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Abstract 

Nowadays, clinical institutions are increasingly asked to make their raw data electroni-

cally available for research purposes. However, the same laws that prevent casual disclo-

sure of such data have also made it difficult for researchers to access the information they 

need to conduct critical research. Therefore, several algorithms were developed with the 

purpose of making that information anonymous, hence readily available for researchers.  

In this thesis, we present the results of an empirical evaluation of algorithms that 

aim to achieve k-anonymity under global recoding and hierarchical generalization, 

namely, Datafly and Samarati’s algorithms. We conclude that on average the latter pro-

duces better results, but neither produces an optimal solution. Next, we propose a new 

method to efficiently find the optimal solution, and we illustrate some programming op-

timizations. Finally, we compare our approach from an efficiency perspective to Incog-

nito, an efficient algorithm that finds the set of all possible solutions. 
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Chapter 1. Introduction 

1.1. Motivation 

Nowadays, clinical institutions are increasingly asked to make their raw, non-aggregated 

data (also called microdata), electronically available for research purposes. However, 

since such data may contain private personal information as in the case of medical re-

cords, the identity of the entities involved must remain confidential.  

A telephone poll has been conducted in the United States in which 88% of the re-

spondents replied that to the best of their knowledge, no medical information about them-

selves had ever been disclosed without their permission. In a second question, 87% said 

laws should prohibit organizations from giving out medical information without obtain-

ing the patient’s permission. Thus, the public would prefer that only employees and di-

rectly-involved people have access to their records and that these people be bound by 

strict ethical and legal standards that prohibit further disclosure [34]. 

Nowadays, the disclosure of health information is strictly regulated in many juris-

dictions, and institutions are often legally required to apply privacy-enhancing transfor-

mations to health data prior to their disclosure to researchers. For example, the Health 

Insurance Portability and Accountability Act (HIPAA) [19] in the United States, and the 

Personal Health Information Protection Act (PHIPA) [30] in Canada, are some of the 

well-known privacy regulations that protect the confidentiality of electronic healthcare 

information. 

In order to protect the privacy of the respondents to which the data refer, released 

data were at first “de-identified” by removing all explicit identifiers such as names, ad-

dresses, and phone numbers. However this de-identified data could still have other im-

plicit identifying characteristics such as race, birth date, sex, and postal code which, when 

considered all together, can uniquely, or almost uniquely pertain to specific individuals. 

These sets of characteristics are often called quasi-identifiers. 
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For instance, in one study, Sweeney estimated that 87.1% of the US population 

can be uniquely identified by the combination of their 5-digit zip code, gender, and date 

of birth because such records can be linked to publicly available databases such as voter 

lists and driving records. To prove her point, Sweeney re-identified a series of supposedly 

anonymous medical records including one belonging to William Weld – the governor of 

Massachusetts at the time – using a voter list she purchased from the city of Cambridge, 

Massachusetts for a mere $20 [21][37][38]. 

To illustrate the concept, consider Table 1, which exemplifies medical data to be 

released. In this table, data have been de-identified by suppressing names and Social Se-

curity Numbers (SSNs) so not to explicitly disclose the identities of patients.  

 

Table 1 De‐identified private table (medical data) 

SSN Name Race DOB Sex ZIP Marital Status Disease 

  asian 64/04/12 F 94142 divorced hypertension

  asian 64/09/13 F 94141 divorced obesity 

  asian 64/04/15 F 94139 married chest pain 

  asian 63/03/13 M 94139 married obesity 

  asian 63/03/18 M 94139 married short breath 

  black 64/09/27 F 94138 single short breath 

  black 64/09/27 F 94139 single obesity  

  white 64/09/27 F 94139 single chest pain 

  white 64/09/27 F 94141 widow short breath 

 

Table 2 Non de‐identified publicly available table 

Name Address City ZIP DOB Sex Marital Status 

…. …. …. …. …. …. …. 

…. …. …. …. …. …. …. 

Sue J. Doe 900 Market St. Utah 94142 64/04/12 F divorced 

…. …. …. …. …. …. …. 
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However, notice that there is only one divorced female (F) born on 64/04/12 and living in 

the 94142 area. This combination, if unique in publicly available databases such as in Ta-

ble 2, identifies the corresponding tuple as pertaining to “Sue J. Doe, 900 Market Street, 

Utah”, thus revealing that she has reported hypertension [7]. 

In order to overcome the potential for a privacy breach, some researchers tried to 

further de-identify the data by using techniques such as scrambling and swapping values 

and adding noise to the data while maintaining an overall statistical property of the result. 

However, this compromised the integrity, or truthfulness, of the information re-

leased [1][16][31][41]. 

In a different direction, intensive research has been directed towards the anonymi-

zation of the data. Although guaranteeing complete anonymity is obviously an impossible 

task, the k-anonymity concept has been introduced: “A data release is said to satisfy k-

anonymity if every combination of values of quasi-identifiers can be distinctly matched 

to at least k individuals in that release” [31].  

1.2. Research Objective 

Several algorithms were developed with the purpose of making de-identified data k-

anonymous [7][40], hence readily available for researchers. However, we are only con-

cerned with the methods that aim to achieve k-anonymity through full domain global re-

coding, hierarchical generalization and minimal suppression, as will be motivated in the 

next chapter. Mainly, two of the most popular approaches that fall under the former 

specifications and that were heavily used so far for clinical data [34][35] are Sweeny’s 

Datafly algorithm [34] and Samarati’s algorithm [31]. 

So far no one has empirically evaluated these algorithms in order to recognize 

which does a better job in balancing satisfactory privacy with minimum information loss, 

or how their solution compares with respect to the optimal one. More importantly, these 

approaches always rely on some heuristic that would approximate a “good” solution 

rather than actually finding the optimal one with respect to any given preference or in-

formation loss metrics.  

Other existing methods, such as Incognito [23], tend to find all the possible solu-

tions. However, a major drawback of such approaches is that the number of solutions 
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they return is usually very high, and it is impractical to check the information loss of all 

of them in order to find the optimal one. 

Resolving the above issues is very important. Accordingly, by assuring better so-

lutions, researchers will benefit immensely, since the better the quality of the anonymized 

data, and the less the information loss, the more valuable that data is for their research. 

Therefore, our objective is to evaluate these algorithms and determine whether a better 

one can be devised in order to efficiently find an optimal solution. 

1.3. Thesis Contribution 

The contribution of this thesis is twofold: 

• First, we present the results of an empirical evaluation of Datafly and Samarati’s 

algorithms.  

• Second, we propose our own approach, a new method to efficiently find an opti-

mal solution. 

1.4. Thesis Structure 

In this thesis, we start by introducing some preliminary concepts and summarizing previ-

ous work related to k-anonymity. Then in chapter 3, after highlighting the methodology 

and selecting the information loss metrics, we present the results of an empirical evalua-

tion. We show that, with respect to three information loss metrics, Samarati’s approach 

usually gives better results than Datafly’s, and that overall, the optimal solution is rarely 

attained by either algorithm. 

Next, in chapter 4, we identify the set of solutions that are the candidates to be op-

timal with respect to the information loss metrics. Then we propose our own approach, a 

new method to efficiently find this set and hence the optimal solution. In the process, we 

illustrate why the two algorithms above, on many occasions, cannot find that solution. 

Moreover, we discuss some programming optimisations that are used in our implementa-

tion.  

Then, in chapter 6, we note that Incognito efficiently returns the set of all solu-

tions. The disadvantage is that this set is usually large, and it takes a lot of time to evalu-
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ate all its content in order to locate the optimal solution. Nevertheless, it can be argued 

that this approach can be altered to find the same set of solutions as our algorithm. There-

fore, we compare the two from an efficiency perspective and we show that in most cases 

we outperform Incognito or have similar performance. Finally, in chapter 7, we state our 

conclusions, recommendations and future work. 
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Chapter 2. Background 

In this chapter we will highlight the definitions and previous work that are relevant to our 

research. 

2.1. Preliminary Concepts and Definitions 

In what follows, we assume the existence of an already de-identified private1 table PT to 

be anonymized. The rows in PT may be referred to as tuples, and the table is assumed to 

have at least k tuples. Moreover, the columns in the table are the attributes, and unless 

otherwise mentioned, the set of PT’s attributes will be strictly considered as the quasi-

identifier. 

 

(Def. 1) Quasi-identifier (QI): A set of attributes in PT that, in combination, can be 

linked with external information to re-identify the respondents to whom information re-

fers [9][31]. Examples of common quasi-identifiers are [6][13][14][15]: dates (such as, 

birth, death, admission, discharge, visit, and specimen collection), locations (such as, 

postal codes, hospital names, and regions), race, ethnicity, languages spoken, aboriginal 

status, and gender. 

 

One of the methods applied in order to satisfy k-anonymity is the generalisation of data 

so that the tuples in PT can be distinctly matched to at least k other tuples. Because of the 

nature of clinical data, we are mainly concerned with hierarchical generalization.  

 

(Def. 2) Hierarchical generalization: The act of generalizing tuples in PT to satisfy k-

anonymity, with regard to the well-defined hierarchies of each attribute [31]. 

 

                                                 
1 By private we mean the data belongs to some institution, as opposed to publicly available data. 
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(Def. 3) Generalization hierarchy (GH): Hierarchies related to each attribute are as-

sumed to exist, where leaves consist of the data that could be found in PT, and the rest of 

the levels are generalization of these data accordingly [5][7][31].  

Examples of generalization hierarchies are given in Figure 1 to Figure 3. The 

higher the attribute, the more general it is. 

 

 

Figure 1 GH for Marital Status 

 

Figure 2 GH for Race 

   

 

Figure 3 GH for Age 
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Generalization of PT can happen either by local recoding or global recoding. 

 

(Def. 4) Global recoding: The act of generalizing an attribute in PT, through all the 

tuples, to the same level in the respective generalization hierarchy of that attribute [7]. 

 

(Def. 5) Local recoding: As opposed to global recoding, this is a cell-level generaliza-

tion of each tuple in PT independently [7][40]. 

Table 3 De‐identified table 
 

Race Marital Status Age 

asian married 47 

black single 21 

asian married 49 

white widow 45 

white married 45 

white married 47 

black single 24 

asian married 49 

Table 4 2‐anonymized via local recoding 
 

Race Marital Status Age 

person married 47 

black single [20-25[

asian married 49 

white been married 45 

white been married 45 

person married 47 

black single [20-25[

asian married 49 

   

Table 5 2‐anonymized via global recoding 
 

Race Marital Status Age 

asian been married [45-50[

black never married [20-25[

asian been married [45-50[

white been married [45-50[

white been married [45-50[

white been married [45-50[

black never married [20-25[

asian been married [45-50[

Table 6 Global recoding with suppression 
 

Race Marital Status Age 

asian married [45-50[

black single [20-25[

asian married [45-50[

   

white married [45-50[

white married [45-50[

black single [20-25[

asian married [45-50[
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Table 4, Table 5 and Table 6 are generalizations of Table 3 with respect to the generaliza-

tion hierarchies found in Figure 1, Figure 2 and Figure 3. They are all considered to sat-

isfy 2-anonymity.  

