

Satisfying K-Anonymity:
New Algorithm and Empirical Evaluation

Romeo Issa

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Under the auspices of the Ottawa-Carleton Institute for Computer Science

Ottawa, Ontario, Canada

January 2009

© Romeo Issa, Ottawa, Canada, 2009

 iii

Abstract

Nowadays, clinical institutions are increasingly asked to make their raw data electroni-

cally available for research purposes. However, the same laws that prevent casual disclo-

sure of such data have also made it difficult for researchers to access the information they

need to conduct critical research. Therefore, several algorithms were developed with the

purpose of making that information anonymous, hence readily available for researchers.

In this thesis, we present the results of an empirical evaluation of algorithms that

aim to achieve k-anonymity under global recoding and hierarchical generalization,

namely, Datafly and Samarati’s algorithms. We conclude that on average the latter pro-

duces better results, but neither produces an optimal solution. Next, we propose a new

method to efficiently find the optimal solution, and we illustrate some programming op-

timizations. Finally, we compare our approach from an efficiency perspective to Incog-

nito, an efficient algorithm that finds the set of all possible solutions.

 iv

Acknowledgment

I would like to express my deep and sincere gratitude to my co-supervisors, Prof. Khaled

El Emam, Prof. Daniel Amyot, and Prof. Jean-Pierre Corriveau. This thesis would not

have been possible without their continuous help, guidance and support.

This research was conducted at the Electronic Health Information Laboratory as

part of the Collaborative Health Research Project on Performance Management at the

Point of Care: Secure Data Delivery to Drive Clinical Decision Making Processes for

Hospital Quality Control, funded by the Canadian Institutes of Health Research and the

Natural Sciences and Engineering Research Council of Canada. The work was done

mainly in collaboration with Dr. Khaled El Emam, with the much appreciated support of

Dr. Fida Kamal Dankar. Furthermore, many thanks go to my co-workers and the people

who provided the private data sets used in the experiments, namely: Elizabeth Jonker,

Elise Cogo, Sadrul Chowdhury, Regis Vaillancourt, Tyson Roffey, Jim Bottomley and

Mark Walker.

My sincere thanks also go to the official referees, Dr. Anil Somayaji and Dr. Car-

lisle Adams, for their detailed review and constructive criticism.

Above all, I want to thank Mr. Peter and Mrs. Siham Irani, and their family, who

welcomed me in their home during my stay in Canada so far, and who also provided the

kind of unconditional love and support a person would only expect from his own parents

and family.

 v

Table of Contents

Abstract ... iii

Acknowledgment .. iv

Table of Contents .. v

List of Tables ... vii

List of Figures ... viii

List of Acronyms ... x

Chapter 1. Introduction ... 1

1.1. Motivation ... 1

1.2. Research Objective ... 3

1.3. Thesis Contribution ... 4

1.4. Thesis Structure .. 4

Chapter 2. Background .. 6

2.1. Preliminary Concepts and Definitions .. 6

2.2. Previous Work ... 12
2.2.1 Samarati’s algorithm .. 13
2.2.2 Datafly algorithm ... 14
2.2.3 Visualization .. 15

2.3. Chapter Summary ... 16

Chapter 3. Empirical Evaluation .. 17

3.1. The Optimal Solution .. 17

3.2. Measuring Information Loss ... 18

3.3. Data Sets ... 21

3.4. Methodology ... 22

3.5. Results ... 22

3.6. Conclusion .. 26

 vi

Chapter 4. New Algorithm ... 27

4.1. Motivation ... 27

4.2. Observations ... 28
4.2.1 Prediction ... 28
4.2.2 Candidates .. 31

4.3. Limitation of Datafly and Samarati’s Algorithms .. 33

4.4. New Approach ... 34

4.5. Efficiency ... 42

4.6. Summary ... 44

Chapter 5. Optimizations ... 45

5.1. Four Main Optimizations .. 45
5.1.1 A: Numbers versus Strings ... 45
5.1.2 B: Flat hierarchies .. 47
5.1.3 C: Sorting always helps .. 48
5.1.4 D: Rollup .. 49

