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Statistical NLP: Lecture 12

Part-of-Speech Tagging

(Ch 10)

Part-of-speech tagging

• Part-of-speech tagging, PoS tagging: Assigning a 
part-of-speech category to each word-token in a text. 

The red ducks can run down steep banks.
Det – – – – – – –
– noun noun noun noun noun – noun
– – verb verb verb verb verb verb
– adj – – – adj adj –
– – – – – prep – –

Tagsets

• Need to agree on exactly what the possible 
PoS tags are: the tagset.

• Simple part-of-speech categories are not 
sufficient to describe language.

• Make as many helpful distinctions as 
possible.

• Major English tagsets: Penn (45 tags); 
Brown (87 tags); Lancaster: CLAWS series 
of tagsets, C5, and C7 (for BNC, 146 tags).

The Penn tagset (for words)

CC   coordinating conjunction     and 
CD   cardinal number                  1, third 
DT   determiner                           the 
EX   existential there                   there is 
FW  foreign word                       d'hoevre
IN    preposition/subordinating conjunction    in, of, like
JJ     adjective                             green 
JJR  adjective, comparative        greener 
JJS   adjective, superlative          greenest 
LS    list marker                          1) 
MD  modal                                  could, will 

NN     noun, singular or mass        table 
NNS   noun plural                         tables 
NNP   proper noun, singular         John 
NNPS proper noun, plural            Vikings
PDT   predeterminer both the boys 
POS   possessive ending               friend's
PRP   personal pronoun                I, he, it 
PRP$ possessive pronoun            my, his 
RB     adverb        however, usually, naturally, here, good 
RBR  adverb, comparative           better
RBS  adverb, superlative              best 

RP    particle                                          give up 
TO     to to go, to him 
UH     interjection                                  uhhuhhuhh
VB     verb, base form                            take 
VBD  verb, past tense                            took 
VBG  verb, gerund/present participle    taking 
VBN  verb, past participle                     taken 
VBP   verb, sing. present, non-3d          take 
VBZ   verb, 3rd person sing. present     takes 
WDT  wh-determiner                            which 
WP     wh-pronoun                                who, what
WP$  possessive wh-pronoun              whose 
WRB  wh-abverb where, when
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Penn tagset (for punctuation)

#   Pound sign
$   Dollar sign
.   Sentence-final punctuation
,   Comma 
:   Colon, semi-colon, ellipsis
(   Left bracket character
)   Right bracket character

Straight double quote
‘ Left open single quote
“ Left open double quote
’ Right close single quote
” Right close double quote

Lexical resources for tagging

• Possible starting points:
– Lexicon giving possible PoS’s for each word. 
– Hand-tagged corpus. 

• Lexicon could include a priori frequency 
information.

What counts as good?

• Dumb and easy tagging method: Give each 
word its most frequent tag.

• Accuracy of this method: about 90%
• But we want 99% or better.

Rule-based tagging

• Dependencies between tags: i.e., DT + VB 
not allowed; agreement subject verb.

• Rule-based tagging: Use set of rules for 
what tags can and can’t follow or precede 
other tags. 
– “If this word’s possible tags include both verb 

tags and non-verb tags, and the previous word 
is a preposition, then eliminate the verb tags 
from consideration.”

– … pieces of clean rag …
• Very specific rules; problems with long-

distance dependencies. 

Tag bigrams

• Choose the most likely tag for the current word
given the previous word and tag 

ti = argmaxj P(tj | t i-1, wi) = 
= argmaxj P(tj | t i-1)P(wi | tj)

• Get the probabilities from a tagged corpus. 
• For all words wk and tags tk,  

P(tk | tj) = C(tj, tk) / C(tj)
P(wk | tj) = C(wk,tj) / C(tj)

Markov models for tagging

• Markov model: Tags are states; words are output. 
– Find most probable sequence of states (tags) for 

observed output (sentence to be tagged). 
• Parameters of the model determined from pre-

tagged corpus—same as for bigram model. 
– Train as visible model. 

• Use Viterbi algorithm to find most likely tag 
sequence. 
– Use as hidden model. 
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Unknown words

• In training: word is in lexicon but not in 
training data, or vice versa.

• In use: word is completely unknown to 
tagger.

• Heuristics: Unknown capitalized word 
likely to be NNP; -ing likely to indicate 
VBG; etc.

• Smoothing for possible events not in 
training data.

Completely hidden models

• Training without a tagged corpus. 
– For other genres or languages.

• Use Baum-Welch algorithm to estimate 
parameters.

• Various possible starting guesses for tag 
probabilities.

Transformation-based-learning taggers I

• Brill tagger: Starts off with dumb method; 
then applies ordered sequence of patches to 
correct the errors.

• Patches are transformations learned from 
correctly-tagged corpus.

• Pattern–action rules: match present tag and 
context, change present tag.
– Change NN to VB if previous tag is TO. 
– Change JJ to NNP if next tag is NNP. 

Transformation-based-learning taggers II

• Training method:
– Get count of each error type for present corpus 

by comparing with training corpus.
– Try all applicable transformations; for each, 

count number of errors removed and errors 
added.

– Add the transformation that made the most 
improvement to the sequence of patches.

• Repeat until no more improvement.

Transformation-based-learning taggers III -
Improvements

• Allow lexicalized transformations.
– Change IN to RB if the second word to the right is as. 
– Change VBP to VB if one of the previous two words is n’t.

• Learn best treatment of unknown words.
– Start as NNP or NN. Change NN to NNS if last character is s.
– Change anything to JJ if adding ly would make a known word.
– Change NN to VB if the word would ever appears to the left.

• Results: Over 97% accuracy; lexicalized 
transformations don’t help much; resistant 
to overfitting. 

Applications of tagging

• Identifying features in text for 
classification. 

• First step in finding the meaning of a word. 
• First step in partial or complete parsing. 
• Noun-phrase and named-entity 

identification. 
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Noun phrases and named entities

• Non-recursive noun phrases, including 
named entities. Mark the NPs:
– The dogs on the other ends of these locking 

bars are thus forced into notches in other 
tappets.

– General Electric Co. agreed to a minority 
role in a mobile communications joint venture 
with Telefon AB L.M. Ericsson of Sweden.

Noun-phrase detection

• Detect NPs by looking at sequences of tags.
• Rule for simple NPs: [DT] + JJ* + NN | NNS 
• But in practice, it’s more complex: proper

names, sequences of nouns: 
General/NNP Electric/NNP Co./NNP 
agreed/VBD to/TO a/DT minority/NN
role/NN in/IN a/DT mobile/JJ
communications/NNS joint/JJ venture/NN
with/IN Telefon/NNP AB/NNP L.M./NNP
Ericsson/NNP of/IN Sweden/NNP. 

• So use HMM, learn from tagged corpus with
NPs marked. 

HMMs for noun-phrase detection

• Noun-phrase detection as scanning text, 
inserting markers <NP> and </NP>

• HMM for this: 
– Five states: <NP>, </NP>, </NP> <NP>, in-NP, 

not-in-NP
– Output is pairs (bigrams) of tags: e.g., DT-NNS, 

NNS-IN, IN-DT,  DT-JJ,
• To find noun phrases in a sentence, represent 

it as sequence of tag bigrams, and use Viterbi
algorithm to find sequence of states that HMM 
went through to generate it. 

• Train the HMM by Baum–Welch algorithm. 


