Introduction to Large Language

Large Models
Language
Models

From: Dan Jurafsky and James H.
Martin, Chapter 10, Aug 2024

Adapted by Diana Inkpen for
CSI5386, Jan 2025

Language models

* Remember the simple n-gram language model
* Assigns probabilities to sequences of words
* Generate text by sampling possible next words
* s trained on counts computed from lots of text

* Large language models are similar and different:
* Assigns probabilities to sequences of words
* Generate text by sampling possible next words
* Are trained by learning to guess the next word

Large language models

* Even through pretrained only to predict words
* Learn a lot of useful language knowledge
* Since training on a lot of text

Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude, BERT family, Flan-T5, Whisper
Llama HUBERT

Mixtral

Encoders

Many varieties!
* Popular: Masked Language Models (MLMs)
* BERT family

* Trained by predicting words from surrounding
words on both sides

* Are usually finetuned (trained on supervised data)
for classification tasks.

Encoder-Decoders

=]

* Trained to map from one sequence to another

* Very popular for:

* machine translation (map from one language to
another)

* speech recognition (map from acoustics to words)

Introduction to Large Language

Large Models
Language
Models

Large Language Models: What

Large tasks can they do?
Language
Models

Big idea

Many tasks can be turned into tasks of
predicting words!

This lecture: decoder-only models
Also called:

* Causal LLMs %

* Autoregressive LLMs
* Left-to-right LLMs

* Predict words left to right

Conditional Generation: Generating text
conditioned on previous text!

Completion Text
_A—

f/_/.\)
all :

ol) |

Modeling

Head

Langugge [Softmax
|

o
«Q
=
n
—>

I
I
|
|
|
Unencoder layer <t 7 i X
|
|
|
|
|
|
I

I
I
I
I
I
I
4 , , I
—t |
Transformer :] : -
Blocks t f !
- |
|
|
S0\ (o0 : >4 | (o0
eeoder () (2Y) (2N /a=ay Jia=a\) B V2
I |
So long and thanks for : all I the
\ / 7 7

——

Prefix Text

Many practical NLP tasks can be cast as word prediction!

Sentiment analysis: “I like Jackie Chan”

1. We give the language model this string:
The sentiment of the sentence "I
l1ke Jackie Chan" 1is:

2. And see what word it thinks comes next:

P(positive|]The sentiment of the sentence ‘I like Jackie Chan" is:)
P(negative| The sentiment of the sentence ‘‘I like Jackie Chan" is:)

Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”
1. We give the language model this string:

Q: Who wrote the book ‘‘The Origin of Species"? A:

2. And see what word it thinks comes next:

P(W|Q: Who wrote the book ‘‘The Origin of Species"? A:)

3. And iterate:

P(W|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

Summarization

The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff
and offering it for sale online? People are actually buying it. For $89, self-styled entrepreneur
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says.

Original But not if you live in New England or surrounding states. “We will not ship snow to any states
in the northeast!” says Waring’s website, ShipSnow Yo.com. “We’re in the business of expunging
snow!”

His website and social media accounts claim to have filled more than 133 orders for snow — more
than 30 on Tuesday alone, his busiest day yet. With more than 45 total inches, Boston has set a
record this winter for the snowiest month in its history. Most residents see the huge piles of snow
choking their yards and sidewalks as a nuisance, but Waring saw an opportunity.

According to Boston.com, it all started a few weeks ago, when Waring and his wife were shov-
eling deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston. He
joked about shipping the stuff to friends and family in warmer states, and an idea was born. [...]

Summary

Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says. But not if you live in New England or surrounding states.

LLMs for summarization (using tl;dr)

Generated Summary

_A—

o o o

LM Head

The only idea was born.
N— _ L/ ~
Original Story Delimiter

Large Language Models: What

Large tasks can they do?
Language
Models

Sampling for LLM Generation

Large
Language
Models

Decoding and Sampling

This task of choosing a word to generate based on the model’s
probabilities is called decoding.

The most common method for decoding in LLMs: sampling.
Sampling from a model’s distribution over words:

* choose random words according to their probability assigned
by the model.

