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Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text

• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Are trained by learning to guess the next word



Large language models

• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text



Three architectures for large language models

Decoders Encoders Encoder-decoders

GPT, Claude, BERT family, Flan-T5, Whisper

Llama HuBERT

Mixtral

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Encoders

Many varieties!

• Popular: Masked Language Models (MLMs)

• BERT family

• Trained by predicting words from surrounding 
words on both sides

• Are usually finetuned (trained on supervised data) 
for classification tasks.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Encoder-Decoders

• Trained to map from one sequence to another

• Very popular for:
• machine translation (map from one language to 

another)
• speech recognition (map from acoustics to words)

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Big idea

Many tasks can be turned into tasks of 
predicting words!



This lecture: decoder-only models

Also called:

• Causal LLMs

• Autoregressive LLMs

• Left-to-right LLMs

• Predict words left to right

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Conditional Generation: Generating text 
conditioned on previous text!
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Many practical NLP tasks can be cast as word prediction!

Sentiment analysis: “I like Jackie Chan”

1. We give the language model this string:
The sentiment of the sentence "I 

like Jackie Chan" is: 

2. And see what word it thinks comes next:
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Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to see which ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles is very likely, and then if wechoose Charles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow the text by atoken liketl;dr; this token isshort for something like



Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”

1. We give the language model this string:

2. And see what word it thinks comes next:

3. And iterate:
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word “negative” to seewhich ishigher:

P(positive|Thesentiment of thesentence “ I likeJackieChan” is:)

P(negative|Thesentiment of thesentence “ I likeJackieChan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider the task

of answering simple questions, a task we return to in Chapter 14. In this task the

system isgiven somequestion and must givea textual answer. Wecan cast the task

of question answering aswordprediction by giving alanguagemodel aquestion and

atoken likeA: suggesting that an answer should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If weask a language model to compute

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A: Charles)

wemight now see that Darwin is themost probable word, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it.

Wecan cast summarization as language modeling by giving a large language model

a text, and follow the text by a token liketl;dr; this token is short for something

like ‘ too long; don’t read’ and in recent yearspeopleoften usethis token, especially

in informal work emails, when they are going to give a short summary. We can

then do conditional generation: give the language model this prefix, and then ask
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LLMs for summarization (using  tl;dr)
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Decoding and Sampling

This task of choosing a word to generate based on the model’s 
probabilities is called decoding. 

The most common method for decoding in LLMs: sampling. 

Sampling from a model’s distribution over words:

• choose random words according to their probability assigned 
by the model. 

After each token we’ll sample words to generate according 
to their probability conditioned on our previous choices, 

• A transformer language model will give the probability



Random sampling



Random sampling doesn't work very well

Even though random sampling mostly generate 
sensible, high-probable words, 

There are many odd, low- probability words in the tail 
of the distribution 

Each one is low- probability but added up they 
constitute a large portion of the distribution 

So they get picked enough to generate weird 
sentences



Factors in word sampling: quality and diversity

Emphasize high-probability words 

 + quality: more  accurate, coherent, and factual, 

- diversity: boring, repetitive. 

Emphasize middle-probability words 

+ diversity: more creative, diverse, 

- quality: less factual, incoherent



Top-k sampling:

1. Choose # of words k 

2. For each word in the vocabulary V , use the language model to 
compute the likelihood of this word given the context p(wt |w<t ) 

3. Sort the words by likelihood, keep only the top k most probable 
words. 

4. Renormalize the scores of the k words to be a legitimate 
probability distribution. 

5. Randomly sample a word from within these remaining k most-
probable words according to its probability. 



Top-p sampling (= nucleus sampling)

Problem with top-k:  k is fixed so may cover very different 
amounts of probability mass in different situations

Idea: Instead, keep the top p percent of the probability mass

Given a distribution P(wt |w<t ), the top-p vocabulary V ( p) 
is the smallest set of words such that 

Holtzman et al., 2020 



Temperature sampling

Reshape the distribution instead of truncating it

Intuition from thermodynamics, 

• a system at high temperature is flexible and can explore many 
possible states,

• a system at lower temperature is likely to explore a subset of 
lower energy (better) states.

 In low-temperature sampling,  (τ ≤ 1) we smoothly

• increase the probability of the most probable words

• decrease the probability of the rare words. 



