CSl1102
Introduction to Software Design

Chapter 11:
Recursion

Chapter 11:

:.’ Recursion

= Recursion is a fundamental programming technique that
can provide elegant solutions to certain kinds of problems

= Learning objectives:
Learn to think in a recursive manner
Learn to program in a recursive manner

Understand the correct use of recursion versus
iteration

Understand the examples using recursion
Know about fractals

What is recursion:

3 Recursive Thinking

= Recursion is a programming technique in which a method
can call itself to solve a problem

= Before applying recursion to programming, it is best to
practice thinking recursively

= Consider the following list of numbers:
24, 88, 40, 37
= A list can be defined recursively as?

Recursive Definition of a List

= A list can be defined recursively as

A LIST is a: number
or a: number comma LIST

= Thatis, a LIST is defined to be a single number, or a
number followed by a comma followed by a LIST

= The concept of a LIST is used to define itself

Recursive Definitions

= The recursive part of the LIST definition is used several
times, ultimately terminating with the non-recursive part:

number comma LIST

24 B 88, 40, 37
number comma LIST
88 N 40, 37
number comma LIST
40 N 37
number

37

Avoiding Infinite Recursion:
The Base Case

All recursive definitions must have a base case, i.e. the
non-recursive part

= If they don't, there is no way to terminate the recursive
path

= The code of a recursive method must be structured to
handle both the base case and the recursive case

A definition without a non-recursive part causes /nfinite
recursion

= What is the base case in a List?




Recursive Definitions of

3 Mathematical equations

= N!, for any positive integer N, is defined to be the product
of all integers between 1 and N inclusive

= This definition can be expressed recursively as:

11!
Nt

= 1

= N * (N-1)!

= The concept of the factorial is defined in terms of another
factorial until the base case of 1! is reached

Recursive Definitions:

:.’ N!
. D

5 * 41
4 * 31 6]
3 * 21
2 * 11 >
1

Recursive Programming:

3 Another example

= Consider the problem of computing the sum of all the
numbers between 1 and any positive integer N,
inclusive

= This problem can be expressed recursively as:

N N1 N2
> = N + > = N+ (N-D) + >
i=1 i=1 i=1
= _...=N+ (N-1) + (N-2) + .. +2+1

Recursive Programming:
Calculating the sum

public int sum (int num)
{
int result;
if (num == 1)
result = 1;
else

result = num + sum (num - 1);

return result;

Recursive Programming:
Program Execution

- result = 6
main | <ttt

result = 3

result = 1

’ Recursion vs. lteration

= Just because we can use recursion to solve a problem,
doesn't mean we should

= For example, the sum (or the product) of the numbers

between 1 and any positive integer N can be calculated
with a for loop

= You must be able to determine when recursion is the
correct technique to use




Indirect Recursion

= A method invoking itself is considered to be direct
recursion

= A method could invoke another method, which invokes
another, etc., until eventually the original method is
invoked again

= For example, method m1 could invoke m2, which invokes
m3, which in turn invokes m1 again until a base case is
reached

= This is called /ndirect recursion, and requires all the same
care as direct recursion 3

’ Indirect Recursion

An example of recursion:

3 Maze Traversal

We can use recursion to find a path through a maze; a path
can be found from any location if a path can be found from
any of the location’s neighboring locations

At each location we encounter, we mark the location as
“visited” and we attempt to find a path from that location’s
“unvisited” neighbors

Recursion keeps track of the path through the maze &
L

The base cases are an prohibited move or arrival
at the final destination ‘

Maze Traversal:
Maze Grid and Output

= The output
The maze was successfully traversed!

7770110001111
3077707771001
0000707070300
7770777070333
7070000773003
7077777703333
7000000000000
TT7TTTTT7TTT7TT7T777

= The Grid

1110110001111
1011101111001
0000101010100
1110111010111
1010000111001
1011111101111
1000000000000
1111111111111

Maze Traversal:
MazeSearch.java

public class MazeSearch
public static void main (String[] args)
Maze labyrinth = new Maze();
System.out.printin (labyrinth);
if (labyrinth.traverse (0, 0))
e|SSeystem.ounprintln ("The maze was successfully traversed!");

System.out.printin ("There is no possible path.");

System.out.printin (labyrinth);

Maze Traversal:
Maze.java

public class Maze

private final int TRIED = 3;
private final int PATH = 7;

private int[][] grid = { {1,1,1,0,1,1,0,0,0,1,1,1,1

Continued...




Maze Traversal:
Maze.java (cont.)

public boolean traverse (int row, int column)

boolean done = false;
if (valid (row, column))
grid[row][column] = TRIED; // this cell has been tried

if (row == grid.length-1 && column == grid[0].length-1)
one = true; // the maze is solved

ilse
done = traverse (row+1, column); // down
if é'done
i (one = traverse (row, column+1); // right
if (0

done = traverse (row-1, column); // up
if
éone = traverse (row, column-1); // left
if (done) /7 this Iocatlon |s part of the final path
grid[row][column] =

return done; } Continued...

Maze Traversal:
Maze.java (cont.)

//-
// Determines if a specific location is valid.

private boolean valid (int row, int column)

boolean result = false;

// check if cell is in the bounds of the matrix

if (row >= 0 && row < grid.length &&
column >= 0 && column < grid[row].length)
// check if cell is not blocked and not previously tried
if (grld[row][column ==1)

result = trus

return result;

Continued...

20

Maze Traversal:
Maze.java

//
// Returns the maze as a string.

public String toString ()
String result = "\n";

for (int row=0; row < grid.length; row++)

for (int column=0; column < grld[row] length; column++)
result += d[row][column] + "
result +="\n";

return result;

Classic recursive problem:
Towers of Hanoi

= The Towers of Hanoi'is a puzzle made up of three vertical
pegs and several disks that slide on the pegs

= The goal is to move all of the disks from one peg to another
according to the following rules:

= We can move only one disk at a time
= We cannot place a larger disk on top of a smaller disk

= All disks must be on some peg except for the disk in
transit between pegs

22

Towers of Hanoi

= We use 3 pegs to accomplish this task
= See p. 616 of the text book

Recursion in Graphics:
Fractals

= A fractalis a geometric shape than can consist of the same
pattern repeated in different scales and orientations

= The Koch Snowflake is a particular fractal that begins with
an equilateral triangle

= To get a higher order of the fractal, the middle of each
edge is replaced with two angled line segments

24




Fractals:

: Modeling Chaos et cetera

Summary:

: Chapter 11

= Learning objectives:

Learn to think in a recursive manner
Learn to program in a recursive manner

Understand the correct use of recursion versus
iteration

Understand the examples using recursion
Know about fractals

26




