compute contextual embeddings?
* Attention

Contextual Embeddings

The chicken didn't cross the road because 1t

What should be the properties of "it"?

The chicken didn't cross the road because it was too tired
The chicken didn't cross the road because i1t was too wide

At this point in the sentence, it's probably referring to either the chicken or the street

Intuition of attention

Build up the contextual embedding from a word by
selectively integrating information from all the

neighboring words

We say that a word "attends to" some neighboring
words more than others

Intuition of attention:

columns corresponding to input tokens

- Q

O) n

S = 9 5

n
Layer k+1 O 4 T O o ®© O n O
e O - Y G O O +) © O
— @) O @)) G Q i = o
self-attention distribution

- O

bo A o

Layer K O £ 0 T ©
Q - @) O Q © O 0p) O
O e - Y < O O) © O
- O HO) O) “ QO — =)

tired

tired

Attention definition

A mechanism for helping compute the embedding for
a token by selectively attending to and integrating

information from surrounding tokens (at the previous
layer).

More formally: a method for doing a weighted sum of
vectors.

Attention is left-to-right

Self-Attention attention attention attention attention attention

Layer "
—
(%3) (X

Simplified version of attention: a sum of prior words
weighted by their similarity with the current word

Given a sequence of token embeddings:

X; X, Xa Xg Xg Xg X7 X

Produce: a; = a weighted sum of X, through X (and x;)
Weighted by their similarity to X;

score(xi,xj) = Xi "X
ajj = softmax(score(xi,Xj)) 8] <1

d;, — E OCZ']'X]'

J<i

Intuition of attention:

columns corresponding to input tokens

- 0
S 0
N4 ~ 0D -)
Layer k+1 ®» 4 B 0 o © O n O
G G - - c O Q + © O
H O T O O Y9 Q a3l =z D
self-attention distribution
- 0
e r . 3
Layer Kk O £ u T ©
Q -— O O Q © O 0 O
o 2 4 494 <o 0o 0 v o O
H 0O T O O Y QO A z P
X1 X2 X3 x4 x5 x6 X7 Xl

tired

tired

An Actual Attention Head: slightly more complicated

High-level idea: instead of using vectors (like x; and x,)
directly, we'll represent 3 separate roles each vector x; plays:

query: As the current element being compared to the
preceding inputs.

key: as a preceding input that is being compared to the
current element to determine a similarity

value: a value of a preceding element that gets weighted
and summed

Attention intuition

Layer k+1

The
chicken
didn’ t

self-attention distribution

f‘j) s

Layer k O o
) - @)

= < -—

o @) @)

X1 X2 X3

values

Cross

O

() ©
< O
) Y
O

() ©
< O
IS o
X5 X6

qguery
Q@
0p)]
3
©
O
Q .
Q -
Q
0p)]
-
©
@)
Q 2
QO -
X/ Xl

was

was

TOO

TOO

tired

tired

Intuition of attention: query

- 0
()) 0p)
N4 ~ 0p) 3
Layer k+1 » 2 6 0 o ® O
G e - M G @) Q +
H O T 0O P 4 Qq |
self-attention distribution
- 0
Q i) 0N
Y4 ~ 0p))
Layer Kk O £ u T ©
Q - O @) Q © O
= C - “ e O Q i)
= O O o P g o A
X1 X2 X3 x4 X5 x6 X7 Xl
keys k] [k] [k k k] [k [k [k
Vv Vv Vv V Vv V Vv Vv

values

was
TOO
tired

was
TOO
tired

An Actual Attention Head: slightly more complicated

We'll use matrices to project each vector x. into a
representation of its role as query, key, value:

* query: W2
* key: WK
* value: WY

q; = xWY ki =x;WK; v, =x,WY

An Actual Attention Head: slightly more complicated

Given these 3 representation of x

ai =xW? ki=x;WK; v, =x;WY
To compute similarity of current element x. with
some prior element x;

We'll use dot product between q; and k..
And instead of summing up x;, we'll sum up v,

Final equations for one attention head

qi:xiWQ; kj — X]'WK; Vj:XjWV
q; -k
score(X;,X;) =
o Vg
o;; = softmax(score(x;,x;)) Vj <i

J<1

d;

Calculating the value of a3

Output of self-attention Ay @

6. Sum the weighted
value vectors

5. Weigh each value vector
31

4. Tumninto weights via softmax ((j

3. Divide score by Vd \/dkzé

the keys for x1, x2, and x3

2. Compare x3’s query with

1. Generate

key, query, value
vectors

Actual Attention: slightly more complicated

* |nstead of one attention head, we'll have lots of them!