Temperature sampling

Divide the logit by a temperature parameter τ before 
passing it through the softmax.

Instead of

We do  



Temperature sampling

Why does this work?
• When τ is close to 1 the distribution doesn’t change much. 

• The lower τ is, the larger the scores being passed to the softmax

• Softmax pushes high values toward 1 and low values toward 0. 

• Large inputs pushes high-probability words higher and low probability 
word lower,  making the distribution more greedy. 

• As τ approaches 0, the probability of most likely word approaches 1 

0 ≤ τ ≤ 1 
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Pretraining

The big idea that underlies all the amazing 
performance of language models

First pretrain a transformer model on enormous 
amounts of text

Then apply it to new tasks.



Self-supervised training algorithm

We just train them to predict the next word!

1. Take a corpus of text 

2. At each time step t 
i. ask the model to predict the next word 
ii. train the model using gradient descent to minimize the 

error in this prediction

"Self-supervised" because it just uses the next word as the 
label!



Intuition of language model training: loss

• Same loss function: cross-entropy loss
• We want the model to assign a high probability to true 

word w
• = want loss to be high if the model assigns too low a 

probability to w

• CE Loss: The negative log probability that the model 
assigns to the true next word w
• If the model assigns too low a probability to w
• We move the model weights in the direction that assigns a 

higher probability to w



Cross-entropy loss for language modeling

CE loss: difference between the correct probability distribution and the predicted 
distribution 

The correct distribution yt knows the next word, so is 1 for the actual next 
word and 0 for the others.

So in this sum, all terms get multiplied by zero except one: the logp the 
model assigns to the correct next word, so:

 



Teacher forcing

• At each token position t, model sees correct tokens w1:t, 

• Computes  loss (–log probability) for the next token wt+1 

• At next token position t+1 we ignore what model predicted 
for wt+1 

• Instead we take the correct word wt+1, add it to context, move on



Training a transformer language model
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LLMs are mainly trained on the web

Common crawl, snapshots of the entire web produced by 
the non- profit Common Crawl with billions of pages

Colossal Clean Crawled Corpus (C4; Raffel et al. 2020), 156 
billion tokens of English,  filtered

 What's in it? Mostly patent text documents, Wikipedia, and 
news sites 



The Pile: a pretraining corpus

Figure 1: Treemap of Pile components by effectivesize.

troduce a new filtered subset of Common Crawl,

Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is

significantly distinct from pure Common Crawl

data. Additionally, our evaluations show that the

existing GPT-2 and GPT-3 models perform poorly

on many components of thePile, and that models

trained on the Pile significantly outperform both

raw and filtered Common Crawl models. To com-

plement the performance evaluations, we also per-

form an exploratory analysis of the text within the

Pile to provide a detailed picture of the data. We

hope that our extensive documentation of the con-

struction and characteristics of the Pile will help

researchers make informed decisions about poten-

tial downstream applications.

Finally, we make publicly available the preprocess-

ing code for the constituent datasets of the Pile and

the code for constructing alternative versions2. In

the interest of reproducibility, we also document

all processing performed on each dataset (and the

Pile as awhole) in asmuch detail as possible. For

further details about the processing of each dataset,

seeSection 2 and Appendix C.

2ht t ps: / / gi t hub. com/ El eut her AI /
t he- pi l e

1.1 Contr ibutions

The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-

language dataset for language modeling com-

bining 22 diverse sources.

2. The introduction of 14 new language model-

ing datasets, which we expect to be of inde-

pendent interest to researchers.

3. Evaluations demonstrating significant im-

provements across many domains by GPT-2-

sized models trained on this new dataset, com-

pared to training on CC-100 and raw Common

Crawl.

4. The investigation and documentation of this

dataset, which wehope will better inform re-

searchers about how to use it as well asmoti-

vate them to undertake similar investigations

of their own data.

2 The Pile Datasets

ThePile iscomposed of 22 constituent sub-datasets,

asshown in Table1. Following Brown et al. (2020),

we increase the weights of higher quality compo-

nents, with certain high-quality datasets such as

Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books

dialog



Filtering for quality and safety

Quality is subjective

• Many LLMs attempt to match Wikipedia, books, particular 
websites

• Need to remove boilerplate, adult content

• Deduplication at many levels (URLs, documents, even lines)

Safety also subjective

• Toxicity detection is important, although that has mixed results

• Can mistakenly flag data written in dialects like African American 
English



What does a model learn from pretraining?