5.2. Overall Time Complexity .. 50

5.3. Summary ... 53

Chapter 6. Efficiency .. 54

6.1. Incognito ... 54

6.2. Comparison ... 55

6.3. Summary ... 59

Chapter 7. Conclusions .. 60

7.1. Contributions .. 60

7.2. Future work ... 61

References .. 62

Appendix A: Data Sets Details and Hierarchies .. 66

Appendix B: Additional Results .. 77
MaxSup = 1% ... 77

Empirical evaluation of Datafly and Samarati .. 77
Efficiency related graphs of our approach .. 81
Comparison with Incognito ... 83

MaxSup = 10% ... 84
Empirical evaluation of Datafly and Samarati .. 84
Efficiency related graphs of our approach .. 88
Comparison with Incognito ... 90

 vii

 List of Tables

Table 1 De-identified private table (medical data) .. 2
Table 2 Non de-identified publicly available table .. 2
Table 3 De-identified table .. 8
Table 4 2-anonymized via local recoding .. 8
Table 5 2-anonymized via global recoding .. 8
Table 6 Global recoding with suppression ... 8
Table 7 Hierarchical generalization with regard to the vector [0,1,1] 10
Table 8 (a) is a data set, and (b) is its generalization with respect to [0,0,1] 19
Table 9 Summary information of the data sets .. 21
Table 10 Auxiliary functions ... 36
Table 11 Pseudo code for getting the optimal solution candidates (GetOCS) 37
Table 12 Lattice size of the data sets ... 42
Table 13 Race - unique items ... 46
Table 14 Marital status - unique items ... 46
Table 15 Original data.. 46
Table 16 Transformed data .. 46
Table 17 GH Array – Race – (GHR) ... 47
Table 18 GH Array – Marital Status – (GHM) ... 47
Table 19 Original data.. 49
Table 20 The same data hashed and sorted .. 49

 viii

List of Figures

Figure 1 GH for Marital Status.. 7
Figure 2 GH for Race .. 7
Figure 3 GH for Age ... 7
Figure 4 A lattice ... 11
Figure 5 Visual comparison of Datafly and Samarati’s algorithms 15
Figure 6 Information loss comparison for Adult and CUP data sets 23
Figure 7 Information loss comparison for FARS and ED data sets 24
Figure 8 Information loss comparison for Pharm and Niday data sets 25
Figure 9 Lattice illustrating “Predictions” ... 29
Figure 10 Optimal solution candidates .. 32
Figure 11 Getting OSC - step A .. 38
Figure 12 Getting OSC - step B .. 38
Figure 13 Getting OSC - step C .. 39
Figure 14 Getting OSC - step D .. 39
Figure 15 Getting OSC - step E... 39
Figure 16 Getting OSC - step F ... 39
Figure 17 Getting OSC - step G .. 39
Figure 18 Getting OSC - step H .. 39
Figure 19 Getting OSC - step I .. 40
Figure 20 Getting OSC - step J ... 40
Figure 21 Getting OSC - step K .. 40
Figure 22 Getting OSC - step L... 40
Figure 23 Getting OSC - step M ... 40
Figure 24 Getting OSC - step N .. 40
Figure 25 Getting OSC - step O .. 41
Figure 26 Getting OSC - step P ... 41
Figure 27 “Number of evaluations” to “lattice size” ratio .. 43
Figure 28 “OSC” to “lattice size” ratio ... 44
Figure 29 Hashed GH for Marital Status... 47
Figure 30 Hashed GH for Race. .. 47
Figure 31 Execution time in seconds. Suppression limit of 5%. 51
Figure 32 Original search space size. .. 56
Figure 33 Nodes evaluated ratio. ... 56
Figure 34 Performance score of Incognito with respect to our approach. 58
Figure 35 Size of solutions output by Incognito. .. 58
Figure 36 GH of Native-Country .. 66
Figure 37 GH of Age ... 66
Figure 38 GH of Occupation ... 66
Figure 39 GH of Education ... 67

