
Masked
Language
Models

From: Dan Jurafsky and James
H. Martin, Chapter 11, Jan 2025

Adapted by Diana Inkpen for CSI
5386, Jan 2025

Masked Language Modeling

• We've seen autoregressive (causal, left-to-right) LMs.

• But what about tasks for which we want to peak at future
tokens?
• Especially true for tasks where we map each input token to an

output token

• Bidirectional encoders use masked self-attention to
• map sequences of input embeddings (x1,...,xn)
• to sequences of output embeddings of the same length

(h1,...,hn),
• where the output vectors have been contextualized using

information from the entire input sequence.

Bidirectional Self-Attention

a) A causal self-attention layer b) A bidirectional self-attention layer

attentionattentionattentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

attentionattentionattentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

Easy! We just remove the mask
Casual self-attention Bidirectional self-attention

BERT: Bidirectional Encoder Representations from
Transformers

BERT (Devlin et al., 2019)

• 30,000 English-only tokens (WordPiece tokenizer)

• Input context window N=512 tokens, and model dimensionality d=768

• L=12 layers of transformer blocks, each with A=12 (bidirectional) multihead-
attention layers.

• The resulting model has about 100M parameters.

XLM-RoBERTa (Conneau et al., 2020)

• 250,000 multilingual tokens (SentencePiece Unigram LM tokenizer)

• Input context window N=512 tokens,model dimensionality d=1024

• L=24 layers of transformer blocks, with A=16 multihead attention layers each

• The resulting model has about 550M parameters.

Masked
Language
Models

BERT

Masked
Language
Models

Masked LM training

Masked training intuition

• For left-to-right LMs, the model tries to predict the last word from prior
words:

 The water of Walden Pond is so beautifully
• And we train it to improve its predictions.

• For bidirectional masked LMs, the model tries to predict one or more
words from all the rest of the words:

 The of Walden Pond so beautifully blue
• The model generates a probability distribution over the vocabulary for each

missing token

• We use the cross-entropy loss from each of the model’s predictions to drive the
learning process.

MLM training in BERT

15% of the tokens are randomly chosen to be part of the masking

Example: "Lunch was delicious", if delicious was randomly chosen:

Three possibilities:

1. 80%: Token is replaced with special token [MASK]

 Lunch was delicious -> Lunch was [MASK]

2. 10%: Token is replaced with a random token (sampled from unigram prob)

 Lunch was delicious -> Lunch was gasp

3. 10%: Token is unchanged

 Lunch was delicious -> Lunch was delicious

In detail

LM Head with Softmax

over Vocabulary

So [mask] and [mask] for

long thanks

CE Loss

all apricot fish

the

Token +
Positional

Embeddings

So long and thanks for all fishthe

Bidirectional Transformer Encoder

+

p1

+ + + + + + +

p2 p3 p4 p5 p6 p7 p8

z1 z2 z3 z4 z5 z6 z7 z8

MLM loss

The LM head takes output of final transformer layer L, multiplies it by
unembedding layer and turns into probabilities:

E.g., for the xi corresponding to "long", the loss is the probability of the correct
word long, given output hL

i):

We get the gradients by taking the average of this loss over the batch

Next Sentence Prediction

Given 2 sentences the model predicts if they are a real pair of adjacent sentences from
the training corpus or a pair of unrelated sentences.

BERT introduces two special tokens

• [CLS] is prepended to the input sentence pair,

• [SEP] is placed between the sentences, and also after second sentence

And two more special tokens

• [1st segment] and [2nd segment]

• These are added to the input embedding and positional embedding

hL
CLS from the final layer [CLS] token is input to classifier head (weights WNSP) that

predicts two classes:.

11.2 • TRAINING BIDIRECTIONAL ENCODERS 7

X is actually formed by summing 3 embeddings: word, position, and first/second

segment embeddings.