• There are canines everywhere! One dog in the 
front room, and two dogs

• It wasn't just big it was enormous

• The author of "A Room of One's Own" is Virginia 
Woolf

• The doctor told me that he

• The square root of 4 is 2



Big idea

Text contains enormous amounts of knowledge

Pretraining on lots of text with all that 
knowledge is what gives language models their 
ability to do so much



But there are problems with scraping from the web

Copyright: much of the text in these datasets is copyrighted

• Not clear if fair use doctrine in US allows for this use

• This remains an open legal question

Data consent

• Website owners can indicate they don't want their site crawled

Privacy: 

• Websites can contain private IP addresses and phone numbers



Large 
Language 
Models

Pretraining data for LLMs



Large 
Language 
Models

Fine-tuning



Adaptation to new domains

What happens if we need our LLM to work well on a domain 
it didn't see in pretraining?

Perhaps some specific medical or legal domain?

Or maybe a multilingual LM needs to see more data on some 
language that was rare in pretraining?



Finetuning
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"Finetuning" means different things

Taking a pretrained model and further adapting 
some or all of its parameters to some new data



Finetuning as "continued pretraining" on new data

• Further train all the parameters of model on new data
• using the same method (word prediction) and loss function 

(cross-entropy loss) as for pretraining.

• as if the new data were at the tail end of the pretraining data

• Hence sometimes called continued pretraining or further 
pre-training
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Perplexity

Just as for n-gram grammars, we use perplexity to measure how 
well the LM predicts unseen text

The perplexity of a model θ on an unseen test set is the inverse 
probability that θ assigns to the test set, normalized by the test 
set length. 

For a test set of n tokens w1:n the perplexity is :



• Probability depends on size of test set
• Probability gets smaller the longer the text

• Better: a metric that is per-word, normalized by length

• Perplexity is the inverse probability of the test set, normalized by 
the number of words
(The inverse comes from the original definition of perplexity from cross-
entropy rate in information theory)

Probability range is  [0,1], perplexity range is [1,∞]

Why perplexity instead of raw probability of the test set?



Perplexity

• The higher the probability of the word sequence, the lower the 
perplexity.

• Thus the lower the perplexity of a model on the data, the better the 
model. 

• Minimizing perplexity is the same as maximizing probability

Also: perplexity is sensitive to length/tokenization so best used when 
comparing LMs that use the same tokenizer. 
 



Many other factors that we evaluate, like:

Size

 Big models take lots of GPUs and time to train, memory to store

Energy usage

Can measure kWh or kilograms of CO2 emitted 

Fairness

Benchmarks measure gendered and racial stereotypes, or decreased 
performance for language from or about some groups. 
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Scaling Laws

LLM performance depends on

• Model size: the number of parameters not counting 
embeddings

• Dataset size: the amount of training data

• Compute: Amount of compute (in FLOPS or etc

Can improve a model by adding  parameters (more layers, 
wider contexts), more data, or training for more iterations

The performance of a large language model (the loss) scales 
as a power-law with each of these three



Scaling Laws

Loss L as a function of # parameters N, dataset size D, compute budget C (if other 
two are held constant)

Scaling laws can be used early in training to predict what the loss would be if we were 
to add more data or increase model size. 



Number of non-embedding parameters N

Thus GPT-3, with n = 96 layers and dimensionality d = 12288, has 12 × 96 × 
122882 ≈ 175 billion parameters. 



KV Cache

In training, we can compute attention very efficiently in parallel:

But not at inference! We generate the next tokens one at a time!

For a new token x, need to multiply by WQ, WK, and WV to get query, key, 
values

But don't want to recompute the key and value vectors for all the prior 
tokens x<i

Instead, store key and value vectors in memory in the KV cache, and 
then we can just grab them from the cache 



KV Cache



Parameter-Efficient Finetuning

Adapting to a new domain by continued pretraining (finetuning) is a 
problem with huge LLMs.

• Enormous numbers of parameters to train 

• Each pass of batch gradient descent has to backpropagate through 
many many huge layers. 