 ix

Figure 40 GH of Marital Status ... 67
Figure 41 GH of Race ... 67
Figure 42 GH of Sex ... 67
Figure 43 GH of Work Class ... 67
Figure 44 GH of Age ... 68
Figure 45 GH of Income ... 68
Figure 46 GH of Postal Code .. 68
Figure 47 GH of Gender .. 69
Figure 48 GH of Month of death ... 70
Figure 49 GH of Day of death ... 70
Figure 50 GH of Age ... 71
Figure 51 GH of Postal Code .. 71
Figure 52 GH of Admission date .. 72
Figure 53 GH of Admission date .. 73
Figure 54 GH of Admission time .. 73
Figure 55 GH of Postal Code .. 74
Figure 56 GH of DOB ... 74
Figure 57 GH of Baby Sex .. 75
Figure 58 GH of Baby’s Date of Birth .. 75
Figure 59 GH of Mother’s Date of Birth ... 76
Figure 60 Information loss comparison for Adult and CUP data sets. 1% 78
Figure 61 Information loss comparison for FARS and ED data sets. 1% 79
Figure 62 Information loss comparison for Pharm and Niday data sets. 1% 80
Figure 63 “Number of evaluations” to “lattice size” ratio. MaxSup = 1% 81
Figure 64 “OSC” to “lattice size” ratio. MaxSup = 1% .. 81
Figure 65 Execution time in seconds. MaxSup = 1% ... 82
Figure 66 Nodes evaluated ratio. MaxSup = 1% .. 83
Figure 67 Performance score of Incognito with respect to our approach 83
Figure 68 Size of solutions output by Incognito. MaxSup = 1% 84
Figure 69 Information loss comparison for Adult and CUP data sets. 10% 85
Figure 70 Information loss comparison for FARS and ED data sets. 10% 86
Figure 71 Information loss comparison for Pharm and Niday data sets. 10% 87
Figure 72 “Number of evaluations” to “lattice size” ratio. MaxSup = 10% 88
Figure 73 “OSC” to “lattice size” ratio. MaxSup = 10% .. 88
Figure 74 Execution time in seconds. MaxSup 10%... 89
Figure 75 Nodes evaluated ratio. MaxSup = 10% .. 90
Figure 76 Performance score of Incognito with respect to our approach 90
Figure 77 Size of solutions output by Incognito. MaxSup = 10% 91

 x

List of Acronyms

 Acronym Definition
 DM Discernability Metric
 DOB Date of Birth
 EC Equivalence classes
 FSA Forward Sortation Area
 GH Generalization Hierarchy
 HIPAA Health Insurance Portability and Accountability Act
 IL Information Loss
 k The anonymization level
 MaxSup Maximum Suppression allowed (or Suppression limit)
 NE Non-Uniform Entropy
 OSC Optimal Solution Candidates
 PHIPA Personal Health Information Protection Act
 PT Private Table
 QI Quasi-Identifier
 SDC Statistical Disclosure Control
 SSN Social Security Number
 UI Unique Items

Chapter 1. Introduction - Motivation 1

Chapter 1. Introduction

1.1. Motivation

Nowadays, clinical institutions are increasingly asked to make their raw, non-aggregated

data (also called microdata), electronically available for research purposes. However,

since such data may contain private personal information as in the case of medical re-

cords, the identity of the entities involved must remain confidential.

A telephone poll has been conducted in the United States in which 88% of the re-

spondents replied that to the best of their knowledge, no medical information about them-

selves had ever been disclosed without their permission. In a second question, 87% said

laws should prohibit organizations from giving out medical information without obtain-

ing the patient’s permission. Thus, the public would prefer that only employees and di-

rectly-involved people have access to their records and that these people be bound by

strict ethical and legal standards that prohibit further disclosure [34].

Nowadays, the disclosure of health information is strictly regulated in many juris-

dictions, and institutions are often legally required to apply privacy-enhancing transfor-

mations to health data prior to their disclosure to researchers. For example, the Health

Insurance Portability and Accountability Act (HIPAA) [19] in the United States, and the

Personal Health Information Protection Act (PHIPA) [30] in Canada, are some of the

well-known privacy regulations that protect the confidentiality of electronic healthcare

information.

In order to protect the privacy of the respondents to which the data refer, released

data were at first “de-identified” by removing all explicit identifiers such as names, ad-

dresses, and phone numbers. However this de-identified data could still have other im-

plicit identifying characteristics such as race, birth date, sex, and postal code which, when

considered all together, can uniquely, or almost uniquely pertain to specific individuals.

These sets of characteristics are often called quasi-identifiers.