After each token we’ll sample words to generate according
to their probability conditioned on our previous choices,

* A transformer language model will give the probability

Random sampling

11

wi ~ p(w)

while w; != EOS
11+ 1
wi ~ pwi | w<;)

Random sampling doesn't work very well

Even though random sampling mostly generate
sensible, high-probable words,

There are many odd, low- probability words in the tail
of the distribution

Each one is low- probability but added up they
constitute a large portion of the distribution

So they get picked enough to generate weird
sentences

Factors in word sampling: quality and diversity

Emphasize high-probability words
+ quality: more accurate, coherent, and factual,
- diversity: boring, repetitive.

Emphasize middle-probability words
+ diversity: more creative, diverse,
- quality: less factual, incoherent

Top-k sampling:

1. Choose # of words k

2. For each word in the vocabulary V, use the language model to
compute the likelihood of this word given the context p(wt |w_,)

3. Sort the words by likelihood, keep only the top k most probable
words.

4. Renormalize the scores of the k words to be a legitimate
probability distribution.

5. Randomly sample a word from within these remaining kK most-
probable words according to its probability.

Top-p sampling (= nucleus sampling)

Holtzman et al., 2020

Problem with top-k: k is fixed so may cover very different
amounts of probability mass in different situations

ldea: Instead, keep the top p percent of the probability mass

Given a distribution P(w; |w_,), the top-p vocabulary V (p)
is the smallest set of words such that

Z P W‘W<t
weV (P

Temperature sampling

Reshape the distribution instead of truncating it
Intuition from thermodynamics,

* asystem at high temperature is flexible and can explore many
possible states,

* asystem at lower temperature is likely to explore a subset of
lower energy (better) states.

In low-temperature sampling, (t < 1) we smoothly
* increase the probability of the most probable words
* decrease the probability of the rare words.

Temperature sampling

Divide the logit by a temperature parameter t before
passing it through the softmax.

Instead of B :

We do
y = softmax(u/7)

Temperature sampling Osts<l

y = softmax(u/7)

Why does this work?

* When tis close to 1 the distribution doesn’t change much.
* The lower tis, the larger the scores being passed to the softmax
* Softmax pushes high values toward 1 and low values toward 0.

* Large inputs pushes high-probability words higher and low probability
word lower, making the distribution more greedy.

* As tapproaches 0, the probability of most likely word approaches 1

Sampling for LLM Generation

Large
Language
Models

Pretraining Large Language

Large Models: Algorithm
Language
Models

Pretraining

The big idea that underlies all the amazing
performance of language models

First pretrain a transformer model on enormous
amounts of text

Then apply it to new tasks.

Self-supervised training algorithm

We just train them to predict the next word!
1. Take a corpus of text

2. At each time step t
I. ask the model to predict the next word

Il. train the model using gradient descent to minimize the
error in this prediction

"Self-supervised" because it just uses the next word as the
labell

Intuition of language model training: loss

* Same loss function: cross-entropy loss

* We want the model to assign a high probability to true
word w

* =want loss to be high if the model assigns too low a
probability to w

* CE Loss: The negative log probability that the model
assigns to the true next word w
* If the model assigns too low a probability to w

* We move the model weights in the direction that assigns a
higher probability to w

Cross-entropy loss for language modeling

CE loss: difference between the correct probability distribution and the predicted

distribution /
weV

The correct distribution y, knows the next word, so is 1 for the actual next
word and O for the others.

