
1

Statistical NLP: Lecture 12

Part-of-Speech Tagging

(Ch 10)

Part-of-speech tagging

• Part-of-speech tagging, PoS tagging: Assigning a
part-of-speech category to each word-token in a text.

The red ducks can run down steep banks.
Det – – – – – – –
– noun noun noun noun noun – noun
– – verb verb verb verb verb verb
– adj – – – adj adj –
– – – – – prep – –

Tagsets

• Need to agree on exactly what the possible
PoS tags are: the tagset.

• Simple part-of-speech categories are not
sufficient to describe language.

• Make as many helpful distinctions as
possible.

• Major English tagsets: Penn (45 tags);
Brown (87 tags); Lancaster: CLAWS series
of tagsets, C5, and C7 (for BNC, 146 tags).

The Penn tagset (for words)

CC coordinating conjunction and
CD cardinal number 1, third
DT determiner the
EX existential there there is
FW foreign word d'hoevre
IN preposition/subordinating conjunction in, of, like
JJ adjective green
JJR adjective, comparative greener
JJS adjective, superlative greenest
LS list marker 1)
MD modal could, will

NN noun, singular or mass table
NNS noun plural tables
NNP proper noun, singular John
NNPS proper noun, plural Vikings
PDT predeterminer both the boys
POS possessive ending friend's
PRP personal pronoun I, he, it
PRP$ possessive pronoun my, his
RB adverb however, usually, naturally, here, good
RBR adverb, comparative better
RBS adverb, superlative best

RP particle give up
TO to to go, to him
UH interjection uhhuhhuhh
VB verb, base form take
VBD verb, past tense took
VBG verb, gerund/present participle taking
VBN verb, past participle taken
VBP verb, sing. present, non-3d take
VBZ verb, 3rd person sing. present takes
WDT wh-determiner which
WP wh-pronoun who, what
WP$ possessive wh-pronoun whose
WRB wh-abverb where, when

2

Penn tagset (for punctuation)

Pound sign
$ Dollar sign
. Sentence-final punctuation
, Comma
: Colon, semi-colon, ellipsis
(Left bracket character
) Right bracket character

Straight double quote
‘ Left open single quote
“ Left open double quote
’ Right close single quote
” Right close double quote

Lexical resources for tagging

• Possible starting points:
– Lexicon giving possible PoS’s for each word.
– Hand-tagged corpus.

• Lexicon could include a priori frequency
information.

What counts as good?

• Dumb and easy tagging method: Give each
word its most frequent tag.

• Accuracy of this method: about 90%
• But we want 99% or better.

Rule-based tagging

• Dependencies between tags: i.e., DT + VB
not allowed; agreement subject verb.

• Rule-based tagging: Use set of rules for
what tags can and can’t follow or precede
other tags.
– “If this word’s possible tags include both verb

tags and non-verb tags, and the previous word
is a preposition, then eliminate the verb tags
from consideration.”

– … pieces of clean rag …
• Very specific rules; problems with long-

distance dependencies.

Tag bigrams

• Choose the most likely tag for the current word
given the previous word and tag

ti = argmaxj P(tj | t i-1, wi) =
= argmaxj P(tj | t i-1)P(wi | tj)

• Get the probabilities from a tagged corpus.
• For all words wk and tags tk,

P(tk | tj) = C(tj, tk) / C(tj)
P(wk | tj) = C(wk,tj) / C(tj)

Markov models for tagging

• Markov model: Tags are states; words are output.
– Find most probable sequence of states (tags) for

observed output (sentence to be tagged).
• Parameters of the model determined from pre-

tagged corpus—same as for bigram model.
– Train as visible model.

• Use Viterbi algorithm to find most likely tag
sequence.
– Use as hidden model.

3

Unknown words

• In training: word is in lexicon but not in
training data, or vice versa.

• In use: word is completely unknown to
tagger.

• Heuristics: Unknown capitalized word
likely to be NNP; -ing likely to indicate
VBG; etc.

• Smoothing for possible events not in
training data.

Completely hidden models

• Training without a tagged corpus.
– For other genres or languages.

• Use Baum-Welch algorithm to estimate
parameters.

• Various possible starting guesses for tag
probabilities.

Transformation-based-learning taggers I

• Brill tagger: Starts off with dumb method;
then applies ordered sequence of patches to
correct the errors.

• Patches are transformations learned from
correctly-tagged corpus.

• Pattern–action rules: match present tag and
context, change present tag.
– Change NN to VB if previous tag is TO.
– Change JJ to NNP if next tag is NNP.

Transformation-based-learning taggers II

• Training method:
– Get count of each error type for present corpus

by comparing with training corpus.
– Try all applicable transformations; for each,

count number of errors removed and errors
added.

– Add the transformation that made the most
improvement to the sequence of patches.

• Repeat until no more improvement.

Transformation-based-learning taggers III -
Improvements

• Allow lexicalized transformations.
– Change IN to RB if the second word to the right is as.
– Change VBP to VB if one of the previous two words is n’t.

• Learn best treatment of unknown words.
– Start as NNP or NN. Change NN to NNS if last character is s.
– Change anything to JJ if adding ly would make a known word.
– Change NN to VB if the word would ever appears to the left.

• Results: Over 97% accuracy; lexicalized
transformations don’t help much; resistant
to overfitting.

Applications of tagging

• Identifying features in text for
classification.

• First step in finding the meaning of a word.
• First step in partial or complete parsing.
• Noun-phrase and named-entity

identification.

4

Noun phrases and named entities

• Non-recursive noun phrases, including
named entities. Mark the NPs:
– The dogs on the other ends of these locking

bars are thus forced into notches in other
tappets.

– General Electric Co. agreed to a minority
role in a mobile communications joint venture
with Telefon AB L.M. Ericsson of Sweden.

Noun-phrase detection

• Detect NPs by looking at sequences of tags.
• Rule for simple NPs: [DT] + JJ* + NN | NNS
• But in practice, it’s more complex: proper

names, sequences of nouns:
General/NNP Electric/NNP Co./NNP
agreed/VBD to/TO a/DT minority/NN
role/NN in/IN a/DT mobile/JJ
communications/NNS joint/JJ venture/NN
with/IN Telefon/NNP AB/NNP L.M./NNP
Ericsson/NNP of/IN Sweden/NNP.

• So use HMM, learn from tagged corpus with
NPs marked.

HMMs for noun-phrase detection

• Noun-phrase detection as scanning text,
inserting markers <NP> and </NP>

• HMM for this:
– Five states: <NP>, </NP>, </NP> <NP>, in-NP,

not-in-NP
– Output is pairs (bigrams) of tags: e.g., DT-NNS,

NNS-IN, IN-DT, DT-JJ,
• To find noun phrases in a sentence, represent

it as sequence of tag bigrams, and use Viterbi
algorithm to find sequence of states that HMM
went through to generate it.

• Train the HMM by Baum–Welch algorithm.