Clearly, we can see in Table 4 that, via local recoding, we have a minimal loss of 

information. However, we will not consider this method in this thesis for two main rea-

sons: (i) this approach has been proven to be NP-Hard [26] and (ii) the output is not prac-

tical to be used for research on clinical data under the existing statistical software. These 

software mainly expect all the data in a column to have similar format as opposed to the 

case in Table 4 where, in the age attribute, some tuples use a number while others use an 

interval. The regression procedure for example, which is fairly popular, cannot be proc-

essed within this format. 

Therefore, we shift our attention to global recoding. Table 5 and Table 6 are typi-

cal examples. In Table 5, we simply generalize one or more variables throughout the ta-

ble. The reason why we generalized marital status and age (only) once (one level up the 

hierarchy) with respect to the corresponding GHs is: (a) it now satisfies 2-anonymity, and 

(b) additional generalizations, e.g. two levels up for the age, could have just as well satis-

fied 2-anonymity but at the cost of unnecessary information loss. Therefore, the goal is to 

find the minimal generalization required to satisfy k-anonymity while preserving as much 

information as possible. 

 

(Def. 6) Information loss metrics: The metrics used to calculate by how much the data 

in the result table differ from the original table after generalization, therefore how much 

information we lost. There exist many metrics to give an estimate of such loss 

[4][10][17][39][44]. 

 

(Def. 7) Minimal generalization: Given a table PT, different possible generalizations 

exist. Not all generalizations, however, can be considered equally satisfactory. For in-

stance, the trivial generalization bringing each attribute to the highest possible level of 

generalization, thus collapsing all tuples in PT to the same list of values, provides k-

anonymity at the price of a huge information loss [31].  
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(Def. 8) Tuple suppression: The act of removing a tuple from a table PT [6][8][31]. 

In Table 6, tuple suppression was used as a complementary approach to hierarchical gen-

eralization. A suppression of one or more tuples is used to “moderate” the generalization 

process when a limited number of outliers (i.e., tuples with fewer than k occurrences) 

would force a great amount of generalization [31].  For example, in Table 6, by removing 

only one tuple, we were able to satisfy k-anonymity without the need to generalize the 

marital status as in Table 5, thus overall, losing less information. 

Obviously, we are not interested in the suppression of more tuples than necessary 

to achieve k-anonymity at a given level of generalization. Therefore, this approach should 

be controlled.  That is why we suppose that we will be provided a suppression limit. 

 

(Def. 9) Suppression limit: The maximum number of tuples that we are allowed to 

suppress in order to achieve k-anonymity [22]. 

 

Now that the main approaches have been introduced, we will go through additional im-

portant concepts and definitions. 

 

(Def. 10) Distance vector:  This is the measure of the level of generalizations of each 

attribute. For example, for Table 3 (for convenience, now partly replicated in Table 7 be-

low), the vector [0,1,1] suggests to generalize, in all rows, the second attribute once re-

garding to its corresponding hierarchy (Figure 1), and the third attribute once regarding 

the hierarchy in Figure 3, while the first attribute (Race here) remains intact [31].  

 

Table 7 Hierarchical generalization with regard to the vector [0,1,1] 

Race Marital Status Age 

asian married 47 

black single 21 

asian married 49 

... ... ... 

[0,1,1] 
Race Marital Status Age 

asian been married [45-50[ 

black never married [20-25[ 

asian been married [45-50[ 

... ... ... 
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(Def. 16) Unique items: The distinct data items belonging to an attribute. For example, 

in Table 3, the unique items of the variable Race are: Asian, Black and White. These 

unique items are as well leaves of the corresponding hierarchy (Figure 2). 

 

(Def. 17) Equivalence classes (EC): The tuples of QI that are uniquely distinguishable 

from other tuples. For example, in Table 5, we have 3 equivalence classes: {asian, been 

married, [45-50[}, {black, never married, [20-25[} and {white, been married, [45, 50[}. 

 

(Def. 18) Frequency Set: The frequency set of PT is a mapping from each EC in PT to 

the total number of tuples equivalent to this EC in T (the size of EC) [23]. 

 

(Def. 19) Optimal solution: The vector used to generalize the table PT in a way that sat-

isfies k-anonymity while having the minimal information loss possible (when compared 

to all other possible solution vectors) with respect to a given metric. 

 

2.2. Previous Work 

Many studies have been conducted towards achieving k-anonymity. Consequently, many 

strategies and methods were created in order to accomplish that task [7]. Nevertheless, as 

illustrated earlier, the most practical for medical data are the methods that aim to attain k-

anonymity through global recoding (Def. 4), hierarchal generalization (Def. 2), and 

minimal suppression (Def. 7). These rules stem from a consensus based on the experi-

ences of the authors analysing and de-identifying clinical data. Therefore, the methods 

that do not comply with these properties, including Bayardo and Agrawal’s K-Optimal 

approach [4] which does not use hierarchical generalization, and the algorithms that uses 

local recoding [2][11][17][24][43][44], are not of any interest to our research and will be 

completely disregarded.  

Iyengar [20] proposed an approach based on genetic algorithms and solves the k-

anonymity problem using an incomplete stochastic search method. As stated by the au-
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thor, the method does not assure the quality of the solution proposed, but experimental 

results show the validity of the approach. Moreover, Winkler [42] proposes a method 

based on simulated annealing for finding locally minimal solutions, which requires high 

computational time and does not assure the quality of the solution [7]. Therefore, since it 

is known that there is no guarantee on the quality of their output, we will not discuss 

these two approaches any further. 

LeFevre, DeWitt and Ramakrishnan [23] propose an algorithm for computing k-

minimal generalization, called Incognito, which takes advantage of a bottom-up aggrega-

tion along dimensional hierarchies and a priori aggregate computation. However, a major 

drawback of this approach is that it returns the set of all possible solutions in the lattice, 

and thus it is impractical to check the information loss of all of them in order to find 

the optimal one. Nevertheless, the method used to retrieve this set is interesting and 

proven to be efficient. We will revisit this approach in more detail in chapter 6. 

Finally, two of the most popular approaches are Samarati’s algorithm and the 

Datafly algorithm. 

2.2.1 Samarati’s algorithm 

Samarati makes the assumption that the best solutions are the ones that result in a table 

having minimal generalizations. That is, the vector solution(s) with the minimal height 

possible. Therefore, her algorithm is meant to search the lattice and identify the lowest 

level on which one or more solution vectors are found (i.e. the generalizations that satisfy 

k-anonymity with minimal suppression). 

The following is a summary of Samarati’s algorithm: 

 

1. Consider a table T = PT[QI] to be generalized (takes into consideration only the 

quasi-identifiers fields). 

2. Consider the middle height in the area of search (area of search is initially the 

whole lattice). 

3. Check if at that height there is at least one node that satisfies k-anonymity with 

minimum suppression (the minimum suppression variable would be already set) 

then, 
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a. If not the minimum, specify the upper half as the new area of search.  

b. If minimum, specify the lower half as the new area of search. 

4. If the area of search consists of more than one level in the lattice, repeat step 2. 

Otherwise, return a solution residing on this level. 

 

In other words, Samarati’s approach takes advantage of the fact that if at any level in the 

lattice a solution can be found, then all the levels above this one must contain solutions 

and therefore only the lower levels need to be checked. Hence, the algorithm goes 

through the lattice with a binary search, always cutting the search space in half, going 

down if a solution is found at a level, or up if not. Eventually, the algorithm finds the so-

lution(s) with the lowest height, thus with the least generalizations. 

Afterwards, as Samarati suggests, the best solution on that level (i.e. with the least 

information loss) with respect to a given preference (i.e. information loss metric) is cho-

sen.  

2.2.2 Datafly algorithm 

Sweeney considers that the best solutions are the ones that are attained after generalizing 

the variables with the most distinct values (unique items). The search space is again the 

whole lattice; however, this approach only goes through a very small number of nodes in 

the lattice to find its solution. Thus, from a time perspective, this approach is very effi-

cient (hence the name Datafly). 

Here is a summary of the Datafly algorithm: 

 

1. Consider a table MT = PT[QI]  (takes into consideration only the quasi-identifiers 

fields) 

2. While k-anonymity is not achieved and the count of the remaining rows that do 

not comply to k-anonymity is more than k: 

a. Get the number of distinct values of each attribute in MT 

b. Generalize the attribute with the most distinct values  

3. Suppress the remaining rows 
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In other words, at each node in the lattice, check in the data which attribute has the most 

unique items and generalize that attribute one level up according to the corresponding 

hierarchy (i.e. go up one level in the lattice). Keep doing this until there are fewer than k 

rows not complying to k-anonymity, then suppress these remaining rows.  

It is worth noting that in case the algorithm finds, at any point, many attributes 

having the same number of unique items, then one is chosen randomly. 

It is easy to incorporate the suppression limit MaxSup in this procedure. In (2), in-

stead, simply check if the count of the remaining rows that do not comply with k-

anonymity is more than MaxSup. With this small alteration, the main idea of the algo-

rithm remains intact. In addition, we gain a common ground between Datafly and 

Samarati’s algorithms, which improves the conditions of the comparison. 

2.2.3 Visualization 

 

 

Figure 5 Visual comparison of Datafly and Samarati’s algorithms 
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Figure 5 above illustrates a plausible lattice, where the nodes filled in gray are the possi-

ble solutions. Note that these solutions were selected for the sole purpose of emphasizing 

the output of both algorithms. 

Samarati’s solution is on level 3 of the lattice; the level where the vectors are 

highlighted in bold black lines. Datafly’s solution path is the arrow covering [0,0,0,0]  

[1,0,0,0]  [1,0,0,1]  [1,0,1,1]  [1,1,1,1] 

In this particular example of a lattice and corresponding solutions, Samarati’s re-

sult is strictly restricted to the solutions found on level 3, namely: [0,1,1,1] , [0,2,1,0] , 

[1,2,0,0]. On the other hand, Datafly solution could have been attained through any strat-

egy in the lattice, including the ones on level 3, only guided by the number of unique 

items in each variable. In this case, the solution reached is on level 4. 

2.3. Chapter Summary 

In this chapter, we defined important preliminary concepts, and we stated the required 

algorithms’ properties that are the most practical when working with clinical data, 

namely global recoding, hierarchical generalizations and minimal suppression limit. We 

identified three interesting approaches, and then out of these we highlighted Datafly and 

Samarati’s algorithm with a brief summary and visualisation (Incognito will be detailed 

in chapter 6). 

We showed, as Samarati suggested in [31], that Datafly ultimately walks through 

a specific generalization strategy in the lattice. From Samarati’s perspective, this may be 

only the local minimum with respect to this strategy, not necessarily the global minimum. 

By global minimum, she means the solution with the smallest length (generalizations) in 

the lattice. 