During training, the output vector hL
CLS from the final layer associated with the

[CLS] token represents the next sentence prediction. As with the MLM objective,

we add a special head, in this case an NSP head, which consists of a learned set of

classification weights WNSP 2 Rd⇥2 that produces a two-class prediction from the

raw [CLS] vector hL
CLS:

yi = softmax(hL
CLSWNSP)

Cross entropy is used to compute the NSP loss for each sentence pair presented

to themodel. Fig. 11.4 illustrates theoverall NSP training setup. In BERT, the NSP

loss wasused in conjunction with theMLM training objective to form final loss.

Cancel my flight [SEP]

1

CE Loss

And the

Bidirectional Transformer Encoder

p1 p2 p3 p4 p5 p6 p7 p8

[CLS]

+ +

s1

NSP
Head

Token +
Segment +
Positional

Embeddings
hotel

p9

[SEP]

++

s1 s1 s1 s1 s2 s2 s2 s2

+ + + + + + + + + + + + + +

hCLS

Figure11.4 An example of theNSPloss calculation.

11.2.3 Training Regimes

BERT and other early transformer-based language models were trained on about

3.3 billion words (a combination of English Wikipedia and a corpus of book texts

called BooksCorpus (Zhu et al., 2015) that isno longer used for intellectual property

reasons). Modern masked language models arenow trained on much larger datasets

of web text, filtered a bit, and augmented by higher-quality data like Wikipedia,

the same as those we discussed for the causal large language models of Chapter 9.

Multilingual modelssimilarly usewebtext and multilingual Wikipedia. For example

the XLM-R model was trained on about 300 billion tokens in 100 languages, taken

from theweb viaCommon Crawl (https://commoncrawl.org/).

To train theoriginal BERT models, pairsof text segmentswereselected from the

training corpus according to the next sentence prediction 50/50 scheme. Pairs were

sampled so that their combined length was less than the 512 token input. Tokens

within these sentence pairs were then masked using the MLM approach with the

combined loss from theMLM and NSPobjectivesused for afinal loss. Because this

final loss is backpropagated through the entire transformer, the embeddings at each

transformer layer will learn representations that areuseful for predicting wordsfrom

their neighbors. Since the [CLS] tokens are the direct input to the NSP classifier,

their learned representations will tend to contain information about the sequence as

NSP Loss with classification head

Cancel my flight [SEP]

1

CE Loss

And the

Bidirectional Transformer Encoder

p1 p2 p3 p4 p5 p6 p7 p8

[CLS]

+ +

s1

NSP
Head

Token +
Segment +
Positional

Embeddings
hotel

p9

[SEP]

++

s1 s1 s1 s1 s2 s2 s2 s2

+ + + + + + + + + + + + + +

hCLS

More details

Original model was trained with 40 passes over training data

Some models (like RoBERTa) drop NSP loss

Tokenizer for multilingual models is trained from stratified sample of
languages (some data from each language)

Multilingual models are better than monolingual models with small
numbers of languages

• With large numbers of languages, monolingual models in that
language can be better

• The "curse of multilinguality"

Masked
Language
Models

Masked LM training

Masked
Language
Models

Contextual Embeddings

Contextual Embeddings to represent words

[CLS] So long and thanks for all

hL
1

hL
CLS hL

2 hL
3 hL

4 hL
5 hL

6

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

Static vs Contextual Embeddings

Static embeddings represent word types (dictionary entries)

Contextual embeddings represent word instances (one for each time
the word occurs in any context/sentence)

Word sense

Words are ambiguous

A word sense is a discrete representation of one aspect of meaning

Contextual embeddings offer a continuous high-dimensional model
of meaning that is more fine grained than discrete senses.

Word sense disambiguation (WSD)

The task of selecting the correct sense for a word.