Chapter 1. Introduction - Motivation 2

For instance, in one study, Sweeney estimated that 87.1% of the US population

can be uniquely identified by the combination of their 5-digit zip code, gender, and date

of birth because such records can be linked to publicly available databases such as voter

lists and driving records. To prove her point, Sweeney re-identified a series of supposedly

anonymous medical records including one belonging to William Weld – the governor of

Massachusetts at the time – using a voter list she purchased from the city of Cambridge,

Massachusetts for a mere $20 [21][37][38].

To illustrate the concept, consider Table 1, which exemplifies medical data to be

released. In this table, data have been de-identified by suppressing names and Social Se-

curity Numbers (SSNs) so not to explicitly disclose the identities of patients.

Table 1 De‐identified private table (medical data)

SSN Name Race DOB Sex ZIP Marital Status Disease

 asian 64/04/12 F 94142 divorced hypertension

 asian 64/09/13 F 94141 divorced obesity

 asian 64/04/15 F 94139 married chest pain

 asian 63/03/13 M 94139 married obesity

 asian 63/03/18 M 94139 married short breath

 black 64/09/27 F 94138 single short breath

 black 64/09/27 F 94139 single obesity

 white 64/09/27 F 94139 single chest pain

 white 64/09/27 F 94141 widow short breath

Table 2 Non de‐identified publicly available table

Name Address City ZIP DOB Sex Marital Status

…. …. …. …. …. …. ….

…. …. …. …. …. …. ….

Sue J. Doe 900 Market St. Utah 94142 64/04/12 F divorced

…. …. …. …. …. …. ….

Chapter 1. Introduction - Research Objective 3

However, notice that there is only one divorced female (F) born on 64/04/12 and living in

the 94142 area. This combination, if unique in publicly available databases such as in Ta-

ble 2, identifies the corresponding tuple as pertaining to “Sue J. Doe, 900 Market Street,

Utah”, thus revealing that she has reported hypertension [7].

In order to overcome the potential for a privacy breach, some researchers tried to

further de-identify the data by using techniques such as scrambling and swapping values

and adding noise to the data while maintaining an overall statistical property of the result.

However, this compromised the integrity, or truthfulness, of the information re-

leased [1][16][31][41].

In a different direction, intensive research has been directed towards the anonymi-

zation of the data. Although guaranteeing complete anonymity is obviously an impossible

task, the k-anonymity concept has been introduced: “A data release is said to satisfy k-

anonymity if every combination of values of quasi-identifiers can be distinctly matched

to at least k individuals in that release” [31].

1.2. Research Objective

Several algorithms were developed with the purpose of making de-identified data k-

anonymous [7][40], hence readily available for researchers. However, we are only con-

cerned with the methods that aim to achieve k-anonymity through full domain global re-

coding, hierarchical generalization and minimal suppression, as will be motivated in the

next chapter. Mainly, two of the most popular approaches that fall under the former

specifications and that were heavily used so far for clinical data [34][35] are Sweeny’s

Datafly algorithm [34] and Samarati’s algorithm [31].

So far no one has empirically evaluated these algorithms in order to recognize

which does a better job in balancing satisfactory privacy with minimum information loss,

or how their solution compares with respect to the optimal one. More importantly, these

approaches always rely on some heuristic that would approximate a “good” solution

rather than actually finding the optimal one with respect to any given preference or in-

formation loss metrics.

Other existing methods, such as Incognito [23], tend to find all the possible solu-

tions. However, a major drawback of such approaches is that the number of solutions

Chapter 1. Introduction - Thesis Contribution 4

they return is usually very high, and it is impractical to check the information loss of all

of them in order to find the optimal one.

Resolving the above issues is very important. Accordingly, by assuring better so-

lutions, researchers will benefit immensely, since the better the quality of the anonymized

data, and the less the information loss, the more valuable that data is for their research.

Therefore, our objective is to evaluate these algorithms and determine whether a better

one can be devised in order to efficiently find an optimal solution.

1.3. Thesis Contribution

The contribution of this thesis is twofold:

• First, we present the results of an empirical evaluation of Datafly and Samarati’s

algorithms.

• Second, we propose our own approach, a new method to efficiently find an opti-

mal solution.

1.4. Thesis Structure

In this thesis, we start by introducing some preliminary concepts and summarizing previ-

ous work related to k-anonymity. Then in chapter 3, after highlighting the methodology

and selecting the information loss metrics, we present the results of an empirical evalua-

tion. We show that, with respect to three information loss metrics, Samarati’s approach

usually gives better results than Datafly’s, and that overall, the optimal solution is rarely

attained by either algorithm.