Datafly has the advantage of hitting any possible path in the lattice while 

Samarati’s approach has the edge of hitting the solution with minimal length (with the 

assumption that the optimal solution has more probability to be around that area). It is 

worthwhile to compare the two and see which is getting better results ultimately, and how 

their results compares to the optimal one with regard to certain metrics. This will be the 

topic of the next chapter. 
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Chapter 3. Empirical Evaluation 

In this chapter, we present the results of an empirical evaluation of Datafly and 

Samarati’s approach, comparing their outputs to the optimal one. Although these algo-

rithms do not necessarily locate the optimal solution, if they are found to produce solu-

tions that are sufficiently close to the optimal one, then a case can be made for using them 

in practice, given that they are simple and well established and understood, not to men-

tion that Datafly can execute very quickly on large data sets.  

Incognito finds the set of all solutions, and consequently it always locates the op-

timal one. Given that this section focuses on optimality rather than on efficiency, Incog-

nito will not be a part of this first experiment.  

3.1. The Optimal Solution 

The optimal solution with respect to any metric can be computed by running a brute force 

algorithm (for now). The idea is to go through the whole lattice node by node, check if a 

certain node is a solution (i.e. it satisfies k-anonymity with minimal suppression), and 

calculate its information loss with respect to a given metric. Eventually, an optimal solu-

tion is the one with the least information loss. 

We also specify an “acceptable suppression threshold (MaxSup)”, i.e. the suppres-

sion limit discussed in (Def. 9), provides the maximum number of records which can be 

suppressed from the data set. This value can be set taking into account the types of sup-

pression techniques that can be applied to the data and compensate any power2 loss from 

having missing records [25]. Therefore, as long as the number of suppressed records is 

below MaxSup, suppression should not play a significant role in deciding the optimality 

of the solution. 

                                                 
2 The power to retrieve critical information or conclusions out of the anonymized data. 
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3.2. Measuring Information Loss 

In the literature, there are many definitions of information loss measures. According to 

Domingo-Ferrer [10], information loss can be obtained by comparing the original data to 

the masked one, the more similar the data is, the less is the information loss. A similar 

definition is given by Xu et al. in [44]: the information loss measures “how well the gen-

eralized tuples approximate the original ones”.  

Nowadays, there is no single information loss metric that is globally accepted by 

the community. However, when criticising the current metrics, researchers have implic-

itly pointed out many criteria that a good metric should satisfy [4][10][13][44]. For this 

reason, we picked three metrics that cover the majority of these criteria. 

An information loss metric that takes into account the height of the generalization 

hierarchy is Precision or Prec. Prec was introduced by Sweeney [39] as an information 

loss metric that is suitable for hierarchical data. For every attribute, the ratio of the num-

ber of generalization steps applied to the total number of possible generalization steps 

(total height of the attribute hierarchy) gives the amount of information loss for that par-

ticular variable. For example, if age is generalized from a value in years to a value in five 

year intervals, then the information loss value in that particular cell in the table is ¼ (one 

step generalization over the number of total generalizations allowed. See Figure 3). Total 

Prec information loss is the average of the information loss across all quasi-identifiers in 

the data set. As a result, the more a variable is generalized, the higher the information 

loss. Moreover, variables with more generalization steps (i.e., more levels in their genera-

lization hierarchy) tend to have less information loss than ones with shorter hierarchies.  

Another commonly used information loss metric is the discernability metric or 

DM [4]. DM assigns a penalty to every record that is proportional to the number of 

records that are indistinguishable from it, and following the same reasoning, DM assigns 

a penalty equal to the whole data set for every suppressed record (since suppressed 

records are indistinguishable from all other records).  

The DM metric is calculated as follows: 

ܯܦ ൌ  ෍ ଶ|ܥܧ|

|ா஼|ஹ௞

൅ ෍ |ܥܧ||ܦ|
|ா஼|ழ௞

 

where |EC| is the size of an equivalence class, and D is the total number of records.  
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Table 8 (a) is a data set, and (b) is its generalization with respect to [0,0,1] 

 

Race Marital Status Age 

asian single 18 

asian single 18 

asian single 18 

asian single 13 

asian single 19 

black married 18 

black married 22 

black married 26 

black married 20 

asian single 22 

 

Race Marital Status Age 

asian single [15-20[ 

asian single [15-20[ 

asian single [15-20[ 

asian single [10-15[ 

asian single [15-20[ 

black married [15-20[ 

black married [20-25[ 

black married [25-30[ 

black married [20-25[ 

asian single [20-25[ 

(a)  (b) 

 

However, DM is not monotonic within a generalization strategy due to the impact of the 

second term incorporating suppression. The example in Table 8 shows a data set and its 

generalization with respect to the vector [0,0,1]. For Table 8 (a) to satisfy 3-anonymity, 

seven out of ten records need to be suppressed, and therefore the DM value is 79. For Ta-

ble 8 (b), the DM value is 55. This reduction in information loss as we generalize means 

that we would select the k-anonymity solution with the maximum generalization as the 

best one, which is counter-intuitive. Moreover, even with the introduction of MaxSup 

where we specify the accepted margin of suppression in order to achieve the least gener-

alizations, DM could still favour less suppression over more generalization. It therefore 

makes sense not to include the suppression penalty in DM. In other words, we will use a 

modified version of DM as follows: 

כܯܦ ൌ  ෍|ܥܧ|ଶ 

 

The DM * value for (a) in Table 8 is 16 and for (b) is 28. 
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The concept behind the DM has been criticized because it does not measure how 

much the generalized records approximate the original records [44]. For example, if we 

have a quasi-identifier such as age and six records with the following age values: 9, 11, 

13, 40, 42, and 45, the minimal DM * value is when all of the records are grouped into 

three pairs: <9,11>, <13,40>, and <42,45> (to achieve 2-anonymity). The criticism is that 

this grouping has a very wide range and that a more sensible grouping would have only 

two equivalence classes: <9,11,13> and <40,42,45>. In our context this criticism is not 

applicable, since we assume that all data are hierarchical and that the end-user would 

specify the age grouping in the generalization hierarchy. 

The discernability metric has also been criticized because it does not give intuitive 

results when the distributions of the variables are non-uniform [24]. For example, consid-

er two data sets, the first with 1000 records where 50 are male and 950 are female, and 

the second with 500 males and 500 females. If the gender is generalized to “Person”, then 

intuitively losing the 950 females should result in low information loss since the female 

records dominate the data set, and in this case having “Person” in the data is almost as 

good as having “Female”. However, the DM * values show that the information loss for 

both data sets is the same after generalization.  

One information loss metric based on entropy [41] has recently been extended to 

address the non-uniform distribution problem [13].  

ܧܰ ൌ ෍ ෍ െlogଶ

௥

௝ୀଵ

௡

௜ୀଵ

Pr ቆ
ܴ௜ሺ݆ሻ
തܴ௜ሺ݆ሻቇ 

  

This calculates the Non-uniform Entropy (NE), where n is the number of rows in the data 

set, r the number of QIs, and Pr is the probability that a particular value in the row Ri is to 

be found in the generalized set in തܴ௜.  

Returning to our example, the 50/950 male/female distributed data set has a NE of 

286 bits whereas the 500/500 male/female distributed data set has a NE of 1000 bits. 

Therefore, the information loss in the former data set is much lower, and as stated above, 

this makes more intuitive sense. 
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3.3. Data Sets 

The data sets used for the comparison are summarized in Table 9. The first three are pub-

licly available for research, where the first (Adult) has been frequently used for similar 

studies [4][23]. The last three are real hospital and registry data sets and can be consid-

ered highly representative. The maximum height of a hierarchy is shown in Table 9 be-

tween parentheses near the corresponding attribute (More details in Appendix A). 

 
Table 9 Summary information of the data sets 

Description Quasi-Identifiers # Rows

Adult 
The adult data set from the UC Irvine machine learning data 
repository. This is an extract from the US census: 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult 
 
 
 
 
 

• Age (3) 
• Profession (2) 
• Education (2) 
• Marital status (2) 
• Position (2) 
• Race (1) 
• Sex (1) 
• Country (3) 

30,162 

CUP 
Data from the Paralyzed Veterans Association on veterans 
with spinal cord injuries or disease: 
http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html 
 

• ZIP code (5) 
• Age (4) 
• Gender (2) 
• Income (3) 

63,411 

FARS 
Department of Transportation fatal crash information: 
http://www-fars.nhtsa.dot.gov 

• Age (4) 
• Race (1) 
• Month of Death (3) 
• Day of Death (2) 

 

101,034 

Pharm 
Prescription records from the Children’s Hospital of Eastern 
Ontario pharmacy for 18 months. This is for inpatients only 
and excludes acute cases. This data is disclosed to commercial 
data aggregators. 
 

• Age (4) 
• Postal code (FSA) (3) 
• Admission date (6) 
• Discharge date (6) 
• Sex (1) 

63,441 

ED 
Emergency department records from Children’s Hospital of 
Eastern Ontario for July 2008. This data is disclosed for the 
purpose of disease outbreak surveillance and bio-terrorism 
surveillance. 
 

• Admission date (3) 
• Admission time (7) 
• Postal Code (7) 
• Date of Birth (6) 
• Sex (1) 

7,318 

Niday 
A newborn registry for Ontario for 2006-2007: 
https://www.nidaydatabase.com/info/index.shtml 
 

• Maternal postal code (7) 
• Baby DoB (4) 
• Mother DoB (6) 
• Baby sex (2) 
• Aboriginal status (2) 
• Language (2) 

 

124,933 
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3.4. Methodology 

We aim to compare the optimal solution to the output of Datafly and Samarati with re-

spect to the three information loss metrics mentioned in section 3.2. 

For each data set, the maximum suppression is set at 1%, 5%, and 10% of the to-

tal number of records. Therefore, we basically have 3 different experiments overall. 

In practice, a minimal value of k=3 is sometimes recommended [10][12][41], but 

more often a value of k=5 is used [33][32][28][29]. To ensure a reasonable amount of 

variation in our analysis we use values of k between 2 and 15 inclusively. 

As stated earlier, Datafly has a random element in the choice of its solution. When 

two or more quasi-identifiers have the same maximum number of unique items, one at-

tribute has to be chosen at random [34]. In order to overcome this randomness, Datafly 

was processed 101 times for every value of k. For every iteration, the information loss is 

calculated with regard to all metrics. Finally, the average information loss is computed 

for every value of k with respect to each metric.  

3.5. Results 

The purpose is to highlight, in a readable manner, how far is the output of the two chosen 

algorithms from the optimal one. Therefore, the information loss of the optimal solution 

is considered as the baseline of the comparison, and Datafly and Samarati’s outputs are 

represented as a percentage of that baseline.  