So in this sum, all terms get multiplied by zero except one: the logp the
model assigns to the correct next word, so:

LcE (9t7 Yt) = —logy; [Wt—l—l]

Teacher forcing

* At each token position t, model sees correct tokens w4,

* Computes loss (—log probability) for the next token wy, ¢

* At next token position t+1 we ignore what model predicted
for w,,,
* Instead we take the correct word w,,,, add it to context, move on

Training a transformer language model

Next token long and thanks for all
| | | | |
Loss —log Yiong| T 109Yand | [~ 109Ythanks| | — 10g Ytor | | — 10g Yan
A A T A A
Language
MOdeling logits logits logits
Head i
. — — C———1 —
| — | —— | —— | — | ——
Stacked — = A
Tt o = e ..
Blocks =t | | =l || == || == || ==
e e e e e
k A j A 3 N j
(x1 (x2]) (3 (x4 (x5]
\ \ A A
Input ¥) . J v
SN VaaY B Vaay i /A=Y B Vaal N /a-a
Input tokens So long and thanks for

Pretraining Large Language

Large Models: Algorithm
Language
Models

Pretraining data for LLMs

Large
Language
Models

LLMs are mainly trained on the web

Common crawl, snapshots of the entire web produced by
the non- profit Common Crawl with billions of pages

Colossal Clean Crawled Corpus (C4; Raffel et al. 2020), 156
billion tokens of English, filtered

What's in it? Mostly patent text documents, Wikipedia, and
news sites

The Pile: a pretraining corpus

academics web

Bibliotik

PG-19

PubMed Central

Subtitles

StackExchange

Github

OpenWebText2 Wikipedia DM Math

Filtering for quality and safety

Quality is subjective

* Many LLMs attempt to match Wikipedia, books, particular
websites

* Need to remove boilerplate, adult content

* Deduplication at many levels (URLs, documents, even lines)
Safety also subjective

* Toxicity detection is important, although that has mixed results

* Can mistakenly flag data written in dialects like African American
English

What does a model learn from pretraining?

* There are canines everywhere! One dog in the
front room, and two dogs

* |t wasn't just big it was enormous

* The author of "A Room of One's Own" is Virginia
Woolf

* The doctor told me that he
* The square root of 4 is 2

Big idea

Text contains enormous amounts of knowledge

Pretraining on lots of text with all that
knowledge is what gives language models their
ability to do so much

But there are problems with scraping from the web

Copyright: much of the text in these datasets is copyrighted

* Not clear if fair use doctrine in US allows for this use

* This remains an open legal question

Data consent

* Website owners can indicate they don't want their site crawled
Privacy:

* Websites can contain private IP addresses and phone numbers

Pretraining data for LLMs

Large
Language
Models

Fine-tuning

Large
Language
Models

Adaptation to new domains

What happens if we need our LLM to work well on a domain
it didn't see in pretraining?

Perhaps some specific medical or legal domain?

Or maybe a multilingual LM needs to see more data on some
language that was rare in pretraining?

Finetuning

— —
N— o
Fine-
Pretraining Data tuning
: Data AL
Pretrained LM [“<*¢] Fine-tuned LM
() () () () () ()
s s s o o
))))))
Pretraining = |—=||=—x= Fine-tuning = |=—=||=—=

_— O C O Co _— O C O Co
A A A A A A
DN GED NG DN GEDYGED |

"Finetuning” means different things

Taking a pretrained model and further adapting
some or all of its parameters to some new data

Finetuning as "continued pretraining” on new data

* Further train all the parameters of model on new data

* using the same method (word prediction) and loss function
(cross-entropy loss) as for pretraining.

* as if the new data were at the tail end of the pretraining data

* Hence sometimes called continued pretraining or further
pre-training

Finetuning for supervised

Large classification on labelled

Language training data.
Models

Evaluating Large Language

Large Models
Language
Models

Perplexity

Just as for n-gram grammars, we use perplexity to measure how
well the LM predicts unseen text

The perplexity of a model © on an unseen test set is the inverse

probability that O assigns to the test set, normalized by the test
set length.

For a test set of n tokens w,., the perplexity is :

S =

Perplexityg (Wi.n) = Po(Win) ™

Why perplexity instead of raw probability of the test set?

* Probability depends on size of test set
* Probability gets smaller the longer the text
* Better: a metric that is per-word, normalized by length

* Perplexity is the inverse probability of the test set, normalized by
the number of words

(The inverse comes from the original definition of perplexity from cross-
entropy rate in information theory)

Probability range is [0,1], perplexity range is [1,°°]

Perplexity

* The higher the probability of the word sequence, the lower the
perplexity.