Next, in chapter 4, we identify the set of solutions that are the candidates to be op-

timal with respect to the information loss metrics. Then we propose our own approach, a

new method to efficiently find this set and hence the optimal solution. In the process, we

illustrate why the two algorithms above, on many occasions, cannot find that solution.

Moreover, we discuss some programming optimisations that are used in our implementa-

tion.

Then, in chapter 6, we note that Incognito efficiently returns the set of all solu-

tions. The disadvantage is that this set is usually large, and it takes a lot of time to evalu-

Chapter 1. Introduction - Thesis Structure 5

ate all its content in order to locate the optimal solution. Nevertheless, it can be argued

that this approach can be altered to find the same set of solutions as our algorithm. There-

fore, we compare the two from an efficiency perspective and we show that in most cases

we outperform Incognito or have similar performance. Finally, in chapter 7, we state our

conclusions, recommendations and future work.

Chapter 2. Background - Preliminary Concepts and Definitions 6

Chapter 2. Background

In this chapter we will highlight the definitions and previous work that are relevant to our

research.

2.1. Preliminary Concepts and Definitions

In what follows, we assume the existence of an already de-identified private1 table PT to

be anonymized. The rows in PT may be referred to as tuples, and the table is assumed to

have at least k tuples. Moreover, the columns in the table are the attributes, and unless

otherwise mentioned, the set of PT’s attributes will be strictly considered as the quasi-

identifier.

(Def. 1) Quasi-identifier (QI): A set of attributes in PT that, in combination, can be

linked with external information to re-identify the respondents to whom information re-

fers [9][31]. Examples of common quasi-identifiers are [6][13][14][15]: dates (such as,

birth, death, admission, discharge, visit, and specimen collection), locations (such as,

postal codes, hospital names, and regions), race, ethnicity, languages spoken, aboriginal

status, and gender.

One of the methods applied in order to satisfy k-anonymity is the generalisation of data

so that the tuples in PT can be distinctly matched to at least k other tuples. Because of the

nature of clinical data, we are mainly concerned with hierarchical generalization.

(Def. 2) Hierarchical generalization: The act of generalizing tuples in PT to satisfy k-

anonymity, with regard to the well-defined hierarchies of each attribute [31].

1 By private we mean the data belongs to some institution, as opposed to publicly available data.

Chapter 2. Background - Preliminary Concepts and Definitions 7

(Def. 3) Generalization hierarchy (GH): Hierarchies related to each attribute are as-

sumed to exist, where leaves consist of the data that could be found in PT, and the rest of

the levels are generalization of these data accordingly [5][7][31].

Examples of generalization hierarchies are given in Figure 1 to Figure 3. The

higher the attribute, the more general it is.

Figure 1 GH for Marital Status

Figure 2 GH for Race

Figure 3 GH for Age

Not_Released

Been Married

Married Divorced Widow

Never
Married

Single

Person

Asian Black White

[0‐100[

[0‐50[

[0‐10[

[0‐5[

...

[5‐10[

...

[10‐20[

[10‐15[

...

[15‐20[

...

[20‐30[

[20‐25[

...

[25‐30[

...

[30‐40[

[30‐35[

...

[35‐40[

...

[40‐50[

[40‐45[

...

[45‐50[

...

[50‐100[

...

...

...

Chapter 2. Background - Preliminary Concepts and Definitions 8

Generalization of PT can happen either by local recoding or global recoding.

(Def. 4) Global recoding: The act of generalizing an attribute in PT, through all the

tuples, to the same level in the respective generalization hierarchy of that attribute [7].

(Def. 5) Local recoding: As opposed to global recoding, this is a cell-level generaliza-

tion of each tuple in PT independently [7][40].