For example, in the following charts, if Datafly’s solution has an information loss 

value of 100% it means that the optimal solution and Datafly’s output have exactly the 

same information loss. Alternatively, if it is 200% then that means the information loss of 

Datafly is twice as large. 
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Figure 6 Information loss comparison for Adult and CUP data sets 
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Figure 7 Information loss comparison for FARS and ED data sets 

 



 

Chapter 3. Empirical Evaluation - Results 25 

  

  

  

Figure 8 Information loss comparison for Pharm and Niday data sets 
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The information loss results on all data sets with respect to the aforementioned metrics, 

for the 5% suppression limit, are presented above in Figure 6, Figure 7 and Figure 8. The 

x-axis shows the value of k ranging from 2 to 15, while the y-axis is the information loss 

percentage of the algorithms with respect to each metrics separately. 

The remaining information loss results for the 1% and 10% suppression limit are 

included in Appendix B and are consistent with those shown here. 

3.6. Conclusion 

It is clear from the graphs above that overall, and across multiple data sets, the perform-

ance of Datafly and Samarati did vary significantly depending on the data set, the value 

of k, and the suppression limit. However, on average, Samarati produced better results 

than Datafly with respect to all information loss metrics. Moreover, for the Prec metric, 

there is less of a difference between the optimal solution and Samarati’s, and this is due 

to the nature of Prec which takes into account the height of the generalization hierarchy. 

On the other hand, we also notice that the optimal solution is rarely attained by ei-

ther algorithm, especially in the case of DM and NE, and in most cases the difference is 

very significant. Hence, because of the medical nature of the researches conducted on the 

anonymised clinical data, there is zero tolerance for mistakes and thus a better approach 

is needed, one that actually searches for the optimal solution as opposed to a mere ap-

proximation.  

Furthermore, since the search space is limited to the lattice, and since there exist 

many helpful insights on the nature of this search problem, such an algorithm should be 

feasible. 
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Chapter 4. New Algorithm 

4.1. Motivation 

The results from the previous chapter show that overall, the optimal solution has signifi-

cantly lower information loss than the output of the algorithms studied so far. However, 

although a brute force approach can locate the solution needed, the procedure is very 

slow and impractical, especially when we process large data sets with bigger lattices. 

Moreover, although other approaches that return the set of all possible solutions might be 

efficient, the search for the optimal one within this likely huge set is impractical. Hence, 

there is definitely a need to develop an enhanced algorithm that can efficiently find that 

optimal solution. 

Still, looking at the properties of this problem, we see that it is only a search prob-

lem within a very precise search space, the lattice. Nevertheless, due to the cost of evalu-

ating each node in the lattice to see if it satisfies k-anonymity with minimal suppression, 

any approach that would try to go through a relatively large number of nodes within that 

lattice while searching for the optimal solution would be considered impractical, time 

wise. Actually, after observing our implementation of all the above algorithms, we found 

that the function Satisfy(V), which checks if a vector V satisfies k-anonymity with mini-

mal suppression (where k and MaxSup are already set by the user), consumes almost all 

of the overall time of the process. Therefore, for any approach to be practical, it needs to 

deal with the time complexity of that function first. In what follows, we will refer to the 

evaluation of a node V to see if it satisfies k-anonymity with minimal suppression, as Sat-

isfy(V). 

The aforementioned two algorithms deal with this issue in a heuristic manner. 

That is, they cut large parts of the search space based on pre-made assumptions or heuris-

tics, while unsure at this point whether the rest of the nodes actually contain the optimal 

solution or not. That way, they ultimately lower the number of calls to that function, and 
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therefore the overall computation time, at the price of a relatively poor output as shown 

from the results of the previous chapter. 

Therefore, before thinking of a practical approach to find the optimal solution, 

one has to address the above probelm. Our main attempt to solve this particular issue is 

twofold: 

 

1- Enhance the implementation of Satisfy(V) and make that function as efficient as 

possible. 

2- Minimize the number of invocations of the function Satisfy(V) without cutting 

any part of the search space and while keeping full confidence in finding the op-

timal solution. 

 

(1) is the obvious approach and is actually strictly related to the development phase, not 

to any of the algorithms per se. Nevertheless, it proved to be very critical and allowed us 

to consider searching the whole lattice. In chapter 5, we show some of the optimizations 

that were very helpful in our implementation. 

On the other hand, (2) at first seems to be an abstract goal. However, in the next 

sections we show that simple observations, and a bit more insights and knowledge of the 

overall nature of the problem at hand, can make (2) actually very simple. 

4.2. Observations 

4.2.1 Prediction 

Samarati in [31] proved that: “the number of tuples that need to be removed to satisfy a k-

anonymity requirement can only decrease going up in a strategy. Hence, the cardinality 

of the table enforcing minimal required suppression to satisfy a k-anonymity constraint 

can only increase going up in a strategy”.  From this she also proves that: “if a table Tz 

with a distance vector DVi,z cannot provide k-anonymity by suppressing a number of tu-

ples lower than MaxSup, then also all tables Tj such that DVi,j < DVi,z cannot”. 

This means that for any two nodes in the lattice that are directly connected, say V1 

and V2, where V2 is a generalization of V1 (i.e. one step higher in the lattice within the 
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same strategy), if V1 satisfies k-anonymity with minimal suppression, V2 must as well be 

a solution and thus also satisfy these requirements. 

The contraposition is also true. That is, if V2 is a generalization of V1, and V2 can-

not satisfy k-anonymity with minimal suppression, then V1 is not a solution either. For-

mally we get two equations out of this: 

a) if (Vi < Vj   AND  Satisfy(Vj) == false )    Satisfy(Vi) = false.  

b) if (Vj  < Vi  AND  Satisfy(Vj) == true)  Satisfy(Vi) = true.  

 

Where by   Va < Vb    we mean that Vb is a generalization of Va , and where Satisfy(V) is 

a function that evaluates if a vector V satisfies k-anonymity with minimal suppression 

and returns true or false accordingly. 

 

 

Figure 9 Lattice illustrating “Predictions” 
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If we correctly use the above formulas, we can end up with a powerful “prediction3” pro-

cedure. The idea is that by knowing if one vector (or node in the lattice) is a solution or 

not (satisfies k-anonymity with minimal suppression), we can truly deduce if the vectors 

of the same strategy are solutions or not without the need to actually them. 

To illustrate this, consider the lattice in Figure 9. The vector [1,1,1,2] on level 5 

was evaluated and was found to be a non-solution (and highlighted in light-gray, the 

color pointing to non-solutions in this example). According to equation (a) above, the 

vectors that are strictly related to this vector and are one level lower in the lattice are as 

well non-solutions, namely {[0,1,1,2], [1,0,1,2], [1,1,0,2], [1,1,1,1]}. However, since we 

now know that these are not solutions, we can run the same logic on each one of them. In 

other words, without reprocessing Satisfy([0,1,1,2]), we know it is a non-solution, and 

thus all the nodes related to it and one level lower in the lattice are also non-solutions. 

Accordingly, we end up deducing that all the light-gray nodes in Figure 9 are non-

solutions.  

In addition, the vector [0,4,0,1] on level 5 in the same lattice was processed by the 

“satisfy” function and was found to be a solution, and was highlighted in dark-gray. Ac-

cording to equation (b), the vectors that are strictly related to it and one level higher in the 

lattice are solutions too, namely {[0,4,0,2], [0,4,1,1], [0,5,0,1], [1,4,0,1]}. Again, since 

we now know that the vectors in this set are all solutions, we can apply the logic of equa-

tion (b) to each one of them. We end up predicting all the dark-gray nodes in Figure 9 as 

solutions. 

Note that we did not need to invoke the “Satisfy” function for any of the predic-

tions. We called it only twice and ended up tagging the lattice with 48 solutions and non-

solutions. As the whole lattice has 84 nodes, we now know the status of more than 57% 

of the nodes, and already saved ourselves 46 expensive evaluations of the vectors. This 

“prediction” mechanism is clearly a powerful tool that will allow us to further investigate 

the whole lattice and search for an optimal solution while minimizing the number of 

evaluations. 

                                                 
3 The word “prediction” is somewhat weak here since there is no real prediction, but logical deduction. 
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4.2.2 Candidates 

The next step is to locate where in the lattice the optimal solution is likely to reside. By 

optimal solution we mean the solution with minimal information loss with respect to a 

certain metric. 

As argued earlier, a metric that correctly calculates the information loss, after 

generalization and suppression, needs to take many properties of the data into considera-

tion. More importantly, such an InfoLoss(V) function needs to be monotonic4 even while 

giving a penalty for suppressed rows. 

 

c) if (Vi < Vj )  (InfoLoss(Vj)  ≥  InfoLoss(Vi)) 

 

The above equation means that if a vector Vj is a generalization of Vi, then the informa-

tion loss caused by the former is greater than or equal to the information loss caused by 

the latter. This is the case in all the information loss metrics we chose in this thesis. 

The reasoning behind this observation is rather simple. Consider the example in 

Figure 9. The two vectors [0,4,0,1] and [0,5,0,1], on levels 5 and 6 respectively, are solu-

tions. Since these vectors are connected within the same strategy, the one with more gen-

eralizations will definitely cause more (or equal) information loss. Also, since the user 

specifies the suppression limit, this means any suppression under that limit is accepted 

and has been compensated for already. Hence, if any penalty should be applied on the 

suppressed rows, it should be in a way that respects equation (c) above. 

Note that, the above logic is not true for unrelated vectors. That is, if two vectors 

do not belong to the same strategy, even if one has higher generalization with respect to 

the hierarchies, we cannot infer that it causes more or less information loss. 

Based on (c), one would assume that the set of solutions that are candidates to be 

an optimal one are the set of all the “local minima” in the lattice, where by “local mini-

mum” we mean the first solution (the one with the least generalizations) in a cer-

tain strategy.  

                                                 
4 A monotonic function is always non-decreasing or non-increasing, and it does not oscillate in relative 
value. 
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This reasoning is valid; yet, knowing that many strategies interrelate, we can go 

even further and eliminate any local minimum that is actually a generalization of other 

local minima. Eventually, we find the set of Optimal Solution Candidates (OSC). 

 

 

Figure 10 Optimal solution candidates 

 

Figure 10 shows a lattice where the white nodes are non-solutions, the gray nodes are so-

lutions, and the dark-gray nodes are the set of OSC. In this lattice, the OSC vectors are 

not related to each other, and all other solution nodes in the lattice are generalizations of 

one or more vector in this set. Therefore, based on equation (c), the optimal solution has 

to be one of the local minima specified in OSC. 
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4.3. Limitation of Datafly and Samarati’s Algorithms   

In order to explain why most of the time, these two algorithms do not agree with the brute 

force’s output in the results obtained, we show that these do not actually search for the 

optimal solution but an approximation of it. 

We know that Samarati searches for the solution with the least generalization. 

However, as shown in Figure 10, the optimal solution can be one of the OSC, where the 

solution(s) with the least generalization are only a subset of this search area. Therefore, 

Samarati’s output always has a chance to be an optimal solution, and that is why it had 

good results when compared to Datafly. However, this chance varies dramatically with 

regards to many variables such as the data, k, MaxSup, the lattice size, etc., and is almost 

never 100% unless all the optimal solutions candidates are the solutions with the least 

generalization, which is rarely the case. 