* Intuition: each head might be attending to the context for different purposes
Different linguistic relationships or patterns in the context

qf:xiWQc; k?zijKc; v? = xJ-WVC; Ve 1<c<h

-k
score (x;,X;) =
(L]) \/d_k
o;; = softmax(score®(x;,x;)) Vj<i
head; = Zafjv§

J<i
a; = (head' @head”... & head")W?
MultiHeadAttention(x;, [x1,--- ,Xy|) = a;

Multi-head attention

Concatenate Outputs

Each head
attends differently
to context

Summary

Attention is a method for enriching the representation of a token by
incorporating contextual information

The result: the embedding for each word will be different in different
contexts!

Contextual embeddings: a representation of word meaning in its
context.

We'll see in the next lecture that attention can also be viewed as a
way to move information from one token to another.

Attention

Transformers

The Transformer Block

Transformers

Reminder: transformer language model

Next token long and thanks for all
))
Language
MOdeling Iogltsuf Iogltsf IogltsUf Iogltsuf Iogltsuf
Head A A A A
[— [— [— [—
L‘] *
Stacked
Transformer $ $ A + A
Blocks E [— [— [—
k 1 *
 — — | — | —
\ — / - j

Input é;‘_ '\ <A>“
Encoding ﬁ)ﬂg $ $ $

Input tokens So long and thanks for

The residual stream: each token gets passed up and
modified

i-1 i i+1

7/

Feedforward]

I

[Layer Norm |

I v "

| (Layer Norm] ..

i i+1

We'll need nonlinearities, so a feedforward layer
FFN(x;) = ReLU(x;W; + b)W, + b;

hi_4 h; hi, 1

@

/

| Feedforward |

I

[Layer Norm |

-~
-~
.
-~

(Layer Norm} .

-~

.
.
—
‘\
3V
N
O
[Y
iR}
.
K
>
.
g

Xi_1 Xj Xit1

Layer norm:

the vector X s normalized twice

i-1

Xj-1

i+1
[Feedforward]
yer Norm |
Layer Norm ::‘x
Xit1

Layer Norm

Layer norm is a variation of the z-score from statistics, applied to a single vec- tor in a hidden layer

1 d
SN
d;’

b=
L

o = \gg(xi—u)z

)

0)
(x—u) B

0]

LayerNorm(x) =y

Putting together a single transformer block

-1 i i+
4 t! = LayerNorm(x;)
g t,~2 — MultiHeadAttention(til, [x}, e 7X11\7]>
et 6 =
*\- t! = LayerNorm(t})
M e U= FEN(';?)
i oy = 4

-1 %i Xir1

A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d

hi_4

Block 2

Block 1

Residual streams and attention

Notice that all parts of the transformer block apply to 1 residual stream (1
token).

Except attention, which takes information from other tokens

Elhage et al. (2021) show that we can view attention heads as literally moving
information from the residual stream of a neighboring token into the current

stream .

Token A Token B
residual residual
stream stream

The Transformer Block

Transformers

Parallelizing Attention
Computation

Transformers

Parallelizing computation using X

For attention/transformer block we've been computing a single
output at a single time step i in a single residual stream.

But we can pack the N tokens of the input sequence into a single
matrix X of size [N x d].

Each row of X is the embedding of one token of the input.

X can have 1K-32K rows, each of the dimensionality of the
embedding d (the model dimension)

Q = XWQ?: K =XWK: v =xwV

QK'

Now can do a single matrix multiply to combine Q and K’

ql-k1

ql-k2

q1-k3

ql-k4

q2-k1

q2-k2

q2:k3

q2-k4

q3-k1

q3-k2

q3-k3

q3+k4

q4-k1

q4-k2

q4°+k3

q4-k4

Parallelizing attention

* Scale the scores, take the softmax, and then
multiply the result by V resulting in a matrix of
shape N x d

* An attention vector for each input token

.
A = softmax (mask (?/}C(Tk)) V

Masking out the future

.
A = softmax (mask (?;:Tk)) V

* What is this mask function?
QK™ has a score for each query dot every key,
including those that follow the query.