Table 3 De‐identified table

Race Marital Status Age

asian married 47

black single 21

asian married 49

white widow 45

white married 45

white married 47

black single 24

asian married 49

Table 4 2‐anonymized via local recoding

Race Marital Status Age

person married 47

black single [20-25[

asian married 49

white been married 45

white been married 45

person married 47

black single [20-25[

asian married 49

Table 5 2‐anonymized via global recoding

Race Marital Status Age

asian been married [45-50[

black never married [20-25[

asian been married [45-50[

white been married [45-50[

white been married [45-50[

white been married [45-50[

black never married [20-25[

asian been married [45-50[

Table 6 Global recoding with suppression

Race Marital Status Age

asian married [45-50[

black single [20-25[

asian married [45-50[

white married [45-50[

white married [45-50[

black single [20-25[

asian married [45-50[

Chapter 2. Background - Preliminary Concepts and Definitions 9

Table 4, Table 5 and Table 6 are generalizations of Table 3 with respect to the generaliza-

tion hierarchies found in Figure 1, Figure 2 and Figure 3. They are all considered to sat-

isfy 2-anonymity.

Clearly, we can see in Table 4 that, via local recoding, we have a minimal loss of

information. However, we will not consider this method in this thesis for two main rea-

sons: (i) this approach has been proven to be NP-Hard [26] and (ii) the output is not prac-

tical to be used for research on clinical data under the existing statistical software. These

software mainly expect all the data in a column to have similar format as opposed to the

case in Table 4 where, in the age attribute, some tuples use a number while others use an

interval. The regression procedure for example, which is fairly popular, cannot be proc-

essed within this format.

Therefore, we shift our attention to global recoding. Table 5 and Table 6 are typi-

cal examples. In Table 5, we simply generalize one or more variables throughout the ta-

ble. The reason why we generalized marital status and age (only) once (one level up the

hierarchy) with respect to the corresponding GHs is: (a) it now satisfies 2-anonymity, and

(b) additional generalizations, e.g. two levels up for the age, could have just as well satis-

fied 2-anonymity but at the cost of unnecessary information loss. Therefore, the goal is to

find the minimal generalization required to satisfy k-anonymity while preserving as much

information as possible.

(Def. 6) Information loss metrics: The metrics used to calculate by how much the data

in the result table differ from the original table after generalization, therefore how much

information we lost. There exist many metrics to give an estimate of such loss

[4][10][17][39][44].

(Def. 7) Minimal generalization: Given a table PT, different possible generalizations

exist. Not all generalizations, however, can be considered equally satisfactory. For in-

stance, the trivial generalization bringing each attribute to the highest possible level of

generalization, thus collapsing all tuples in PT to the same list of values, provides k-

anonymity at the price of a huge information loss [31].

Chapter 2. Background - Preliminary Concepts and Definitions 10

(Def. 8) Tuple suppression: The act of removing a tuple from a table PT [6][8][31].

In Table 6, tuple suppression was used as a complementary approach to hierarchical gen-

eralization. A suppression of one or more tuples is used to “moderate” the generalization

process when a limited number of outliers (i.e., tuples with fewer than k occurrences)

would force a great amount of generalization [31]. For example, in Table 6, by removing

only one tuple, we were able to satisfy k-anonymity without the need to generalize the

marital status as in Table 5, thus overall, losing less information.

Obviously, we are not interested in the suppression of more tuples than necessary

to achieve k-anonymity at a given level of generalization. Therefore, this approach should

be controlled. That is why we suppose that we will be provided a suppression limit.

(Def. 9) Suppression limit: The maximum number of tuples that we are allowed to

suppress in order to achieve k-anonymity [22].

Now that the main approaches have been introduced, we will go through additional im-

portant concepts and definitions.

(Def. 10) Distance vector: This is the measure of the level of generalizations of each

attribute. For example, for Table 3 (for convenience, now partly replicated in Table 7 be-

low), the vector [0,1,1] suggests to generalize, in all rows, the second attribute once re-

garding to its corresponding hierarchy (Figure 1), and the third attribute once regarding

the hierarchy in Figure 3, while the first attribute (Race here) remains intact [31].

Table 7 Hierarchical generalization with regard to the vector [0,1,1]

Race Marital Status Age

asian married 47

black single 21

asian married 49

...

[0,1,1]
Race Marital Status Age

asian been married [45-50[

black never married [20-25[

asian been married [45-50[

...