On the other hand, Datafly is basically of a heuristic nature, going through the 

minimum number of nodes possible in the lattice. This approach does not even assure a 

solution that is part of the OSC. For example, in Figure 10, if Datafly finds itself at the 

vector [0,1,1,0], it has three options to go to, namely {[1,1,1,0], [0,2,1,0], [0,1,1,1]} 

where two of them are solutions that are not even a part of the OSC. Actually, out of the 

many possible strategies, there is only a very few that overlap with the possible optimal 

solutions. 

Moreover, since Datafly chooses its path, or the next generalization at a given 

node, based on the variable with the most unique items, it can be compared to a greedy 

approach solving a “Traveling Salesman” type of problems. These approaches follow the 

problem solving metaheuristic of making the locally optimum choice at each stage with 

the hope of finding the global optimum [18]. However, as Bang-Jensen, Gutin and Yeo 

show in [3], such approaches do not guarantee an optimal solution, or not even a good 

solution. They also provide a characterization of the cases when such a greedy approach 

may produce the unique worst possible solution on similar problems. 

That is why Datafly has a very slim chance to locate the optimal solution. Never-

theless, the reason why it is sometimes competitive with Samarati is because it can al-

ways produce outputs that are near the area where the optimal solution resides in the lat-
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tice and thus might have less or similar information loss than the output of Samarati’s 

algorithm. 

The main point here is that these algorithms fail to find the optimal solution be-

cause they are only searching for an approximation. Therefore, we believe that an algo-

rithm that aims to systematically find the optimal solution needs to locate the set of OSC 

first and then search within this set. 

4.4. New Approach 

Having good insight of how to efficiently search the lattice, and knowing exactly where 

to search in the lattice for the optimal solution, constitutes an ideal approach to success-

fully and efficiently achieve optimal k-anonymity.  

Furthermore, knowing that the optimal solution is nothing but the solution that is 

considered the best from an information loss (IL) perspective, with respect to a certain 

metric, we understand that an appropriate approach should be flexible enough to take into 

consideration the users’ choice of information loss metric. 

Therefore, our approach takes as input 2 parameters: The data set to be k-

anonymized, and an IL metric. The level of anonymization k, and the suppression limit 

MaxSup, are also parameters but they will be set as global variables. 

Accordingly, this method mainly consists of two steps: 

 

1- Find the set of OSC 

2- Go through this set of vectors, one by one, check their information loss with re-

spect to the given metric and return the node with the least information loss. 

 

Step (2) is straightforward; a simple loop through the set of vectors where we check each 

one for its respective information loss, while keeping track of the vector having the least 

information loss so far. Eventually the vector with the least information loss will be con-

sidered as the optimal solution with respect to the given metric. 

However, step (1) is somewhat trickier. In order to locate the set of OSC, we will 

have to identify which of the nodes in the lattice are solutions and which are not. The idea 
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is to find a way to traverse the lattice, minimizing the evaluation of the vectors (i.e. Sat-

isfy(V)) while maximizing the prediction made about the other nodes.  

This can be done recursively going vertically through the lattice as a binary search 

over all the strategies, each possible strategy at a time. That way, based on the location of 

the solutions, we traverse the lattice up and down while making the respective predic-

tions. The more strategies covered, the more predictions are made and the fewer calls to 

Satisfy(V) are needed. Eventually, after a very small number of evaluations, we will have 

most of the lattice already tagged as solutions or non-solutions, and accordingly the 

search for the OCS would be very quick. The status of all the nodes in the lattice will ul-

timately be identified. 

Table 11 is the pseudo-code for the function that computes step (1). But first, Ta-

ble 10 shows a list of auxiliary functions used. 

GetOSC is a recursive function that takes as parameters the minimal vector of a 

(sub)lattice Bnode (initially the null vector) and the maximum vector Tnode (initially the 

vector with the maximum generalizations). The idea is to go through every strategy in the 

given lattice and evaluate the nodes for solutions and non-solutions, while keeping track 

of the local minima found. 

This function makes use of the “Prediction” procedure highlighted earlier, as well 

the “Rollup” technique, a bottom-up aggregation along the lattice. This is explained in 

more detail in section 5.1.4, but this is not shown in the pseudo code for the sake 

of simplicity. 
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Table 10 Auxiliary functions 

Function Description 

InfoLoss(node) 

Computes the information loss for a particular node 

in the lattice. The information loss should apply to 

equation (c) above. 

Satisfy(node) 

Evaluates if a given vector is a solution, i.e., if it sa-

tisfies k-anonymity with minimal suppression. Re-

turns True or False. 

IsTaggedSolution(node) 
Determines whether a particular node has already 

been tagged as a solution. Returns True or False. 

IsTaggedNotSolution(node) 
Determines whether a particular node has already 

been tagged as a non-solution. Returns True or False. 

TagSolutions(node) 

This will tag node and all the higher nodes in the lat-

tice along the path of the same generalization strate-

gies as solutions. 

TagNotSolutions(node) 

This will tag node and all the lower nodes in the lat-

tice along the path of the same generalization strate-

gies as non-solutions. 

Lattice(bottom-node, top-node) 
Creates a lattice with a particular node at the bottom 

and another at the top. 

Height(lattice, node) 
This function returns the height of a particular node 

in the particular (sub-)lattice. 

midLvl (lattice) 
Returns the set of nodes located on the middle level 

of the lattice.  

CleanUp(node) 

Removes all nodes in the OSC set that are on the 

same generalization strategies as node, and are not 

local minima. 
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Table 11 Pseudo code for getting the optimal solution candidates (GetOCS) 

Input: Two nodes that represent the bottom and top of a (sub)lattice 
Output: Void 
Global variables: S the set of OSC, k the anonymity level and MaxSup 
the suppression limit (the last two are used in the “Satisfy(node)” 
function 
 
 
GetOSC(Bnode,Tnode) 
{ 

L=Lattice(Bnode,Tnode) 
HH=Height(L,Tnode) 
If HH ≠  0 then 

middle = midLvl(L)  

Foreach V in middle 
If IsTaggedSolution(V) == True then 

GetOSC(Bnode, V) 
Else if IsTaggedNotSolution(V) == True then 

GetOSC(V,Tnode) 
Else if Satisfy(V) == True then 

TagSolutions(V) 
GetOSC(Bnode,V) 

Else 
TagNotSolutions(V) 
GetOSC(V,Tnode) 

End If 
End For 

Else 
S = S + Tnode 
CleanUp(Tnode) 

      End if 

} 

 
 

Whenever this function is called, it first checks if the Bnode and Tnode are not the same 

vector. If that is the case, it creates a lattice with Bnode as its base and Tnode as its top 

(which is initially the main lattice). Next, it identifies the mid level of that lattice. For 

every vector V at that level, it first checks if V has been tagged either as a solution or a 

non-solution. If it was not, it calls Satisfy(V) and processes the prediction with respect to 

the outcome of that function, by tagging the main lattice accordingly. Either way, if V 

was identified as a solution, it means that all the local minima of the strategies going 

through V are within the lattice between Bnode and V. However, if V was identified as a 

non-solution, it means that all the local minima of the strategies going through V are 

within the lattice between V and Tnode.  
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Therefore, it then recursively calls GetOSC with the right parameters according to 

the status of V. Again and again, it recursively goes through the same process for the sub-

lattices until eventually the Bnode and Tnode are the same vector. At that point, it adds V 

to the set of OSC and then cleans it by removing all the vectors that are generalizations of 

other vectors in that set. The last step is needed because as stated earlier, knowing that 

many strategies interrelate, we should eliminate the local minima that are actually gener-

alizations of other local minima and thus eventually find the set of OSC. 

Whenever a recursive invocation ends, the process gets back to the next vector at 

the mid-level of the respective sub-lattice. At that point, it would have made enough pre-

dictions that the number of the expected calls of Satisfy(V) will decrease considerably 

and consequently so will the time to find the OSC.  

Figure 11 to Figure 26 illustrate a trace of the algorithm on a plausible lattice. 

Some obvious steps have been omitted.  Note that in these figures, the solutions are high-

lighted in dark-gray while the non-solutions are in light-gray. The local minima have a 

dotted line, and the nodes with bold lines are the ones on the midlevel of a (sub) lattice 

that are still to be processed. The non-transparent nodes are the nodes of the sub-lattice in 

consideration. The trace is explained in detail afterwards.  

 

  

Figure 11 Getting OSC ‐ step A  Figure 12 Getting OSC ‐ step B 
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Figure 13 Getting OSC ‐ step C  Figure 14 Getting OSC ‐ step D 

   

  

Figure 15 Getting OSC ‐ step E  Figure 16 Getting OSC ‐ step F 

  

Figure 17 Getting OSC ‐ step G  Figure 18 Getting OSC ‐ step H 
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Figure 19 Getting OSC ‐ step I  Figure 20 Getting OSC ‐ step J 
  

  

Figure 21 Getting OSC ‐ step K  Figure 22 Getting OSC ‐ step L 

  

Figure 23 Getting OSC ‐ step M  Figure 24 Getting OSC ‐ step N 
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Figure 25 Getting OSC ‐ step O  Figure 26 Getting OSC ‐ step P 

 

Here is a brief description of the above example. In step A, the midlevel of the whole lat-

tice is taken into consideration, and the first vector on that level has been evaluated as a 

non-solution. As our algorithm suggests, the local minima going through that vector re-

side in the sub-lattice between itself and the top vector. Thus, the respective predictions 

are tagged, and recursively, the midlevel of that sub-lattice is now taken into considera-

tion, while the first vector on that level has been evaluated as a solution as shown in step 

B.  

At this point the highlighted sub-lattice in step C contains local minima, and again 

the first vector on the midlevel of that sub-lattice has been evaluated as a solution. Even-

tually, after going through the same process, this vector is identified and tagged as a local 

minimum (step D) and more predictions are tagged through the lattice.   

Now, since this recursive invocation ended, we get back one level up to the for-

mer sub-lattice where the next vector on its mid-level ([0,1,3]) is evaluated as a non-

solution (E). The process continues similarly without finding a local minimum. Thus, an-

other invocation ends and we get back one more level up to the sub-lattice shown in step 

F where more predictions are tagged. At this point, the vector to be processed is already 

tagged as a solution and does not need to be evaluated. Accordingly, another sub-lattice is 

processed without finding a local minimum. The algorithm keeps on going through the 

lattice, tagging the predictions, but not finding another local minimum until step J. How-
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ever, later on, we remove this local minimum from the OSC list since it is only a gener-

alization of the one found in step M.  

Notice that in step N all the secondary recursive invocations have ended and we 

got back to the initial lattice, where only one vector of its midlevel has been considered. 

This means that the remaining vectors on that level still have to go through the same 

process as above. Nevertheless, at this point, the majority of the lattice is already tagged 

and there are very few evaluations left that are now needed.  