* Guessing the next word is pretty simple if you
already know it!

Masking out the future

A

softmax (mask (

QKT
Vi

Add —co to cells in upper triangle

The softmax will turnitto O

)"

ql-k1

q2-k1

q2-k2

q3-k1

q3-k2

q3-k3

q4-k1

q4-k2

q4-k3

Another point: Attention is quadratic in length

A = softmax (mask (cf/%)) V

q1-k1| —o0 | —oo | —oo

q2:k1 (g2:k2| —o0 | —o0

q3:k1|q3-k2|g3-k3| —o0

q4-+-k1|q4-k2|q4-k3 |g4-k4

Attention again

X K
X Q _ _ X v
K \V 7
Input Q Input W ey Input W Value
Token 1 W TSE;;Y1 Token 1 Token 1 Token 1 Token 1
Input Q Input Key Input Value
Token 2 =iy Token 2 _ Token2 Token 2 ol 2
X _ Token 2 X = X —
Input ~ a Input Key Input Value
Token 3 TolLJ:r:yS Token 3 Token 3 Token 3 Token 3
Input Value
Input Input Key
Token 4 TQIl: ery Token 4 dxd Token 4 Token 4 d x dV UebeEn &
dxd oken 4 k B]
N x d K - - Nxd, ~ N xd Nxd,
X N x dk N xd k
_ T)
at X |2 8 & & = |qi*kl|qi-k2|q1-k3|q1-ka vi 2l
mask 92 q2-k1 |q2-k2 | q2-k3| q2-k4 X v2 = a2
q3 q3-k1|q3-k2|q3-k3| q3-k4 v3 a3
q4 d X N . L] L] L]
k q4-k1(q4-k2 (q4-k3 |q4-k4 va a4
— Nxd N
x N -
K X N x d N xd

Parallelizing Multi-head Attention

Qi _ XwQI : Ki _ XwKi , Vi _ Xin

L KT
head; = SelfAttention(Q',K', V') = softmax (Q) \A
v

MultiHeadAttention(X) = (head; @ head,... ® head;)W®°

Parallelizing Multi-head Attention

o
|

LayerNorm(X + MultiHead Attention (X))
LayerNorm(O + FFN(Q))

I
|

or
T! = MultiHeadAttention(X)

T2 = X+ T

T° = LayerNorm(T?)
T* = FFEN(T?)

T5 — T4. 73

H = LayerNorm(T?)

Parallelizing Attention
Computation

Transformers

Input and output: Position
embeddings and the Language
Model Head

Transformers

Token and Position Embeddings

The matrix X (of shape [N x d]) has an embedding for
each word in the context.

This embedding is created by adding two distinct
embedding for each input

* token embedding

* positional embedding

Token Embeddings

Embedding matrix E has shape [|V | x d].
* One row for each of the |V | tokens in the vocabulary.
* Each word is a row vector of d dimensions

Given: string "Thanks for all the"

1. Tokenize with BPE and convert into vocab indices

w = [5,4000,10532,2224]

2. Select the corresponding rows from E, each row an embedding
. (row 5, row 4000, row 10532, row 2224).

Position Embeddings

There are many methods, but we'll just describe the simplest: absolute
position.

Goal: learn a position embedding matrix Epos of shape [1 x N].
Start with randomly initialized embeddings
* one for each integer up to some maximum length.

* j.e., just as we have an embedding for token fish, we’ll have an
embedding for position 3 and position 17.

* As with word embeddings, these position embeddings are learned along
with other parameters during training.