C

(D

up

am

co

m

lo

(D

to

eg

(D

to

(D

F

T

(D

Chapter 2. Back

Def. 11) La

p as a hierar

mple, consid

orresponding

mum allowed

owing [31]:

Def. 12) Ge

or to the max

gy. In Figure

Def. 13) Ve

or. For exam

Def. 14) La

igure 4 has

The other vec

Def. 15) Ve

lvl

lvl

lvl

lvl

kground - Preli

ttice: This i

rchy going f

der a table s

g hierarchie

d generalizat

eneralization

x (topmost)

e 4, one strat

ctor length:

mple, the leng

ttice level:

4 levels. At

ctors are at le

ctor height:

l 3

l 2

l 1

l 0

iminary Concep

is a collectio

from the nul

similar to Ta

s of the firs

tion is the v

Fig

n strategy: E

vector with

tegy could b

: The measu

gth of the ve

The set of v

level 0, we

evels 1 and 2

: The level in

epts and Defini

on of distanc

ll vector to t

able 3 but w

t two attribu

vector [1,2]

gure 4 A

Every path i

respect to th

be {[0,0]

ure of total g

ector [0,2,1]

vectors with

have the vec

2 respectivel

n the lattice

itions

ce vectors an

the max allo

without the ag

utes in Figur

and the cor

lattice

in the lattice

he correspon

[0,1] [1,1

eneralization

is 3.

equal length

ctor [0,0], an

ly.

where a vec

nd their inte

owed general

ge column.

re 1 and Fig

rresponding

e going from

nding arrows

1] [1,2]}

ns implied b

h in the latti

nd at level 3

ctor resides.

erconnection

lizations. Fo

According t

gure 2, the m

lattice is the

m the bottom

s is called a

[31].

by a distance

ice. The latti

3 the vector

11

ns, set

or ex-

to the

maxi-

e fol-

m vec-

strat-

e vec-

ice in

[1,2].

Chapter 2. Background - Previous Work 12

(Def. 16) Unique items: The distinct data items belonging to an attribute. For example,

in Table 3, the unique items of the variable Race are: Asian, Black and White. These

unique items are as well leaves of the corresponding hierarchy (Figure 2).

(Def. 17) Equivalence classes (EC): The tuples of QI that are uniquely distinguishable

from other tuples. For example, in Table 5, we have 3 equivalence classes: {asian, been

married, [45-50[}, {black, never married, [20-25[} and {white, been married, [45, 50[}.

(Def. 18) Frequency Set: The frequency set of PT is a mapping from each EC in PT to

the total number of tuples equivalent to this EC in T (the size of EC) [23].

(Def. 19) Optimal solution: The vector used to generalize the table PT in a way that sat-

isfies k-anonymity while having the minimal information loss possible (when compared

to all other possible solution vectors) with respect to a given metric.

2.2. Previous Work

Many studies have been conducted towards achieving k-anonymity. Consequently, many

strategies and methods were created in order to accomplish that task [7]. Nevertheless, as

illustrated earlier, the most practical for medical data are the methods that aim to attain k-

anonymity through global recoding (Def. 4), hierarchal generalization (Def. 2), and

minimal suppression (Def. 7). These rules stem from a consensus based on the experi-

ences of the authors analysing and de-identifying clinical data. Therefore, the methods

that do not comply with these properties, including Bayardo and Agrawal’s K-Optimal

approach [4] which does not use hierarchical generalization, and the algorithms that uses

local recoding [2][11][17][24][43][44], are not of any interest to our research and will be

completely disregarded.

Iyengar [20] proposed an approach based on genetic algorithms and solves the k-

anonymity problem using an incomplete stochastic search method. As stated by the au-

Chapter 2. Background - Previous Work 13

thor, the method does not assure the quality of the solution proposed, but experimental

results show the validity of the approach. Moreover, Winkler [42] proposes a method

based on simulated annealing for finding locally minimal solutions, which requires high

computational time and does not assure the quality of the solution [7]. Therefore, since it

is known that there is no guarantee on the quality of their output, we will not discuss

these two approaches any further.

LeFevre, DeWitt and Ramakrishnan [23] propose an algorithm for computing k-

minimal generalization, called Incognito, which takes advantage of a bottom-up aggrega-

tion along dimensional hierarchies and a priori aggregate computation. However, a major

drawback of this approach is that it returns the set of all possible solutions in the lattice,

and thus it is impractical to check the information loss of all of them in order to find

the optimal one. Nevertheless, the method used to retrieve this set is interesting and

proven to be efficient. We will revisit this approach in more detail in chapter 6.

