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Text Clustering
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Clustering

• Partition unlabeled examples into disjoint subsets of 
clusters, such that:

– Examples within a cluster are very similar

– Examples in different clusters are very different

• Discover new categories in an unsupervised manner 
(no sample category labels provided).
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Hierarchical Clustering

• Build a tree-based hierarchical taxonomy 
(dendrogram) from a set of unlabeled examples.

• Recursive application of a standard clustering 
algorithm can produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate
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Aglommerative vs. Divisive Clustering

• Aglommerative (bottom-up) methods start with 
each example in its own cluster and iteratively 
combine them to form larger and larger clusters.

• Divisive (partitional, top-down) separate all 
examples immediately into clusters.
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Direct Clustering Method

• Direct clustering methods require a specification 
of the number of clusters, k, desired.

• A clustering evaluation function assigns a real-
value quality measure to a clustering.

• The number of clusters can be determined 
automatically by explicitly generating clusterings
for multiple values of k and choosing the best 
result according to a clustering evaluation 
function.
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Hierarchical Agglomerative Clustering 
(HAC)

• Assumes a similarity function for determining the 
similarity of two instances.

• Starts with all instances in a separate cluster and then 
repeatedly joins the two clusters that are most similar 
until there is only one cluster.

• The history of merging forms a binary tree or 
hierarchy.
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HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster:

Among the current clusters, determine the two 
clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci ∪ cj
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Cluster Similarity

• Assume a similarity function that determines the 
similarity of two instances: sim(x,y).
– Cosine similarity of document vectors.

• How to compute similarity of two clusters each 
possibly containing multiple instances?
– Single Link: Similarity of two most similar members.

– Complete Link: Similarity of two least similar members.

– Group Average: Average similarity between members.
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Single Link Agglomerative Clustering

• Use maximum similarity of pairs:

• Can result in “straggly” (long and thin) clusters 
due to chaining effect.

– Appropriate in some domains, such as 
clustering islands. 
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Single Link Example
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Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

• Makes more “tight,” spherical clusters that are 
typically preferable.
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Complete Link Example
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Computing Cluster Similarity

• After merging ci and cj, the similarity of the 
resulting cluster to any other cluster, ck, can be 
computed by:

– Single Link:

– Complete Link:
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Group Average Agglomerative Clustering

• Use average similarity across all pairs within the 
merged cluster to measure the similarity of two 
clusters.

• Compromise between single and complete link.
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Non-Hierarchical Clustering

• Typically must provide the number of desired 
clusters, k.

• Randomly choose k instances as seeds, one per 
cluster.  

• Form initial clusters based on these seeds.

• Iterate, repeatedly reallocating instances to 
different clusters to improve the overall clustering.

• Stop when clustering converges or after a fixed 
number of iterations. 



9

17

K-Means

• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of gravity, or 
mean of points in a cluster, c:

• Reassignment of instances to clusters is based on 
distance to the current cluster centroids.
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Distance Metrics

• Euclidian distance (L2 norm):

• L1 norm:

• Cosine Similarity (transform to a distance by 
subtracting from 1):
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K-Means Algorithm

Let d be the distance measure between instances.
Select k random instances {s1, s2,… sk} as seeds.
Until clustering converges or other stopping criterion:

For each instance xi:
Assign xi to the cluster cj such that d(xi, sj) is minimal.

Update the seeds to the centroid of each cluster:
For each cluster cj

sj = µ(cj) 
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K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!
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Seed Choice

• Results can vary based on random seed selection.

• Some seeds can result in poor convergence rate, or 
convergence to sub-optimal clusterings.

• Select good seeds using a heuristic or the results 
of another method.
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Text Clustering

• HAC and K-Means have been applied to text in a 
straightforward way.

• Typically use normalized, TF/IDF-weighted vectors 
and cosine similarity.

• Optimize computations for sparse vectors.
• Applications:

– During retrieval, add other documents in the same cluster 
as the initial retrieved documents to improve recall.

– Clustering of results of retrieval to present more organized 
results to the user (à la Northernlight folders).

– Automated production of hierarchical taxonomies of 
documents for browsing purposes (à la Yahoo & DMOZ).
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Soft Clustering

• Clustering typically assumes that each instance is 
given a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or 
for an instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance 
belongs to each of a set of clusters.

• Each instance is assigned a probability distribution 
across a set of discovered categories (probabilities 
of all categories must sum to 1).
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Exercise

Cluster to following documents using K-means with 
K=2 and cosine similarity.
– Doc1: “go monster go”
– Doc2: “go karting”
– Doc3: “karting monster”
– Doc4: “monster monster”

Assume Doc1 and Doc3 are chosen as initial seeds. 
Use tf (no idf). Show the clusters and their 
centroids for each iteration. The algorithm should 
converge after 2 iterations.