Each x is just the sum of word and position embeddings

(Transformer Block)

e :
(word + position) 0 0 0 0 0

Word 5
Embeddings |@
Position
Embeddings

Language modeling head

Word probabilities 1 x |V|

Language Model Head /[

L
takes h~y, and outputs a s

distribution over vocabulary V

Unembedding
layer = ET

Softmax over vocabulary V

Logits 1x|V|

Unembedding layer d x [V]|

J

Layer L
Transformer ‘\
Block

Language modeling head

Unembedding layer: linear layer projects from hLN (shape [1 X d]) to logit vector

Word probabilities 1 x|V
' ' : Why "unembedding"? Tied to ET
f[] Softmax over vocabulary V\ y &
- Logits 1x V|
Unembedding : q . . _
jayer = ET Unembedding layer dx |V Weight tying, we use the same weights for
\ Y, : .
wo different matrices
Cha) 1 two d

—— e — ——— — — — -——

———————————— Unembedding layer maps from an embedding to a
' 1x|V| vector of logits

Language modeling head

Word probabilities 1 x|V
|
/ 1 1 1
[] Softmax over vocabulary V
Logits 1x V|
Unembedding Unembedding layer d x |V|
layer = ET
- _/
[hT__N] 1xd
____________ \
____________ /
y

Logits, the score vector u

One score for each of the |V |
possible words in the vocabulary V.
Shape 1 X |V |.

Softmax turns the logits into
probabilities over vocabulary.
Shape 1l X |V|.
L T
hy E
softmax(u)

Token probabilties o yV Wiy

Sample token to
generate at position i+1

The final transformer
model Vodelng

Head

Token probabilities (yl) (yZ) ca y[|V| Wiyq
A A
| | Sample token to
Language softmax @Mﬂmﬂ&u P generate at position i+1
Modelin | }
Head : logits

Input \aull
Encoding

Input token Wi

Input and output: Position
embeddings and the Language
Model Head

Transformers

	Slide 1: Transformers
	Slide 2: LLMs are built out of transformers
	Slide 3: A very approximate timeline
	Slide 4: Transformers
	Slide 5: Instead of starting with the big picture
	Slide 6: Problem with static embeddings (word2vec)
	Slide 7: Contextual Embeddings
	Slide 8: Contextual Embeddings
	Slide 9: Intuition of attention
	Slide 10: Intuition of attention:
	Slide 11: Attention definition
	Slide 12: Attention is left-to-right
	Slide 13: Simplified version of attention: a sum of prior words weighted by their similarity with the current word
	Slide 14: Intuition of attention:
	Slide 15: An Actual Attention Head: slightly more complicated
	Slide 16: Attention intuition
	Slide 17: Intuition of attention:
	Slide 18: An Actual Attention Head: slightly more complicated
	Slide 19: An Actual Attention Head: slightly more complicated
	Slide 20: Final equations for one attention head
	Slide 21: Calculating the value of a3
	Slide 22: Actual Attention: slightly more complicated
	Slide 23: Multi-head attention
	Slide 24: Summary
	Slide 25: Transformers
	Slide 26: Transformers
	Slide 27: Reminder: transformer language model
	Slide 28: The residual stream: each token gets passed up and modified
	Slide 29: We'll need nonlinearities, so a feedforward layer
	Slide 30: Layer norm: the vector xi is normalized twice
	Slide 31: Layer Norm
	Slide 32: Putting together a single transformer block
	Slide 33: A transformer is a stack of these blocks so all the vectors are of the same dimensionality d
	Slide 34: Residual streams and attention
	Slide 35: Transformers
	Slide 36: Transformers
	Slide 37: Parallelizing computation using X
	Slide 38: QKT
	Slide 39: Parallelizing attention
	Slide 40: Masking out the future
	Slide 41: Masking out the future
	Slide 42: Another point: Attention is quadratic in length
	Slide 43: Attention again
	Slide 44: Parallelizing Multi-head Attention
	Slide 45: Parallelizing Multi-head Attention
	Slide 46: Transformers
	Slide 47: Transformers
	Slide 48: Token and Position Embeddings
	Slide 49: Token Embeddings
	Slide 50: Position Embeddings
	Slide 51: Each x is just the sum of word and position embeddings
	Slide 52: Language modeling head
	Slide 53: Language modeling head
	Slide 54: Language modeling head
	Slide 55: The final transformer model
	Slide 56: Transformers