Finally, in step P, although there are many more strategies to be checked, all the 

nodes in the lattice have been already identified as solutions or non-solutions and we 

have already located the set of OSC. 

In this particular trace we had to call the function Satisfy(V) 9 times in a lattice 

composed of 30 vectors. Therefore, we predicted 21 nodes. This is a total of 70% predic-

tions and 30% checks, where 6% were the optimal solution candidates found.  

4.5. Efficiency 

In order to further highlight the efficiency of this approach, we used it on all the afore-

mentioned data sets and captured the percentage of the number of evaluations (i.e. calls to 

Satisfy(V)), and the percentage of the size of OSC, with respect to the lattice size. Table 

12 shows the size of the lattice for each data set.  

 
Table 12 Lattice size of the data sets 

Adult CUP FARS Pharm ED Niday 
Lattice size 5184 360 120 2352 3584 7560 

 

In Figure 27, we show the percentage of the number of nodes evaluated with respect to 

the total number of vectors in the lattice for k=2 to k=15 inclusively. These results are for 

a fixed suppression limit of 5%. Additional results for 1% and 10%, consistent with the 

ones shown here, can be found in appendix B (see Figure 63 and Figure 72).  
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Figure 27 “Number of evaluations” to “lattice size” ratio 

 

Notice that, when dealing with small lattices, the percentage of predictions tends to be 

relatively small. For CUP and FARS, the approach evaluated on average 20 to 25 percent 

of the lattice. For the data sets with larger lattices, e.g. Niday, ED and Pharm, with lattice 

sizes of 7560, 3584 and 2352 respectively, the approach evaluated on average between 4 

and 14 percent of the lattice, therefore predicting about 90% of the nodes. It is important 

to emphasize that these three data sets are real clinical records and are real life examples 

of what such an approach will have to handle. 

Figure 28 highlights the percentage of the size of OSC with respect to the total 

number of nodes in the lattice for k=2 to k=15 inclusively. It shows that the size of OSC 

is on average very small compared to the size of the lattice, and these results are consis-

tent with results shown in Figure 27. Again, these are for a fixed suppression limit of 5%, 

while more results can be found in appendix B (see Figure 64 and Figure 73). 
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Figure 28 “OSC” to “lattice size” ratio 

 

Since the size of the OSC is relatively small, the step (2) of our approach, which consists 

mainly of going through this list and checking for information loss, is considered to be 

straightforward and does not need much attention. The reason we show the percentage of 

OSC, is to highlight that as opposed to the set of all possible solutions, it is practical to go 

through this small number of nodes in order to find the optimal solution. 

4.6. Summary 

This new approach is made possible and pragmatic because of the prediction equations 

that correctly deduce the status of many vectors, and hence avoid unnecessary computa-

tions. Moreover, as opposed to some of the existing approaches, this method does not 

produce an approximation, but precisely locates the optimal solution. Even so, as a sanity 

check, we ran our algorithm versus the brute force method on all the aforementioned data 

sets, and the outputs of the two approaches were absolutely identical.  

Furthermore, this approach produces output in a very acceptable time frame (more 

details about this in section 5.2), and the results in Chapter 6 will suggest that on average 

it is more efficient than its competitors. 
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Chapter 5. Optimizations 

As stated earlier, the time required to evaluate whether the vectors are solutions or not 

represents almost all of the total computation time. Therefore, any algorithm that aims to 

find the optimal solution, which requires the evaluation of a relatively high number of 

vectors, has to deal with the complexity of this process and make it as efficient as possi-

ble. 

Consider a straightforward implementation of Satisfy(V) that goes as follows: 

1- Generalize the table with respect to V 

2- Find the equivalence classes 

3- Check if we need to suppress more than MaxSup so that all the remaining equiva-

lence classes have a size >= k 

 

We acknowledge the fact that a better approach than the above might exist. Nevertheless, 

the optimizations cited below are general programming shortcuts and enhancements, and 

are not restricted to this method.  

5.1. Four Main Optimizations 

We tackled the complexity of the process mentioned above through many programming 

optimizations, out of which we cite four. All of these are somewhat interrelated, while 

some are strictly dependent on the others. 

5.1.1 A: Numbers versus Strings 

Comparing strings is always more expensive than comparing integers. This is a very ob-

vious observation.  

Therefore, a clean way to make the data strictly consisting of integers is to locate 

and sort the unique items of every attribute, and then hash each item with respect to its 
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location in its corresponding array. Consequently, this encodes the data set into a matrix 

of numbers.  

Although this is very straightforward, the following example is needed to illus-

trate further optimizations. 

 

Table 13 Race ‐ unique items  Table 14 Marital status ‐ unique items 
 

index Race 

0 Asian 

1 Black 

2 White 

index Marital Status 

0 Divorced 

1 Married 

2 Single 

3 Widow 

   

Table 15 Original data  Table 16 Transformed data 

Race Marital Status 

asian married 

asian single 

black  married 

white widow 

white divorced 

black single 

asian married 

... ... 

Race Marital Status 

0 1 

0 2 

1 1 

2 3 

2 0 

1 2 

0 1 

... ... 

 

 

At this point, and as shown in Table 16, the data now consists of only integers, and any 

comparison of the data afterwards will be less expensive. 

For example, finding the equivalence classes for the Adult data set (which has 

30162 rows), under our implementation, used to take 22 seconds before; now, this takes 

only 6 seconds. This represents almost a four times speedup for this data set. 
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5.1.2 B: Flat hierarchies 

The hierarchies are usually in a tree-like form such as in Figure 1 and Figure 2 back in 

chapter 2. When an item in a tuple needs to be generalized, one has to search the leaves 

of the related hierarchy tree for that item, generalize it as needed by going up the hierar-

chy, and then return the corresponding value. In a worst-case scenario, this process can 

have a time complexity of O(n), where n is the number of leaves in the hierarchy. This 

does not seem very significant in this example since the trees are relatively small. How-

ever, when having an attribute with thousands of unique items, and hence a huge hierar-

chy tree, and when a very large data set is being processed, it becomes critical to have a 

more efficient way for generalization, such as the one introduced below. 

First, we hash the hierarchies with regard to the corresponding hashed values of 

the unique items. Figure 29 and Figure 30 are the hashed versions of the hierarchies 

shown in Figure 1 and Figure 2 respectively. Moreover, leaves in both hierarchies are 

hashed with respect to the hashed unique items in Table 13 and Table 14. 

 

   

Figure 29 Hashed GH for Marital Status.  Figure 30 Hashed GH for Race. 

   

 

Table 17 GH Array – Race – (GHR)  Table 18 GH Array  – Marital Status – (GHM)

index G0 G1 

0 0 3 

1 1 3 

2 2 3 

index G0 G1 G2 

0 0 4 6 

1 1 4 6 

2 2 5 6 

3 3 4 6 

 

6

4

1 0 3

5

2

3

0 1 2
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As shown in Table 17 and Table 18, the hierarchies are then extracted into a two-

dimensional array. That way, after optimization A has been applied, the number found in 

a cell in the data set, and the number of generalizations required, is the index of the new 

value.  

For example, if the second tuple {0,2} in Table 16 above needs to be generalized 

once on the marital status attribute, the new value would be GHM[2][1] = 5. 

Therefore, the time complexity for any generalization is now O(1), regardless of 

the data set or its hierarchies. 

5.1.3 C: Sorting always helps 

Finding the equivalence classes is the essence of the efficiency issue we face when trying 

to evaluate whether a vector is a solution or not. This is the procedure that consumes the 

majority of the computation time. 

In order to find the equivalence classes, a first intuitive approach would look like 

this: For each row in the data set, if we did not identify this row as an equivalence class 

yet, then add it to the equivalence classes array, else update the size of this equivalence 

class. 

However, since for each and every row, we always need to check if it is contained 

in the equivalence classes array, then the time complexity is O(n2). In addition, we are 

comparing full arrays that represent the rows, which is an expensive procedure by itself. 

Therefore, we rather propose the following: For each row in the data set, hash the 

row into a string, then SortInsert the hash value in an array. Afterwards, simply go the 

through the resulting array and count the equivalence classes and their frequencies.  

For example, the rows in Table 19 have been hashed into strings, which enable a 

perfect hash function, and sorted as shown in Table 20. Notice that at this point, we only 

need to go through the table once and count the sizes of the equivalence classes which 

can be clearly distinguished without the need for any kind of search.  

Under this scheme, finding the equivalence classes will have the complexity O(n 

log n). Moreover, at this point comparing strings is less expensive than comparing a full 

row as before.  
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Table 19 Original data  Table 20 The same data hashed and sorted 

 

Race Marital Status Age 

1 2 2 

1 3 0 

1  2 1 

1 2 2 

1 2 2 

0 0 2 

1 2 0 

0 0 2 

1 2 1 

Hashed and sorted results

“0-0-2” 

“0-0-2” 

“1-2-0” 

“1-2-1” 

“1-2-1” 

“1-2-2” 

“1-2-2” 

“1-2-2” 

“1-3-0” 

 

 

Furthermore, using this approach, we will not always need to go through the whole table 

in order to figure out if a data set satisfies k-anonymity with minimal suppression. For 

example, in Table 20, if k = 3 and MaxSup = 4, the first three ECs have a frequency less 

than k, and thus they need to be suppressed if this data set is to satisfy k-anonymity. 

However, at this point there is already a suppression of 5 rows, which is greater than 

MaxSup. Therefore, there is no need to continue the verification, and we can declare this 

as a non-solution right away. 

For the Adult data set, under our implementation, when both A and C are applied, 

it takes only 0.3 seconds to find the EC rather than the original 22 seconds, a 73x 

speedup. 

5.1.4 D: Rollup 

Another shortcut is to compute Satisfy(V) on a frequency set, rather than to compute it on 

the whole data set. 

If we only calculate the frequency set of the original data set and evaluate all 

other nodes that need to be evaluated, with respect to that set, the speedup will be the ra-

tio of the number of rows in the original data set to the number of ECs in the frequency 
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set. For example, the Adult data set has 30,162 row and 12,005 equivalence classes. Gen-

eralizing 12,005 rows and finding the corresponding ECs while adding up their frequen-

cies, is much faster than doing so on the whole data set. The speedup is then around 3x. 

Since we traverse the lattice in a seemingly random manner as opposed to a 

breadth-first bottom-up search, we cannot take advantage of this shortcut to the fullest 

extent by always using the frequency set of the parents of the current node that is being 

evaluated. However, we can still benefit a lot from this shortcut by always using the fre-

quency set of the closest node in the same strategy. That is, whenever we evaluate a node 

in a strategy and we find that it is not a solution, we save the frequency sets of this node. 

Then, since we have to go up the lattice, all the nodes that need to be evaluated herein can 

use the closest saved frequency set. 

Eventually, the number of rows that need to be processed in order to find the 

overall equivalence classes within all the evaluated nodes diminishes dramatically. Thus, 

as shown in the next section, since this is a crucial criterion that defines the efficiency of 

the process, the speedup tends to be significant. 