* Thus the lower the perplexity of a model on the data, the better the
model.

* Minimizing perplexity is the same as maximizing probability

Also: perplexity is sensitive to length/tokenization so best used when
comparing LMs that use the same tokenizer.

Many other factors that we evaluate, like:

Size

Big models take lots of GPUs and time to train, memory to store
Energy usage

Can measure kWh or kilograms of CO2 emitted

Fairness

Benchmarks measure gendered and racial stereotypes, or decreased
performance for language from or about some groups.

Dealing with Scale

Large
Language
Models

Scaling Laws

LLM performance depends on

* Model size: the number of parameters not counting
embeddings

* Dataset size: the amount of training data
* Compute: Amount of compute (in FLOPS or etc

Can improve a model by adding parameters (more layers,
wider contexts), more data, or training for more iterations

The performance of a large language model (the loss) scales
as a power-law with each of these three

Scaling Laws

Loss L as a function of # parameters N, dataset size D, compute budget C (if other
two are held constant)

= ()
i~ ()"
o~ (%)

Scaling laws can be used early in training to predict what the loss would be if we were
to add more data or increase model size.

Number of non-embedding parameters N

=2
X

2 d nlayer(z dattn —I_ dff)
12 Mayer d2

(assuming dyn = dgr/4 = d)

Q

Thus GPT-3, with n = 96 layers and dimensionality d = 12288, has 12 X 96 X
122882 = 175 billion parameters.

KV Cache

In training, we can compute attention very efficiently in parallel:

KT
A = softmax(Q)V
Vdg

But not at inference! We generate the next tokens one at a time!

For a new token x, need to multiply by WQ, WK, and WV to get query, key,
values

But don't want to recompute the key and value vectors for all the prior
tokens x_;

Instead, store key and value vectors in memory in the KV cache, and
then we can just grab them from the cache

KV Cache
Q

T _
K ak! V A
a X ZE 8 & T = |qi-ki|qi-k2|qi-k3|qi-ke v1 al
q2 X =
q2-k1|g2:k2|qg2:k3|q2-k4 v2 a2
qs a3-k1|q3-k2|q3-k3| q3-k4 v3 a3
q4 d,xN q4-k1|qd-k2|q4-k3|qa-ka va a4
—~ Nxd
Kk N x N . Nxd, Nxd,
Q aK' v A
KT
x SRR z - X _
dkxN
q4 q4-k1|q4:-k2|q4-k3 (q4-k4 a4

1xdk 1 x N NxdV 1%xd

Parameter-Efficient Finetuning

Adapting to a new domain by continued pretraining (finetuning) is a
problem with huge LLMs.

* Enormous numbers of parameters to train

* Each pass of batch gradient descent has to backpropagate through
many many huge layers.

* Expensive in processing power, in memory, and in time.
Instead, parameter-efficient fine tuning (PEFT)

* Efficiently select a subset of parameters to update when finetuning.
* E.g., freeze some of the parameters (don’t change them),

* And only update some a few parameters.

LoRA (Low-Rank Adaptation)

* Transformers have many dense matrix multiply
layers
* Like WQ WX, WV, WO |layers in attention

* Instead of updating these layers during finetuning,
* Freeze these layers

* Update a low-rank approximation with fewer
parameters.

LORA

* Consider a matrix W (shape [N x d]) that needs to be updated during finetuning
via gradient descent.
* Normally updates are AW (shape [N x d])

* In LoRA, we freeze W and update instead a low-rank decomposition of W:
* A of shape [Nxr],
* B ofshape [rxd], ris very small (like 1 or 2)
* That is, during finetuning we update A and B instead of W.
* Replace W + AW with W + BA.

Forward pass: instead of
h = xW
We do
h = xW + xAB

LoRA ho

' . SN
Pretrained
q Weights g
W
Kk r

o %

X 1

Dealing with Scale

Large
Language
Models

Harms of Large Language

Large Models
Language
Models

Hallucination Chatbots May ‘Hallucinate’
More Often Than Many Realize

What Can You Do When A.I. Lies
About You?

