
1

CSI1102:
Introduction to Software Design

Chapter 5:
Enhancing Classes

2

Learning objectives:
Enhancing Classes

Understand what the following entails
Different object references and aliases
Passing objects (references) as parameters
The static modifier: static variables and methods
Wrapper classes for primitive data types
Nested and inner classes
Interfaces for software design
GUI components, dialog boxes, events, and listeners

3

More about References

Recall (from Chapter 2) that an object reference
variable holds the memory address of an object

Rather than dealing with arbitrary addresses, we often
depict a reference graphically as a “pointer” to an
object

ChessPiece bishop1 = new ChessPiece();

bishop1

4

The null Reference
An object reference variable that does not currently point
to an object is called a null reference
An attempt to follow a null reference causes a
NullPointerException to be thrown
For example

String name;

declares an object reference variable, but does not create
a String object for it to refer to.
Therefore, the variable name contains a null reference

5

The this Reference
The this reference allows an object to refer to itself.
Inside a method, the this reference can be used to
refer to the currently executing object
For example,

if(this.position == piece2.position)
result = false;

clarifies which position is being referenced
The this reference refers to the object through
which the method containing the code was
invoked 6

The this reference
The this reference can also distinguish the parameters of
a constructor from the corresponding instance variables
with the same names
Avoid: Not very readable!!!!

Public Account (Sring name, long acctNumber,
double balance)

{
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

2

7

Assignments Revisited

The act of assignment takes a copy of a value and
stores it in a variable

For primitive types: num2 = num1;

Before

num1

5

num2

12

After

num1

5

num2

5

8

Object Reference Assignment

For object references, assignment copies the memory
location:

bishop2 = bishop1;
Before

bishop1 bishop2

After

bishop1 bishop2

9

What are aliases?

Two or more references that refer to the same object
are called aliases of each other

One object (and its data) can be accessed using
different reference variables

Aliases can be useful, but should be managed
carefully

Changing the object’s state (its variables) through one
reference changes it for all of its aliases

10

Testing Objects for Equality
The == operator compares object references for equality,
returning true if the references are aliases of each other
A method called equals is defined for all objects, but
unless we redefine it when we write a class, it has the
same semantics as the == operator

bishop1.equals(bishop2);

returns true if both references refer to the same object
We can redefine the equals method to return true
under whatever conditions we think are appropriate

11

Garbage Collection in Java

When an object no longer has any valid references to
it, it can no longer be accessed by the program

It is useless, and is called garbage

Java performs automatic garbage collection
periodically, returning an object's memory to the
system for future use

12

Passing Objects as Parameters
Parameters in a Java method are passed by value

This means that a copy of the actual parameter (the
value passed in) is stored into the formal parameter (in
the method header)

Passing parameters is essentially like an assignment
statement

When an object is passed to a method, the actual
parameter and the formal parameter become aliases of
each other

3

13

Passing Objects to Methods
What you do using a parameter inside a method may
or may not have a permanent effect (outside the
method)

ParameterPassing.java (page 277)
ParameterTester.java (page 279)
Num.java (page 281)

Note the difference between changing the reference
and changing the object that the reference points to

14

ParameterPassing.java
public class ParameterPassing

{
// sets up 3 variables and illustrate parameter passing
public static void main (String [] args)

{
ParameterTester tester = new ParameterTester();

int a1 = 111;
Num a2 = new Num (222);
Num a3 = new Num (333);

System.out.println("Before ChangeValues: ");
System.out.println("a1 a2 a3: " + a1 + " " + a2 + " " + a3);

tester.changeValues(a1, a2, a3);

System.out.println("After ChangeValues: ");
System.out.println("a1 a2 a3: " + a1 + " " + a2 + " " + a3);

}
}

15

ParameterTester.java
public class ParameterTester

{
public void changeValues(int f1, Num f2, Num f3)

{
System.out.println("Before changing the values: ");
System.out.println("f1 f2 f3: " + f1 + " " + f2 + " " + f3);

f1 = 999;
f2.setValue(888);
f3 = new Num(777);

System.out.println("After changing the values: ");
System.out.println("f1 f2 f3: " + f1 + " " + f2 + " " + f3);

}
}

16

Num.java
public class Num
{

private int value;

// Constructor
public Num (int update)
{

value = update;
}

// set up a value
public void setValue(int update)
{

value = update;
}

// toString
public String toString()
{

return value + " ";
} }

17

The results:
Parameter passing
Before ChangeValues:
a1 a2 a3: 111 222 333

Before changing the values:
f1 f2 f3: 111 222 333

After changing the values:
f1 f2 f3: 999 888 777

After ChangeValues:
a1 a2 a3: 111 888 333

18

What are Static Variables?