5.2. Overall Time Complexity 

We incorporated the above optimizations, and then processed our approach on the afore-

mentioned data sets on a 3.2 GHz Pentium D processor with 3GB of RAM.  

The execution times for the proposed algorithm with MaxSup = 5% are shown 

in Figure 31 below. Considering the large sizes of the data sets, and the sizes of the lat-

tices with regards to the proposed QIs, the execution time can be considered practical. 

Note that the time registered in this chart is the time to find the set OSC and then go 

through all the nodes in this set and find the optimal solution with regard to an informa-

tion loss metric. 
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Figure 31 Execution time in seconds. Suppression limit of 5%. 

 

Notice that even for large data sets such as FARS (101,030 rows), the computation time 

was below 40 seconds. The worst case was the Niday data set (124,933 rows) with a 

computation time of, on average, around 12 minutes. This was due to the relatively large 

lattice corresponding to the numbers of QIs we chose for this data set, which required the 

evaluation of a larger number of vectors before finding the OSC. 

Comparing the graph in Figure 31 to the one in Figure 27, we notice that the 

curves are very much consistent. The most noticeable ones are the Adult and Niday 

curves. In both graphs the shape of these curves is similar, which means that the higher 

the percentage of nodes being evaluated, the more time is taken by the algorithm to exe-
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cute. If the graph in Figure 27 had plotted the exact number of vectors evaluated instead 

of the percentage of vectors with respect to the lattice size, the two curves would have 

looked exactly the same. 

Eventually, the execution time depends mainly on the number of vectors in the 

lattice that the algorithm needs to evaluate. Consequently, since we use the optimization 

D above, the time complexity will depend on the overall number of rows processed. 

To further discuss this, here is again the implementation of Satisfy(V) that was 

mentioned in the beginning of this chapter: 

1- Generalize the table with respect to V 

2- Find the equivalence classes 

3- Check if we need to suppress more than MaxSup so that all the equivalence 

classes will have a size >= k 

 

Based on this implementation, the time to evaluate a single vector is the sum of the times 

of every step:   

1- As shown in step B, any generalization is of complexity O(1), and the time com-

plexity of generalization with respect to a vector is O(n * |QIg|), where n is the 

number of rows in the current data set (or frequency set) and |QIg| is the total 

number of QI that were generalized. Hence, n * |QIg| is the number of generalized 

cells. In a worst-case scenario, we would need to generalize all the cells in the 

data set. 

2- As shown in optimization C, the complexity of finding the equivalence classes is 

O(n log n). 

3- Again in C we show that in a worst-case scenario we need to pass once through 

the resulting sorted array to determine whether it satisfies k-anonymity with 

minimal suppression or not. Therefore, its complexity is O(n). 

 

Therefore, the complexity of the evaluation of one node in the lattice would be: 

ܱሺ݊ log ݊ሻ  
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where n is the number of rows in the current data set (or frequency set5). |QIg|. the total 

number of QI that were generalized, is not taken into consideration in the complexity 

measure since the dominant part in this scheme is finding the equivalence classes. 

Hence, the total complexity to find the set of OSC, after evaluating a certain num-

ber of nodes, is roughly:  

ܱሺ݈ܰ݃݋ሻ 

where ܰ ൌ ∏ ሺ݊௜
௡೔

௜ ሻ , that is, the product of the  number of rows processed for every node 

evaluated in the lattice, to the power itself . For example, if we evaluated two nodes in the 

lattice where the number of rows in the first is X and in the second is Y, then their com-

plexity becomes: 

ܺ݃݋݈ܺ ൅ ܻ݃݋݈ܻ ൌ ௑ܺ݃݋݈ ൅ ௒ܻ݃݋݈ ൌ ሺܺ௑݃݋݈ כ ܻ௒ሻ 

 

The remaining execution time results for the 1% and 10% suppression limits can 

be found in Appendix B (see Figure 65 and Figure 74), which also show a consistent exe-

cution time for all data sets. 

5.3. Summary 

In this chapter, we highlighted a number of programming optimisations used for imple-

menting our approach, which give the algorithm a substantial speed improvement. It was 

also shown that this algorithm finds the optimal solution in a practical time with respect 

to the size of the data sets and the size of the lattices.  

 Moreover, we identified the time complexity of finding the OSC and more pre-

cisely the complexity of evaluating whether a vector satisfies k-anonymity with minimal 

suppression. This complexity analysis will be useful for comparing the efficiency of our 

approach with other existing approaches. 

                                                 
5 When taking advantage of the rollup optimization, we generalize over an already generalized dataset that 
has been transformed into a frequency set. Therefore, the number of rows evaluated for a specific node in 
the lattice would be the number of EC it has at that point. 
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Chapter 6. Efficiency 

LeFevre, DeWitt and Ramakrishnan [23] proposed an efficient algorithm for computing 

k-minimal generalization, called Incognito, which takes advantage of a bottom-up aggre-

gation along dimensional hierarchies and a priori aggregate computation. However, a ma-

jor drawback of this approach is that it returns the set of all possible solutions in the lat-

tice, and thus it is impractical to check the information loss of all of them in order to find 

the optimal one.  

Regardless, the method used to retrieve this set of all solutions is interesting and 

proven to be efficient. Incognito was compared to several algorithms, including 

Samarati’s, and was shown to be the fastest in locating the corresponding set of solu-

tions [23]. Moreover, one can argue that Incognito can be altered to return the same set of 

OSC as our approach, and thus it would be interesting to compare this approach to our 

algorithm in order to identify which of these two is more efficient.  

6.1. Incognito 

The Incognito algorithm generates the set of all possible solutions, i.e. all the generaliza-

tion vectors that satisfy k-anonymity with minimal suppression. 

Based on the subset property6, the algorithm begins by checking single-attribute 

subsets of the quasi-identifiers, and then iterates for i = 0 to |QI|, checking k-anonymity 

with respect to increasingly large subsets. Each iteration consists of two main parts:  

1- Every iteration considers all the nodes in a set S constructed from subsets of 

the quasi-identifiers of size i. Then it goes through these nodes in a breadth-

first bottom up search taking advantage of the rollup phenomenon presented 

above in section 5.1.4, and of the generalization property stated in equation 

(b) in section 4.2.1. 

                                                 
6 Let T be a dataset, and let Q be a set of attributes in T. If T is k-anonymous with respect to Q, then T is 
also k-anonymous with respect to any set of attributes P such that P ك Q  [23]. 
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2- The algorithm then constructs the set of candidate nodes S with quasi-

identifiers of size i + 1, taking advantage of the subset property by pruning the 

nodes that cannot be solutions when the set of attributes is larger. 

 

The authors mention three versions of this approach, each one applying different pro-

gramming optimizations to the base approach. Then they show that the “Super Root In-

cognito” is the fastest of all three. This is the version where they simply take more advan-

tage of the rollup property by computing the frequency sets of the parent of the candidate 

nodes in S after each iteration, and then use this set as a base to evaluate the nodes and 

before continuing in (1) normally. 

In what follows, we will be comparing our approach to the “Supper Root Incog-

nito”. However, for convenience, we will refer to this approach simply as Incognito. 

6.2. Comparison 

We do not compare our algorithm with Incognito in terms of “seconds to produce a re-

sult” for two reasons. First, the exact timing will be dependent on the implementation de-

tails, and second, such a comparison would be perceived as inherently biased because we 

would be expected to put more effort optimizing the implementation of our algorithm. 

Therefore, we measure elements that are inherent to the algorithms rather than their im-

plementations. Note however that the actual time comparison was very much consistent 

with the following results. 

 As argued earlier, the most time-consuming activity in all of the aforementioned 

algorithms is evaluating a node in the lattice to determine whether it is a solution or not. 

An obvious way to compare the algorithms is to count the number of nodes that need to 

be evaluated. Figure 32 shows the original search space of Incognito with respect to the 

original search space of our approach (the lattice). Similar to the charts in the compari-

sons of chapter 3, the charts herein are the ratio of Incognito’s output to the output of our 

approach. Moreover, the following graphs (Figure 33 to Figure 35) are for MaxSup = 5%, 

and additional consistent graphs for MaxSup = 1% and 10% can be found in Appendix B. 
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Figure 32 Original search space size. 

 

We see that the search space considered by Incognito is always larger, which is normal 

since it conceptually generates all the lattices for all the subsets of QI for i = 1 to |QI|. 

This is not a performance measure per se since Incognito will eventually prune a very 

large number of nodes, but it is important to see the difference in the search space size, 

which mainly explains the difference in the number of nodes evaluated. 

Figure 33 shows the ratio of nodes evaluated. We see that on average Incognito 

always evaluates many more nodes than our approach.  

 

 

Figure 33 Nodes evaluated ratio. 
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However, the complexity of nodes evaluation is not the same because the nodes vary in 

terms of the number of records being evaluated (as a result of the different frequency set 

attained by the rollup property) and the number of QI being generalized. The number of 

nodes evaluated is not sufficient to capture the efficiency difference between the two ap-

proaches. 

Therefore, since both algorithms can use the same function in order to evaluate a 

node, we make use of the complexity measure of the Satisfy(V) function introduced in 

section 5.2 above. 

The different number of QI in Incognito is strictly related to the frequency set 

produced in the dataset. The smaller the number of QIs, the fewer ECs will be produced, 

and thus the number of rows considered. Therefore, this is taken into account, along with 

the rollup optimization that Incognito takes advantage of, by counting the overall number 

of rows N as stated earlier. 

We can then compare the performance of our algorithm and Incognito’s by com-

puting this score across all evaluated nodes. Note that N will be different for both algo-

rithms since they evaluate a different number of nodes, as shown in Figure 33, and the 

number of equivalence classes on each of these nodes varies. 

One can argue that a different implementation of Satisfy(V) can be more efficient, 

however, the same implementation can always be used on both algorithms and the results 

will be similar. 

The performance comparison with Incognito over all the aforementioned data sets 

is shown in Figure 34. Incognito performed better on the CUP data set across all values 

of k. Otherwise, the performance is more or less the same for the Pharm and Niday data 

set, and our algorithm performs better for the remaining three data sets. In the case of the 

Adult data set and FARS, the difference in performance is significant. 
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Figure 34 Performance score of Incognito with respect to our approach. 

 

Note that this performance comparison is only for the process of getting the re-

spective sets of solutions, in our case OSC and in Incognito’s case the set of all possible 

k-anonymous solutions. Figure 35 shows that the size of the set of solutions that Incog-

nito returns, and that need to be checked for information loss in order to get the optimal 

solution, is at least 5 times larger than the set of OSC located by our approach. This 

means that our approach will be at least 5 times faster than Incognito in this phase of the 

process. 

 

 

Figure 35 Size of solutions output by Incognito. 
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However, as argued earlier, Incognito can probably be altered to find the set of OSC in-

stead, and then both algorithms will perform similarly in the second step (the process of 

finding the optimal solution). Also note that since in our approach we tag all the possible 

k-anonymous solutions, we can return the set same as Incognito. 

