Statistical NLP: Lecture 8

Statistical Inference:
n-gram Models over Sparse Data
(Ch 6)

Overview

« Statistical Inference consists of taking some data
(generated in accordance with some unknown
probability distribution) and then making some
inferences about this distribution.

* There are three issues to consider:
— Dividing the training data into equivalence classe

— Finding a good statistical estimator for each
equivalence class

— Combining multiple estimators
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Forming Equivalence Classes |

Classification Problemtry to predict the target
feature based on various classificatory features. =
Reliability versus discrimination

Markov Assumption Only the prior local context
affects the next entry: (n-1)th Markov Model or n-
gram

Size of the n-gram models versus number of
parameters: we would like n to be large, but the
number of parameters increases exponentially with r

There exist other ways to form equivalence clas$es
the history, but they require more complicated
methods ==> will use n-grams here.

Statistical Estimators |I; Overview

* Goal To derive a good probability estimate for the
target feature based on observed data

* Running Example From n-gram data
P(wWy,..,w,) predict P(W,,|w;,..,w,)
» Solutions we will look at
— Maximum Likelihood Estimation
— Laplace’s, Lidstone’s and Jeffreys-Perks’ Laws
— Held Out Estimation
— Cross-Validation
— Good-Turing Estimation




Statistical Estimators Il:
Maximum Likelihood Estimation

Pue(Wy,...W)=C(w,,..,.w,)/N, where C(w,..,w,) is the
frequency of n-gram w..,w,
PuLe (W, Wy,.., W)= C(Wy,.., W) /C(Wy,.., W, q)

This estimate is calledlaximum Likelihood Estimate
(MLE) because it is the choice of parameters that
gives the highest probability to the training capu

MLE is usually unsuitable for NLP because of the
sparseness of the data ==> UdRiscountingor

Smoothingtechnique.
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Table 4: A fragment of an ARFA-format bigram languags model produced by the SLM

Toolkit.
\datal -4.T3E <g> zinc
ngran 1*35770 =4.7315 <s» zondsrvan
ngran 2=444585 -5.3247 <> zorinskr
=& 3076 <g> Zzez
I 1= grang =1.80960 a <fs> I
-6, 1177 <UNE>  0.0000 -2.71%8 2 a
~30. 0000 /s> =4. 7988 -3.73E% a acre
~35.0000 <s> =0.6203 -4.4540 3
-1.58684 a =0.5293

\2=grams:

-0.0000 /5% cs>
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-4.0024 ¢s> abc
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Statistical Estimators IlI:
Smoothing Techniguesaplace

PLap(Wy,..,W)=(C(Wy,..,w,)+1)/(N+B), where
C(wy,..,w,) is the frequency of n-gram;w.,w;,, and B
Is the number of bins training instances areddidi
into. ==>Adding OneProcess

The idea is to give a little bit of the probabilgpace
to unseen events.

However, in NLP applications that are very sparse,
Laplace’s Law actually gives far too much of the
probability space to unseen events.
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Statistical Estimators IV: Smoothing

Technigued:idstone and Jeffrey-Perks

« Since the adding one process may be adding too
much, we can add a smaller value

* P p(Wq,..,Ww)=(C(wy,..,w,)+A)/(N+BA), where
C(wy,..,w,) is the frequency of n-gram,w.,w;, and
B is the number of bins training instances are
divided into, and\>0. ==>Lidstone’s Law

« If A=1/2, Lidstone’s Law corresponds to the
expectation of the likelihood and is called the
Expected Likelihood EstimatiofELE) or the
Jeffreys-Perkd aw.

Statistical Estimators V, Robust Techniques:
Held Out Estimation

* For each n-gram, .,w,, we compute Gw,,..,w,)
and G(wy,..,w,), the frequencies of y.,w, in
training and held out data, respectively.

* Let N, be the number of bigrams with frequency r in
the training text.

* Let T, be the total number of times that all n-grams
that appeared r times in the training text appesred
the held out data.

* An estimate for the probability of one of these n-
gramis: Ry(wy,...w,)= T,/(N,N)
where C(w,..,W,)=r.




Statistical Estimators VI. Robust Techniques:
Cross-Validation

* Held Out estimation is useful if there is a lotata
available. If not, it is useful to use each parthaf
data both as training data and held out data.

