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Statistical NLP: Lecture 8

Statistical Inference: 

n-gram Models over Sparse Data

(Ch 6)

Overview

• Statistical Inference consists of taking some data 
(generated in accordance with some unknown 
probability distribution) and then making some 
inferences about this distribution.

• There are three issues to consider:
– Dividing the training data into equivalence classes
– Finding a good statistical estimator for each 

equivalence class
– Combining multiple estimators
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Forming Equivalence Classes I

• Classification Problem: try to predict the target      
feature based on various classificatory features. ==>      
Reliability versus discrimination

• Markov Assumption: Only the prior local context   
affects the next entry: (n-1)th Markov Model or n-
gram

• Size of the n-gram models versus number of     
parameters: we would like n to be large, but the 
number of parameters increases exponentially with n.

• There exist other ways to form equivalence classes of 
the history, but they require more complicated 
methods ==> will use n-grams here.

Statistical Estimators I: Overview

• Goal: To derive a good probability estimate for the 
target feature based on observed data

• Running Example: From n-gram data 
P(w1,..,wn) predict P(wn+1|w1,..,wn)

• Solutions we will look at:
– Maximum Likelihood Estimation
– Laplace’s, Lidstone’s and Jeffreys-Perks’ Laws
– Held Out Estimation
– Cross-Validation
– Good-Turing Estimation
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Statistical Estimators II: 
Maximum Likelihood Estimation

• PMLE(w1,..,wn)=C(w1,..,wn)/N, where C(w1,..,wn) is the 
frequency of n-gram w1,..,wn

• PMLE(wn|w1,..,wn-1)= C(w1,..,wn)/C(w1,..,wn-1)

• This estimate is called Maximum Likelihood Estimate
(MLE) because it is the choice of  parameters that 
gives the highest probability to the training corpus.

• MLE is usually unsuitable for NLP because of the 
sparseness of the data ==> Use a Discountingor 
Smoothingtechnique.

Example
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Statistical Estimators III: 
Smoothing Techniques: Laplace

• PLAP(w1,..,wn)=(C(w1,..,wn)+1)/(N+B), where        
C(w1,..,wn) is the frequency of n-gram w1,..,wn  and B  
is the number of bins training instances   are divided 
into. ==> Adding OneProcess

• The idea is to give a little bit of the probability space 
to unseen events.

• However, in NLP applications that are very sparse, 
Laplace’s Law actually gives far too much of the 
probability space to unseen events.



5

Example

Example
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Statistical Estimators IV: Smoothing 
Techniques:Lidstone and Jeffrey-Perks

• Since the adding one process may be adding too 
much, we can add a smaller value λ.

• PLID(w1,..,wn)=(C(w1,..,wn)+λ)/(N+Bλ), where      
C(w1,..,wn) is the frequency of n-gram w1,..,wn  and 
B  is the number of bins training instances   are 
divided into, and λ>0. ==> Lidstone’s Law

• If λ=1/2, Lidstone’s Law corresponds to the 
expectation of the likelihood and is called the 
Expected Likelihood Estimation(ELE) or the 
Jeffreys-PerksLaw. 

Statistical Estimators V, Robust Techniques: 
Held Out Estimation

• For each n-gram, w1,..,wn , we compute C1(w1,..,wn) 
and C2(w1,..,wn), the frequencies of w1,..,wn in 
training and held out data, respectively.

• Let Nr be the number of bigrams with frequency r in 
the training text.

• Let Tr be the total number of times that all n-grams 
that appeared r times in the training text appeared in 
the held out data.

• An estimate for the probability of one of these n-
gram is: Pho(w1,..,wn)= Tr/(NrN)  
where C(w1,..,wn)= r.



7

Statistical Estimators VI: Robust Techniques: 
Cross-Validation

• Held Out estimation is useful if there is a lot of data 
available. If not, it is useful to use each part of the 
data both as training data and held out data.

• Deleted Estimation[Jelinek & Mercer, 1985]: Let 
Nr

a be the number of n-grams occurring r times in 
the ath part of the training data and Tr

ab be the total 
occurrences of those bigrams from part a in part b. 
Pdel(w1,..,wn)= (Tr

ab+Tr
ba)/N(Nr

a+ Nr
b) where 

C(w1,..,wn) = r.
• Leave-One-Out[Ney et al., 1997]

Statistical Estimators VI: Related 
Approach: Good-Turing Estimator

• If C(w1,..,wn) = r > 0, PGT(w1,..,wn) = r*/N where 
r*=(r+1)Nr/r  

• If C(w1,..,wn) = 0, PGT(w1,..,wn) ≈ N1/(N0N)
• Simple Good-Turing[Gale & Sampson, 1995]: 
• Use a smoothed estimate of the expectation of Nr.
• As a smoothing curve, use Nr=arb (with b < -1) and 

estimate a and b by simple linear regression on the 
logarithmic form of this equation:            
log Nr= log a + b log r, if r is large. 

• For low values of r, use the measured Nr directly.
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Good-Turing Smoothing (example)

• In the Brown Corpus, suppose for n =2, 

N2=4000 N3=2400.

• Then 2* = 3 (2400/4000) = 1.8

• PGT (jungle|green) = 3*/207 = 2.2/207 = 0.01062

Good-Turing Smoothing (example)
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Combining Estimators I: Overview

• If we have several models of how the history 
predicts what comes next, then we might wish to 
combine them in the hope of producing an even 
better model.

• Combination Methods Considered:

– Simple Linear Interpolation

– Katz’s Backing Off

– General Linear Interpolation

Combining Estimators II: 
Simple Linear Interpolation

• One way of solving the sparseness in a trigram model 
is to mix that model with bigram and unigram models 
that suffer less from data sparseness.

• This can be done by linear interpolation (also called 
finite mixture models). When the functions being 
interpolated all use a subset of the conditioning 
information of the most discriminating function, this 
method is referred to as deleted interpolation.

• Pli(wn|wn-2,wn-1)=λ1P1(wn)+ λ2P2(wn|wn-1)+ 
λ3P3(wn|wn-1,wn-2) where 0≤λi ≤1 and Σi λi =1

• The weights can be set automatically using the 
Expectation-Maximization (EM) algorithm.
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Combining Estimators II:
Katz’s Backing Off Model

• In back-off models, different models are consulted in 
order depending on their specificity.

• If the n-gram of concern has appeared more than k 
times, then an n-gram estimate is used but an amount 
of the MLE estimate gets discounted (it is reserved 
for unseen n-grams).

• If the n-gram occurred k times or less, then we will 
use an estimate from a shorter n-gram (back-off 
probability), normalized by the amount of probability 
remaining and the amount of data covered by this 
estimate.

• The process continues recursively.

Katz’s Backing Off Model (3-grams)
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Katz’s Backing Off Model (2-grams)

Combining Estimators II: 
General Linear Interpolation

• In simple linear interpolation, the weights 
were just a single number, but one can define 
a more general and powerful model where the 
weights are a function of the history.

• For k probability functions Pk, the general 
form for a linear interpolation model is: 
Pli(w|h)= Σi

k λi(h) Pi(w|h)   where 0≤λi(h)≤1 and   
Σi λi(h) =1