6.3. Summary 

In this chapter we compared the performance of Incognito to our approach. Only the first 

step, which consists of finding the respective set of solutions, was considered. The em-

pirical results showed that our approach outperformed Incognito in many cases. How-

ever, in some cases both algorithms perform the same more or less, and in rare cases In-

cognito outperforms our approach. 

Then we show that the number of solutions returned by Incognito is very high and is at 

least 5 times more than the set of OSC. This is a major drawback of the current setup of 

Incognito since all the vectors in that set need to be evaluated from an information loss 

perspective and then the one with the least information loss must be returned. Therefore, 

in this phase of the process, our approach will outperform Incognito. It is worth to note 

that Datafly is faster than both our approach and Incognito. However, in the context of 

clinical data, the trade-off between speed and optimality is not possible since researchers 

needs to work on an anonymised data set with minimal information loss.     
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Chapter 7. Conclusions 

7.1. Contributions 

In this thesis, we presented the results of an empirical evaluation of Datafly and 

Samarati’s algorithms versus a brute force approach that extracts the optimal solution 

with respect to a given metric. The comparison in chapter 3 showed that the performance 

of Datafly and Samarati did vary significantly depending on the data set, the value of k, 

and the suppression limit. However, on average Samarati’s solution was better than Data-

fly’s. Moreover, it was clear that these approaches give on average a result of poor qual-

ity when compared to the one provided by the brute force method. 

Therefore, after showing the need to find an optimal solution rather than a mere 

approximation, we proposed our own approach, a new method to efficiently find an op-

timal solution with regards to any given information loss metric that is monotonic. In the 

literature this property is argued to be important in order to produce generalizations that 

are most practical for research and data mining. Afterward, we highlighted some pro-

gramming optimizations that were used in our implementation, and showed that our ap-

proach executes in a satisfactory time. Finally, we compared the performance of our ap-

proach to Incognito and concluded that in many cases our approach outperforms Incog-

nito, especially in the current setup where the latter returns the set of all possible k-

anonymous solutions in order to locate the optimal one. 

One limitation with our study is that we compared our proposed algorithm with 

only three other approaches. However, we contend that these are the most suitable for the 

de-identification of clinical data because they work with hierarchical variables and use 

global recoding. Furthermore, they are foundational k-anonymity algorithms that are of-

ten cited in the literature.  

Another limitation might be the assumption of monotonic information loss met-

rics. However, and stated earlier, this is a very important feature that needs to be present 

in a metric in order to assure better solutions. Moreover, the information loss metrics we 
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used did not take into account different variable weights. We assumed that all quasi-

identifiers were equally important. However, this should not change the outcome of the 

comparisons. 

Nevertheless, regardless of the above limitations, the proposed approach appears 

to be sound and practical. Moreover, as opposed to the heuristic-based approaches, by 

insuring an optimal solution that can be located efficiently, researchers will benefit im-

mensely, since the better the quality of the anonymized data, the more valuable that data 

is for the research. 

7.2. Future work 

The future work we foresee is mainly twofold: 

1- The subset property that Incognito uses is very interesting. However, one 

main drawback of the way Incognito goes through the search space is the 

breadth-first bottom up search. In the case that the solutions are high in the 

lattice, and when not much pruning was introduced to that same lattice, it will 

have to evaluate a very large number of nodes. Even with the rollup advan-

tage, the complexity of these nodes adds up to an inefficient result. Therefore, 

we might consider the case of using the subset property and our approach and 

dropping the breadth-first search. It would be interesting to see the outcome 

efficiency of the resulting algorithm. 

2- Since there is not one globally accepted information loss metric, and since 

many current metrics capture different logical aspects on how the information 

is being changed and how much information we are approximately losing, we 

see a good chance of proposing a new metric that mainly joins these aspects 

and provides a better approximation. 
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Appendix A: Data Sets Details and Hierarchies 

In this appendix, we provide some details about the data sets used for the evaluations, 

including the hierarchies for every QI (The QIs chosen are quite typical of what is seen in 

realistic situations [14][15][27][36]). We have six data sets: Adult, CUP, FARS, Pharm, 

ED, and Niday, introduced in Table 9. We will go through them in that order. 

 

Adult  

This is a machine Learning Database from the US Census Bureau, provided by Bren 

School of Information and Computer Science at the University of California, Irvine. This 

data set has 31062 records and 15 attributes. More information can be found at:  

http://archive.ics.uci.edu/ml/datasets/Adult  

Eight quasi-identifiers were chosen for this experiment, we list them with their 

corresponding hierarchies: 
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Figure 39 GH of Education  Figure 40 GH of Marital Status 

   

   

 

Figure 41 GH of Race  Figure 42 GH of Sex  Figure 43 GH of Work Class 

 

With respect to these hierarchies, the lattice size is equal to 5184 nodes. 

The above hierarchies were chosen as such because of the nature of the unique 

items in each attribute. As well, the hierarchies for the remaining data sets were chosen 

related to the corresponding unique items. 
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with spinal cord injuries or disease.  With an in-house database of over 13 million donors, 

PVA is also one of the largest direct mail fund raisers in the country.  For more informa-

tion, see http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html 

This data set has 63,411 records and 479 variables. The quasi-identifiers are: Zip 

code, Age, Gender and Income.  
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Figure 44 GH of Age 

 
 

 
Figure 45 GH of Income 

 
 

 

Figure 46 GH of Postal Code 
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Figure 47 GH of Gender 

 

The gender hierarchy has one more level because the unique items for this variable are 

composed as follows: 

M = Male 

F = Female 

U = Unknown 

J = Joint Account, unknown gender 

 

FARS 

FARS stands for Fatality Analysis Report System. The National Highway Traffic Safety 

Administration (NHTSA) decided in 1996 to make FARS data easier to obtain by using 

Internet technologies. This FARS Web-based Encyclopedia offers a more intuitive and 

powerful approach for retrieving fatal crash information. For more information about the 

Web site, visit http://www-fars.nhtsa.dot.gov/ 

This data set has 101,034 records and 120 attributes of which 4 are chosen as 

quasi-identifiers: Age, Race, Month of Death and Day of Death.  The hierarchy for Age is 

similar to Figure 44, and the hierarchy for Race is a straightforward hierarchy with one 

level where all races are generalized to person. 

 

Month of death: 

The unique items of this attribute are the months, between 1 and 12 for January till De-

cember respectively. The hierarchy splits the year into two halves and each half into two 
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quarters in the year. Moreover, there are some other numbers that indicate that the month 

was unknown or blank or undisclosed. The following is the corresponding hierarchy: 

 

 

Figure 48 GH of Month of death 

 

Day of death: 

The days of the month are split into 5 weeks and an unknown. 

 

 

Figure 49 GH of Day of death 
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Five quasi-identifiers where chosen for this data set:  Age, Postal Code (Forward 

Sortation Area, FSA), Admission Date, Discharge Date, and Sex. The Sex hierarchy is 

the same as Figure 42. Admission Date and Discharge Date have similar hierarchies. 

 

This is the age of the individuals in weeks. 

 

Figure 50 GH of Age 

 

This is the postal code (FSA) made of first three letters of the full postal code. 

 

 

Figure 51 GH of Postal Code 
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Figure 52 GH of Admission date 
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Figure 53 GH of Admission date 

 

The admission time is in 24-hour format starting from 0000 and ending with 2359. 

 

 

Figure 54 GH of Admission time 
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Figure 55 GH of Postal Code 

 

 

 

Figure 56 GH of DOB 
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Niday 

This is a newborn registry for Ontario for 2006-2007. For more information visit 

https://www.nidaydatabase.com/info/index.shtml 

This data set has 125,017 records and 116 columns, out of which we chose 4 

quasi-identifiers. 

 

Maternal postal code: Similar to Figure 55. 

Baby Sex: The sex was sometimes undisclosed or unknown when entering the record to 

the data set. Therefore, we have the following hierarchy: 

 

 

Figure 57 GH of Baby Sex 
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Figure 59 GH of Mother’s Date of Birth 
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Appendix B: Additional Results 

This appendix contains additional results corresponding to every aspects of empirical 

evaluation mentioned in this thesis. The results are split into two experiments, one with 

MaxSup = 1% and the other with MaxSup = 10%. 

MaxSup = 1% 

Empirical evaluation of Datafly and Samarati with respect to the optimal solution, 

with information loss metrics: DM, Prec and Non-uniform Entropy (NE). 
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Figure 60 Information loss comparison for Adult and CUP data sets. MaxSup = 1%  
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Figure 61 Information loss comparison for FARS and ED data sets. MaxSup = 1% 
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Figure 62 Information loss comparison for Pharm and Niday data sets. MaxSup = 1% 
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Efficiency related graphs of our approach 

 

Figure 63 “Number of evaluations” to “lattice size” ratio. MaxSup = 1% 

 
 
 

 

Figure 64 “OSC” to “lattice size” ratio. MaxSup = 1% 
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Figure 65 Execution time in seconds. MaxSup = 1% 
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Comparison with Incognito 

 

Figure 66 Nodes evaluated ratio. MaxSup = 1% 

 

 

Figure 67 Performance score of Incognito with respect to our approach 

 

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r 
ap

pr
oa

ch
 is
 1
00

%

k

Nodes Evaluated

Adult

CUP

FARS

ED

Pharm

Niday

0%

100%

200%

300%

400%

500%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r 
ap

pr
oa

ch
 is
 1
00

%

k

Log N

Adult

CUP

FARS

ED

Pharm

Niday



 

Appendix B: Additional Results 84 

 

Figure 68 Size of solutions output by Incognito. MaxSup = 1% 

 

 
 
 
 

MaxSup = 10% 

Empirical evaluation of Datafly and Samarati with respect to the optimal solution, 

with information loss metrics: DM, Prec and Non-uniform Entropy (NE). 

 

 

 

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%
1000%
1100%
1200%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r 
ap

pr
oa

ch
 is
 1
00

%

k

Size of Solutions Output

Adult

CUP

FARS

ED

Pharm

Niday



 

Appendix B: Additional Results 85 

  

  

Figure 69 Information loss comparison for Adult and CUP data sets. MaxSup = 10%  
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Figure 70 Information loss comparison for FARS and ED data sets. MaxSup = 10% 
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Figure 71 Information loss comparison for Pharm and Niday data sets. MaxSup  = 10% 
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Efficiency related graphs of our approach 

 

Figure 72 “Number of evaluations” to “lattice size” ratio. MaxSup = 10% 

 

 

Figure 73 “OSC” to “lattice size” ratio. MaxSup = 10% 
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Figure 74 Execution time in seconds. MaxSup 10% 
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Comparison with Incognito 

 

Figure 75 Nodes evaluated ratio. MaxSup = 10% 

 

 

Figure 76 Performance score of Incognito with respect to our approach 
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Figure 77 Size of solutions output by Incognito. MaxSup = 10% 
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