» Deleted EstimatiorjJelinek & Mercer, 1985]: Let
N,2 be the number of n-grams occurring r times in
the & part of the training data ang?fbe the total
occurrences of those bigrams from part a in part b.
Pdel(w,..,w,)= (T,2TP3a/N(N,2+ N.°) where
C(wy,..,.Ww) =T.

e Leave-One-OufNey et al., 1997]

Statistical Estimators VI: Related
Approach:Good-Turing Estimator

o If Cwy,..,.w)) =r>0, R(Wy,..,w,) = r*/N where
r*=(r+1)N/r

o If C(wy,..,W,)) = 0, Ryr(wy,..,w,) = N;/(NgN)

« Simple Good-TuringGale & Sampson, 1995]:

» Use a smoothed estimate of the expectation,.of N

+ As a smoothing curve, usear (with b < -1) and
estimate a and b by simple linear regression on the
logarithmic form of this equation:

log N=Iloga+blogr,ifris large.
« For low values of r, use the measuregdiixectly.




Good-Turing Smoothing (example)

* In the Brown Corpus, suppose for2,
N,=4000N,;=2400.

e Then 2* = 3 (2400/4000) = 1.8

* Psr(junglejgreen) = 3*/207 = 2.2/207 = 0.01062

Good-Turing Smoothing (example)

B Probability mass left over for vnseen events

= 1= % N{r*/N)
r=1

= 1-1/NY (r+1)Nu

r=1

= 1—1/N({N— N} (because 3 rN, =N)
r=1

= M/N
Divide this among Ny = '™ — ZN,- kinds of unseen events
r=1
C{W ) =7 =0, then
Prr( N 0N = P IN
T F1a) = e JN=r"[1

B Pgrilantern | graen) = 0" /207 = Ny /207N




Combining Estimators |: Overview

* If we have several models of how the history
predicts what comes next, then we might wish to
combine them in the hope of producing an even
better model.

» Combination Methods Considered:
— Simple Linear Interpolation
— Katz’s Backing Off
— General Linear Interpolation

Combining Estimators II:
Simple Linear Interpolation

One way of solving the sparseness in a trigram nog
Is to mix that model with bigram and unigram mode
that suffer less from data sparseness.

This can be done Hinear interpolation (also called
finite mixture model3. When the functions being
interpolated all use a subset of the conditioning
information of the most discriminating functionigh
method is referred to a@eleted interpolation

I:>Ii (WnIWn-Z’Wn-l)z)\lpl(Wn)-i' )\ZPZ(Wnlwn-l)+
A3Ps (W, W1, W, ) where &A; <1 andz; A; =1

The weights can be set automatically using the
Expectation-Maximization (EM) algorithm.




Combining Estimators II:
Katz's Backing Off Model

* In back-off models, different models are consulted
order depending on their specificity.

* If the n-gram of concern has appeared more than |
times, then an n-gram estimate is used but an amc
of the MLE estimate gets discounted (it is reserveg
for unseen n-grams).

* If the n-gram occurred k times or less, then we wil
use an estimate from a shorter n-gram (back-off
probability), normalized by the amount of probaiili
remaining and the amount of data covered by this
estimate.

* The process continues recursively.
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Katz’s Backing Off Model (3-grams)

Unseen bigrams -

/
-~ Unseen umgrams

Seen trigrams Seen bigrams Seen unigrams

~_ S ~_

Smoothed probability space Smoothed probability space Smoothed probability space
for trigrams ww, for bigrams w,__ for unigrams __

P(ws [wywy) ifc(ms) >k
Ppo(ws|wiw2) = ¢ o(wiwy)Ps(ws |wy) ifC(W3) <kand C(Wh3) >k
o(w2)Ps(ws) otherwise
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Katz’'s Backing Off Model (2-grams)

m For bigrams:
Pg(h'z |11'1j ifC(‘H'L‘H"_J) >k
o(wy)Pg(n2) otherwise

Ppo(wa|wy) = {
> Ps(wy|wy)

waClwyws ) =0

1-— Y Ps(w)

w3:Clwina) >0

o(wy) =

Combining Estimators II:
General Linear Interpolation

* In simple linear interpolation, the weights

were just a single number, but one can defin
a more general and powerful model where th

weights are a function of the history.

» For k probability functions Pk, the general
form for a linear interpolation model is:
P, (w|h)=Zk A,(h) P(w|h) where 8\,(h)<1 and
> h(h) =1

c

11