People have little protection or recourse when the technology
creates and spreads falsehoods about them.

Air Canada loses court case after its chatbot hallucinated

fake policies to a customer
The airline argued that the chatbot itself was liable. The court disagreed.

\\\ \ \\ *\

Infringement of Hundreds of Thousands of Novels
the lawsuit said.

Authors Sue OpenAl Claiming Mass Copyright

4
-
Q0o
-
>
O
O
O

The Times Sues OpenAl and Microsoft
Over A.L Use of Copyrighted Work

Millions of articles from The New York Times were used to train

chatbots that now compete with it,

Privacy

How Strangers Got"MyEmail
Address From ChatGPTs!N

Toxicity and Abuse

The New Al-Powered Bing Is Threatening Users.

Cleaning Up ChatGPT Takes Heavy Toll on
Human Workers

Contractors in Kenya say they were traumatized by effort to screen out descriptions of
violence and sexual abuse during run-up to OpenAl’s hit chatbot

Misinformation

Chatbots are generating false and
misleading information about U.S.
elections

Harms of Large Language

Large Models
Language
Models

	Slide 1: Large Language Models
	Slide 2: Language models
	Slide 3: Large language models
	Slide 4: Three architectures for large language models
	Slide 5: Encoders
	Slide 6: Encoder-Decoders
	Slide 7: Large Language Models
	Slide 8: Large Language Models
	Slide 9: Big idea
	Slide 10: This lecture: decoder-only models
	Slide 11: Conditional Generation: Generating text conditioned on previous text!
	Slide 12: Many practical NLP tasks can be cast as word prediction!
	Slide 13: Framing lots of tasks as conditional generation
	Slide 14: Summarization
	Slide 15: LLMs for summarization (using tl;dr)
	Slide 16: Large Language Models
	Slide 17: Large Language Models
	Slide 18: Decoding and Sampling
	Slide 19: Random sampling
	Slide 20: Random sampling doesn't work very well
	Slide 21: Factors in word sampling: quality and diversity
	Slide 22: Top-k sampling:
	Slide 23: Top-p sampling (= nucleus sampling)
	Slide 24: Temperature sampling
	Slide 25: Temperature sampling
	Slide 26: Temperature sampling
	Slide 27: Large Language Models
	Slide 28: Large Language Models
	Slide 29: Pretraining
	Slide 30: Self-supervised training algorithm
	Slide 31: Intuition of language model training: loss
	Slide 32: Cross-entropy loss for language modeling
	Slide 33: Teacher forcing
	Slide 34: Training a transformer language model
	Slide 35: Large Language Models
	Slide 36: Large Language Models
	Slide 37: LLMs are mainly trained on the web
	Slide 38: The Pile: a pretraining corpus
	Slide 39: Filtering for quality and safety
	Slide 40: What does a model learn from pretraining?
	Slide 41: Big idea
	Slide 42: But there are problems with scraping from the web
	Slide 43: Large Language Models
	Slide 44: Large Language Models
	Slide 45: Adaptation to new domains
	Slide 46: Finetuning
	Slide 47: "Finetuning" means different things
	Slide 48: Finetuning as "continued pretraining" on new data
	Slide 49: Large Language Models
	Slide 50: Large Language Models
	Slide 51: Perplexity
	Slide 52: Why perplexity instead of raw probability of the test set?
	Slide 53: Perplexity
	Slide 54: Many other factors that we evaluate, like:
	Slide 55: Large Language Models
	Slide 56: Scaling Laws
	Slide 57: Scaling Laws
	Slide 58: Number of non-embedding parameters N
	Slide 59: KV Cache
	Slide 60: KV Cache
	Slide 61: Parameter-Efficient Finetuning
	Slide 62: LoRA (Low-Rank Adaptation)
	Slide 63: LoRA
	Slide 64: LoRA
	Slide 65: Large Language Models
	Slide 66: Large Language Models
	Slide 67: Hallucination
	Slide 68: Copyright
	Slide 69: Privacy
	Slide 70: Toxicity and Abuse
	Slide 71: Misinformation
	Slide 72: Large Language Models