Associated with the class rather than with an object
Static variables sometimes are called class variables
Normally, each object has its own data space
If a variable is declared as static, only one copy of the
variable exists

private static float price;

Memory space for a static variable is created when the
class in which it is declared is loaded
All objects created from the class share access to the static
variable

Changing the value of a static variable in one object
changes it for all others

4

19

More about Static Methods

Static methods (also called class methods) can be invoked
through the class name rather than through a particular
object

For example, the methods of the Math class are static
To make a method static, we apply the static modifier
to the method definition
Static methods cannot reference instance variables,
because instance variables don't exist until an object exists

public static int abs(int num);

20

More about Static Methods:
An example

public static int triple (int num)
{

int result;
result = num * 3;
return result;

}

class Helperclass Helper

Because it is static, the method can be invoked as:Because it is static, the method can be invoked as:

value = Helper.triple (5);

21

Static Methods and Variables:
CountInstances.java

public class CountInstances
{

public static void main (String[] args)
{

Slogan obj;

obj = new Slogan("Hello world");
obj = new Slogan("Talk is cheap.");
obj = new Slogan("Don't worry, be happy.");

System.out.println("Slogans created: " + Slogan.getCount());
}

}

22

Static Methods and Variables:
Slogan.java
public class Slogan
{

private String phrase;
public static int count = 0;

// the constructor
public Slogan (String str)
{

phrase = str;
count++;

}

// returns the number of objects of this class created
public static int getCount()
{

return count;
}

}

23

What are Wrapper Classes?
A wrapper class represents a particular primitive type
For example

Integer ageObj = new Integer (20);

uses the Integer class to create an object which effectively
represents the integer 20 as an object
Why do we need this?

This is useful when a program requires an object instead
of a primitive type

There is a wrapper class in the Java.lang package for each
primitive type, see Figure 5.4
Primitive type (PT) Wrapper Class
byte Byte
int Integer
char Character, etc. for other PTs 24

Some methods of the Integer
class: See p.287

Integer (int value) // constructor: create a new Integer object

byte byteValue ()
double doubleValue ()
// Return the value of this integer as the corresponding PT

static int parseInt (String str)
// returns the int corresponding to the value stores in the string

static String toBinaryString (int num)
// returns a string representation of the integer in the
corresponding base

5

25

Java I/O
Java I/O is accomplished using objects that
represent streams of data

A stream is an ordered sequence of bytes

The System.out object represents a standard
output stream, which defaults to the monitor screen

Reading keyboard input is more complicated… more
about it in Chapter 8

26

Keyboard Input Revisited
Input can be read from the keyboard without using the Keyboard
class and Wrapper Classes
See Wages2.java (page 289): More in Chapter 8

import java.io.*;

…
BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));

…
String name = in.readLine();

int hours = Integer.parseInt(in.readLine());

27

Nested Classes

In addition to containing
data and methods, a class can contain anothernested
class
A nested class has access to the variables and
methods of the enclosing class, even if they are
declared private
This is a special relationship and should be used with
care

Enclosing Class

Nested
Class

28

Nested Classes
A nested class produces a separate bytecode file
If a nested class called Inside is declared in an outer
class called Outside, two bytecode files will be
produced:

Outside.class
Outside$Inside.class

Nested classes can be declared as static, in which
case they cannot refer to instance variables or
methods

29

Inner Classes:
A Non-static nested class
An inner class is associated with each instance of the
enclosing class & can exist only within an instance of
an enclosing class

public class TestInner
{

// create and manipulate an outer object
public static void main (String[] args)
{

Outer out = new Outer();

System.out.println(out);
out.changeMessage();
System.out.println(out);

}
}

30

Nested Classes:
Outer.java

public class Outer
{

private int num;
private Inner in1, in2;

public Outer()
{

num = 2365;
in1 = new Inner ("Hello");
in2 = new Inner ("Hello again");

}

public void changeMessage()
{

in1.message = "Eat desert first";
in2.message = "Another miracle";