1-nearest neighbor algorithm for WSD

At training time, take a sense-labeled corpus like SEMCOR

Run corpus through BERT to get contextual embedding for each token

• E.g., pooling representations from last 4 BERT transformer layer

Then for each sense s of word w for n tokens of that sense, pool
embeddings:

At test time, given a token of a target word t, compute contextual
embedding t and choose its nearest neighbor sense from training set

Melamud et al (2016), Peters et al (2018)

1-nearest neighbor algorithm for WSD

I found the jar empty

cI cfound

find1
v

cthe cjar cempty

find9
v

find5
vfind4

v

ENCODER

Similarity and contextual embeddings

• We generally use cosine as for static embeddings

• But some issues:
• Contextual embeddings tend to be anisotropic: all point in roughly the

same direction so have high inherent cosines (Ethayarajh 2019)

• Cosine measure are dominated by a small number of "rogue" dimensions
with very high values (Timkey and van Schijndel 2021)

• Cosine tends to underestimate human judgments on similarity of word
meaning for very frequent words (Zhou et al., 2022)

Masked
Language
Models

Contextual Embeddings

Masked
Language
Models

Fine-Tuning for Classification

Adding a sentiment classification head

[CLS] entirely predictable and lacks energy

Bidirectional Transformer Encoder

hCLS

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

sentiment

classification

head W
C

y

Sequence-Pair classification

Assign a label to pairs of sentences:

• paraphrase detection (are the two sentences
paraphrases of each other?)

• logical entailment (does sentence A logically entail
sentence B?)

• discourse coherence (how coherent is sentence B
as a follow-on to sentence A?)

Example: Natural Language Inference

Pairs of sentences are given one of 3 labels

Algorithm: pass the premise/hypothesis pairs through a bidirectional
encoder and use the output vector for the [CLS] token as the input to
the classification head .

Fine-tuning for sequence labeling

Assign a label from a small fixed set of labels to each token
in the sequence.

• Named entity recognition

• Part of speech tagging

.

Named Entity Recognition

A named entity is anything that can be referred to with a proper
name: a person, a location, an organization

Named entity recognition (NER): find spans of text that
constitute proper names and tag the type of the entity

Named Entity Recognition

BIO Tagging

A method that lets us turn a segmentation task (finding boundaries of
entities) into a classification task

Ramshaw and Marcus (1995)

Sequence labeling

[CLS] Jane Villanueva of United Airlines

Bidirectional Transformer Encoder

B-PER I-PER O B-ORG I-ORG

Holding discussed

I-ORG O

W
K

NER

head

hi

argmax

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

W
K

W
K

W
K

W
K

W
K

W
K

yi

More details

We need to map between tokens (used by LLM) and words (used in
definition of name entities)

We evaluate NER with F1 (precision/recall)

Masked
Language
Models

Fine-Tuning for Classification

	Slide 1: Masked Language Models
	Slide 2: Masked Language Modeling
	Slide 3: Bidirectional Self-Attention
	Slide 4: Easy! We just remove the mask
	Slide 5: BERT: Bidirectional Encoder Representations from Transformers
	Slide 6: Masked Language Models
	Slide 7: Masked Language Models
	Slide 8: Masked training intuition
	Slide 9: MLM training in BERT
	Slide 10: In detail
	Slide 11: MLM loss
	Slide 12: Next Sentence Prediction
	Slide 13: NSP Loss with classification head
	Slide 14: More details
	Slide 15: Masked Language Models
	Slide 16: Masked Language Models
	Slide 17: Contextual Embeddings to represent words
	Slide 18: Static vs Contextual Embeddings
	Slide 19: Word sense
	Slide 20: Word sense disambiguation (WSD)
	Slide 21: 1-nearest neighbor algorithm for WSD
	Slide 22: 1-nearest neighbor algorithm for WSD
	Slide 23: Similarity and contextual embeddings
	Slide 24: Masked Language Models
	Slide 25: Masked Language Models
	Slide 26: Adding a sentiment classification head
	Slide 27: Sequence-Pair classification
	Slide 28: Example: Natural Language Inference
	Slide 29: Fine-tuning for sequence labeling
	Slide 30: Named Entity Recognition
	Slide 31: Named Entity Recognition
	Slide 32: BIO Tagging
	Slide 33: Sequence labeling
	Slide 34: More details
	Slide 35: Masked Language Models