• Expensive in processing power, in memory, and in time. 

Instead, parameter-efficient fine tuning (PEFT)

• Efficiently select a subset of parameters to update when finetuning.

• E.g., freeze some of the parameters (don’t change them), 

• And only update some a few parameters. 



LoRA (Low-Rank Adaptation)

• Transformers have many dense matrix multiply 
layers
• Like WQ, WK, WV, WO layers in attention

• Instead of updating these layers during finetuning, 
• Freeze these layers 
• Update a low-rank approximation with fewer 

parameters. 



LoRA
• Consider a matrix W (shape [N × d])  that needs to be updated during finetuning 

via gradient descent. 
• Normally updates are ∆W  (shape [N × d])

• In LoRA, we freeze W and update instead a low-rank decomposition of W:
• A of shape [N×r], 
• B of shape [r×d], r is very small  (like 1 or 2)
• That is, during  finetuning we update A and B instead of W. 
• Replace W + ∆W with W + BA. 

Forward pass: instead of 

    h = xW 

We do

     h = xW + xAB 



LoRA
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Hallucination



Copyright



Privacy



Toxicity and Abuse



Misinformation



Large 
Language 
Models

Harms of Large Language 
Models


	Slide 1: Large Language Models
	Slide 2: Language models
	Slide 3: Large language models
	Slide 4: Three architectures for large language models
	Slide 5: Encoders
	Slide 6: Encoder-Decoders
	Slide 7: Large Language Models
	Slide 8: Large Language Models
	Slide 9: Big idea
	Slide 10: This lecture: decoder-only models
	Slide 11: Conditional Generation: Generating text conditioned on previous text!
	Slide 12: Many practical NLP tasks can be cast as word prediction!
	Slide 13: Framing lots of tasks as conditional generation
	Slide 14: Summarization
	Slide 15: LLMs for summarization (using  tl;dr)
	Slide 16: Large Language Models
	Slide 17: Large Language Models
	Slide 18: Decoding and Sampling
	Slide 19: Random sampling
	Slide 20: Random sampling doesn't work very well
	Slide 21: Factors in word sampling: quality and diversity
	Slide 22: Top-k sampling:
	Slide 23: Top-p sampling (= nucleus sampling)
	Slide 24: Temperature sampling
	Slide 25: Temperature sampling
	Slide 26: Temperature sampling
	Slide 27: Large Language Models
	Slide 28: Large Language Models
	Slide 29: Pretraining
	Slide 30: Self-supervised training algorithm
	Slide 31: Intuition of language model training: loss
	Slide 32: Cross-entropy loss for language modeling
	Slide 33: Teacher forcing
	Slide 34: Training a transformer language model
	Slide 35: Large Language Models
	Slide 36: Large Language Models
	Slide 37: LLMs are mainly trained on the web
	Slide 38: The Pile: a pretraining corpus
	Slide 39: Filtering for quality and safety
	Slide 40: What does a model learn from pretraining?
	Slide 41: Big idea
	Slide 42: But there are problems with scraping from the web
	Slide 43: Large Language Models
	Slide 44: Large Language Models
	Slide 45: Adaptation to new domains
	Slide 46: Finetuning
	Slide 47: "Finetuning" means different things
	Slide 48: Finetuning as "continued pretraining" on new data
	Slide 49: Large Language Models
	Slide 50: Large Language Models
	Slide 51: Perplexity
	Slide 52: Why perplexity instead of raw probability of the test set?
	Slide 53: Perplexity
	Slide 54: Many other factors that we evaluate, like:
	Slide 55: Large Language Models
	Slide 56: Scaling Laws
	Slide 57: Scaling Laws
	Slide 58: Number of non-embedding parameters N
	Slide 59: KV Cache
	Slide 60: KV Cache
	Slide 61: Parameter-Efficient Finetuning
	Slide 62: LoRA (Low-Rank Adaptation)
	Slide 63: LoRA
	Slide 64: LoRA
	Slide 65: Large Language Models
	Slide 66: Large Language Models
	Slide 67: Hallucination
	Slide 68: Copyright
	Slide 69: Privacy
	Slide 70: Toxicity and Abuse
	Slide 71: Misinformation
	Slide 72: Large Language Models