}

public String toString()
{

return in1 + "\n" + in2;
} Continued…

6

31

Nested classes:
Outer.java

// The inner class
private class Inner
{

public String message;

public Inner (String str)
{

message = str;
}

public String toString()
{

num++;
return message + "\nOuter number = " + num;

}

}
}

32

Nested classes:
The output
Hello
Outer number = 2366
Hello again
Outer number = 2367
Eat desert first
Outer number = 2368
Another miracle
Outer number = 2369

33

Interfaces:
Useful for software design

public interface Doable
{

public void doThis();
public int doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved wordinterface is a reserved word
None of the methods in anNone of the methods in an

interface are giveninterface are given
a definition (body)a definition (body)

A semicolon immediatelyA semicolon immediately
follows each method headerfollows each method header

34

Interfaces
A Java interface is a collection of abstract methods and
constants
An abstract method is a method header without a method
body
An abstract method can be declared using the modifier
abstract, but because all methods in an interface are
abstract, usually it is left off
An interface is used to define a set of methods
formally that a class will implement

35

Interfaces: An example
public class CanDo implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is aimplements is a
reserved wordreserved word

Each method listedEach method listed
in Doable isin Doable is

given a definitiongiven a definition

36

More about Interfaces
An interface cannot be instantiated
Methods in an interface have public visibility by default
A class formally implements an interface by

stating so in the class header
providing implementations for each abstract method in the
interface

If a class asserts that it implements an interface, it must define all
methods in the interface or the compiler will produce errors.
In addition to, or instead of abstract methods, an interface can
contain constants

When a class implements an interface, it gains access to all its
constants

7

37

Interfaces
A class that implements an interface can implement other
methods as well
A class can implement multiple interfaces

class ManyThings implements interface 1,
interface2, interface3
{

// all methods of all interfaces
}

The interfaces are listed in the implements clause,
separated by commas
The class must implement all methods in all interfaces
listed in the header

38

More about Interfaces
The Java standard class library contains many helpful
interfaces
The Comparable interface contains an abstract method
called compareTo, which is used to compare two
objects
The String class implements Comparable which gives
us the ability to put strings in alphabetical order
The Iterator interface contains methods that allow the
user to move easily through a collection of objects

39

The Comparable Interface
The Comparable interface provides a common
mechanism for comparing one object to another

if (obj1.compareTo(obj2) < 0)
System.out.println (“obj1 is less than obj2”);

The result is negative is obj1 is less that obj2, 0 if they
are equal, and positive if obj1 is greater than obj2

40

The Iterator Interface
The Iterator interface provides a means of moving
through a collection of objects, one at a time

The hasNext method returns a boolean result (true if
there are items left to process)

The next method returns an object

The remove method removes the object most recently
returned by the next method

41

About GUIs and Dialog Boxes
(Much more in Chapter 9)

A Graphical User Interface (GUI) is created with at least
three kinds of objects

components
events
listeners

A GUI component defines a screen element to display
information or to allow the user to interact with the
program, including push buttons, text fields, etc.
The Swing package contains a class called JOptionPane
that simplifies the creation and use of basic dialog boxes

42

What is an Dialog Box?
A graphical component used to interact with the user,

A message dialog displays an output string
An input dialog presents a prompt and a single input
text field
A confirm dialog presents the user with a simple
“yes-or-no” question

8

43

About Events and Listeners

Generator

This object mayThis object may
generate an eventgenerate an event

Listener

This object waits for andThis object waits for and
responds to an eventresponds to an event

Event

When an event occurs, the generator callsWhen an event occurs, the generator calls
the appropriate method of the listener,the appropriate method of the listener,

passing an object that describes the eventpassing an object that describes the event 44

Listener Interfaces
We can create a listener object by writing a class that
implements a particular listener interface
For example, the MouseListener interface contains
methods that correspond to mouse events
After creating the listener, we add the listener to the
component that might generate the event to set up a
formal relationship between the generator and
listener
See PushCounter.java on p.305

45

An event listener:
PushCounter.java (an extract)
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class PushCounter extends JApplet
{

private int pushes;
…
public void init ()
{

pushes = 0;
push = new JButton(“PUSH ME!”);
push.AddActionListener(new ButtonListener());

…
}

PUSH ME!
46

Summary:
Enhancing Classes

Understand what the following entails
Different object references and aliases
Passing objects (references) as parameters
The static modifier: static variables and methods
Wrapper classes for primitive data types
Nested and inner classes
Interfaces for software design
GUI components, dialog boxes, events, and listeners

