
1

CSI1102
Introduction to Software Design

Chapter 11:
Recursion

2

Chapter 11:
Recursion

Recursion is a fundamental programming technique that
can provide elegant solutions to certain kinds of problems
Learning objectives:

Learn to think in a recursive manner
Learn to program in a recursive manner
Understand the correct use of recursion versus
iteration
Understand the examples using recursion
Know about fractals

3

What is recursion:
Recursive Thinking

Recursion is a programming technique in which a method
can call itself to solve a problem
Before applying recursion to programming, it is best to
practice thinking recursively
Consider the following list of numbers:

24, 88, 40, 37

A list can be defined recursively as?

4

Recursive Definition of a List

A list can be defined recursively as
A LIST is a: number

or a: number comma LIST

That is, a LIST is defined to be a single number, or a
number followed by a comma followed by a LIST

The concept of a LIST is used to define itself

5

Recursive Definitions

The recursive part of the LIST definition is used several
times, ultimately terminating with the non-recursive part:

number comma LIST
24 , 88, 40, 37

number comma LIST
88 , 40, 37

number comma LIST
40 , 37

number
37

6

Avoiding Infinite Recursion:
The Base Case

All recursive definitions must have a base case, i.e. the
non-recursive part
If they don't, there is no way to terminate the recursive
path
The code of a recursive method must be structured to
handle both the base case and the recursive case
A definition without a non-recursive part causes infinite
recursion
What is the base case in a List?

2

7

Recursive Definitions of
Mathematical equations

N!, for any positive integer N, is defined to be the product
of all integers between 1 and N inclusive

This definition can be expressed recursively as:

1! = 1
N! = N * (N-1)!

The concept of the factorial is defined in terms of another
factorial until the base case of 1! is reached

8

Recursive Definitions:
N!

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120

9

Recursive Programming:
Another example

Consider the problem of computing the sum of all the
numbers between 1 and any positive integer N,
inclusive
This problem can be expressed recursively as:

i = 1

N

i = 1

N-1

i = 1

N-2

= N + = N + (N-1) +

= ... = N + (N-1) + (N-2) + … + 2 + 1

10

Recursive Programming:
Calculating the sum
public int sum (int num)
{

int result;
if (num == 1)

result = 1;
else

result = num + sum (num - 1);
return result;

}

11

Recursive Programming:
Program Execution

main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6

12

Recursion vs. Iteration

Just because we can use recursion to solve a problem,
doesn't mean we should

For example, the sum (or the product) of the numbers
between 1 and any positive integer N can be calculated
with a for loop

You must be able to determine when recursion is the
correct technique to use

3

13

Indirect Recursion

A method invoking itself is considered to be direct
recursion

A method could invoke another method, which invokes
another, etc., until eventually the original method is
invoked again

For example, method m1 could invoke m2, which invokes
m3, which in turn invokes m1 again until a base case is
reached

This is called indirect recursion, and requires all the same
care as direct recursion 14

Indirect Recursion

m1 m2 m3

m1 m2 m3

m1 m2 m3

15

An example of recursion:
Maze Traversal

We can use recursion to find a path through a maze; a path
can be found from any location if a path can be found from
any of the location’s neighboring locations
At each location we encounter, we mark the location as
“visited” and we attempt to find a path from that location’s
“unvisited” neighbors
Recursion keeps track of the path through the maze
The base cases are an prohibited move or arrival

at the final destination

16

Maze Traversal:
Maze Grid and Output

The output
The maze was successfully traversed!

7 7 7 0 1 1 0 0 0 1 1 1 1
3 0 7 7 7 0 7 7 7 1 0 0 1
0 0 0 0 7 0 7 0 7 0 3 0 0
7 7 7 0 7 7 7 0 7 0 3 3 3
7 0 7 0 0 0 0 7 7 3 0 0 3
7 0 7 7 7 7 7 7 0 3 3 3 3
7 0 0 0 0 0 0 0 0 0 0 0 0
7 7 7 7 7 7 7 7 7 7 7 7 7

The Grid

1 1 1 0 1 1 0 0 0 1 1 1 1
1 0 1 1 1 0 1 1 1 1 0 0 1
0 0 0 0 1 0 1 0 1 0 1 0 0
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

17

Maze Traversal:
MazeSearch.java
public class MazeSearch
{

public static void main (String[] args)
{

Maze labyrinth = new Maze();

System.out.println (labyrinth);

if (labyrinth.traverse (0, 0))
System.out.println ("The maze was successfully traversed!");

else
System.out.println ("There is no possible path.");

System.out.println (labyrinth);
}

}
18

Maze Traversal:
Maze.java
public class Maze
{

private final int TRIED = 3;
private final int PATH = 7;

private int[][] grid = { {1,1,1,0,1,1,0,0,0,1,1,1,1},
{1,0,1,1,1,0,1,1,1,1,0,0,1},
{0,0,0,0,1,0,1,0,1,0,1,0,0},
{1,1,1,0,1,1,1,0,1,0,1,1,1},
{1,0,1,0,0,0,0,1,1,1,0,0,1},
{1,0,1,1,1,1,1,1,0,1,1,1,1},
{1,0,0,0,0,0,0,0,0,0,0,0,0},
{1,1,1,1,1,1,1,1,1,1,1,1,1} };

Continued…

4

19

Maze Traversal:
Maze.java (cont.)

public boolean traverse (int row, int column)
{

boolean done = false;

if (valid (row, column))
{

grid[row][column] = TRIED; // this cell has been tried

if (row == grid.length-1 && column == grid[0].length-1)
done = true; // the maze is solved

else
{

done = traverse (row+1, column); // down
if (!done)

done = traverse (row, column+1); // right
if (!done)

done = traverse (row-1, column); // up
if (!done)

done = traverse (row, column-1); // left
}

if (done) // this location is part of the final path
grid[row][column] = PATH;

}
return done; } Continued…

20

Maze Traversal:
Maze.java (cont.)

//---
// Determines if a specific location is valid.
//---
private boolean valid (int row, int column)
{

boolean result = false;

// check if cell is in the bounds of the matrix
if (row >= 0 && row < grid.length &&

column >= 0 && column < grid[row].length)

// check if cell is not blocked and not previously tried
if (grid[row][column] == 1)

result = true;

return result;
}

Continued…

21

Maze Traversal:
Maze.java

//---
// Returns the maze as a string.
//---
public String toString ()
{

String result = "\n";

for (int row=0; row < grid.length; row++)
{

for (int column=0; column < grid[row].length; column++)
result += grid[row][column] + "";

result += "\n";
}

return result;
}

}

22

Classic recursive problem:
Towers of Hanoi

The Towers of Hanoi is a puzzle made up of three vertical
pegs and several disks that slide on the pegs
The goal is to move all of the disks from one peg to another
according to the following rules:

We can move only one disk at a time
We cannot place a larger disk on top of a smaller disk
All disks must be on some peg except for the disk in
transit between pegs

23

Towers of Hanoi
We use 3 pegs to accomplish this task
See p. 616 of the text book

24

Recursion in Graphics:
Fractals

A fractal is a geometric shape than can consist of the same
pattern repeated in different scales and orientations

The Koch Snowflake is a particular fractal that begins with
an equilateral triangle

To get a higher order of the fractal, the middle of each
edge is replaced with two angled line segments

5

25

Fractals:
Modeling Chaos et cetera

26

Summary:
Chapter 11

Learning objectives:
Learn to think in a recursive manner
Learn to program in a recursive manner
Understand the correct use of recursion versus
iteration
Understand the examples using recursion
Know about fractals