Finally, two of the most popular approaches are Samarati’s algorithm and the

Datafly algorithm.

2.2.1 Samarati’s algorithm

Samarati makes the assumption that the best solutions are the ones that result in a table

having minimal generalizations. That is, the vector solution(s) with the minimal height

possible. Therefore, her algorithm is meant to search the lattice and identify the lowest

level on which one or more solution vectors are found (i.e. the generalizations that satisfy

k-anonymity with minimal suppression).

The following is a summary of Samarati’s algorithm:

1. Consider a table T = PT[QI] to be generalized (takes into consideration only the

quasi-identifiers fields).

2. Consider the middle height in the area of search (area of search is initially the

whole lattice).

3. Check if at that height there is at least one node that satisfies k-anonymity with

minimum suppression (the minimum suppression variable would be already set)

then,

Chapter 2. Background - Previous Work 14

a. If not the minimum, specify the upper half as the new area of search.

b. If minimum, specify the lower half as the new area of search.

4. If the area of search consists of more than one level in the lattice, repeat step 2.

Otherwise, return a solution residing on this level.

In other words, Samarati’s approach takes advantage of the fact that if at any level in the

lattice a solution can be found, then all the levels above this one must contain solutions

and therefore only the lower levels need to be checked. Hence, the algorithm goes

through the lattice with a binary search, always cutting the search space in half, going

down if a solution is found at a level, or up if not. Eventually, the algorithm finds the so-

lution(s) with the lowest height, thus with the least generalizations.

Afterwards, as Samarati suggests, the best solution on that level (i.e. with the least

information loss) with respect to a given preference (i.e. information loss metric) is cho-

sen.

2.2.2 Datafly algorithm

Sweeney considers that the best solutions are the ones that are attained after generalizing

the variables with the most distinct values (unique items). The search space is again the

whole lattice; however, this approach only goes through a very small number of nodes in

the lattice to find its solution. Thus, from a time perspective, this approach is very effi-

cient (hence the name Datafly).

Here is a summary of the Datafly algorithm:

1. Consider a table MT = PT[QI] (takes into consideration only the quasi-identifiers

fields)

2. While k-anonymity is not achieved and the count of the remaining rows that do

not comply to k-anonymity is more than k:

a. Get the number of distinct values of each attribute in MT

b. Generalize the attribute with the most distinct values

3. Suppress the remaining rows

Chapter 2. Background - Previous Work 15

In other words, at each node in the lattice, check in the data which attribute has the most

unique items and generalize that attribute one level up according to the corresponding

hierarchy (i.e. go up one level in the lattice). Keep doing this until there are fewer than k

rows not complying to k-anonymity, then suppress these remaining rows.

It is worth noting that in case the algorithm finds, at any point, many attributes

having the same number of unique items, then one is chosen randomly.

It is easy to incorporate the suppression limit MaxSup in this procedure. In (2), in-

stead, simply check if the count of the remaining rows that do not comply with k-

anonymity is more than MaxSup. With this small alteration, the main idea of the algo-

rithm remains intact. In addition, we gain a common ground between Datafly and

Samarati’s algorithms, which improves the conditions of the comparison.

2.2.3 Visualization

Figure 5 Visual comparison of Datafly and Samarati’s algorithms

Chapter 2. Background - Chapter Summary 16

Figure 5 above illustrates a plausible lattice, where the nodes filled in gray are the possi-

ble solutions. Note that these solutions were selected for the sole purpose of emphasizing

the output of both algorithms.

Samarati’s solution is on level 3 of the lattice; the level where the vectors are

highlighted in bold black lines. Datafly’s solution path is the arrow covering [0,0,0,0]

[1,0,0,0] [1,0,0,1] [1,0,1,1] [1,1,1,1]

In this particular example of a lattice and corresponding solutions, Samarati’s re-

sult is strictly restricted to the solutions found on level 3, namely: [0,1,1,1] , [0,2,1,0] ,

[1,2,0,0]. On the other hand, Datafly solution could have been attained through any strat-

egy in the lattice, including the ones on level 3, only guided by the number of unique

items in each variable. In this case, the solution reached is on level 4.

2.3. Chapter Summary

In this chapter, we defined important preliminary concepts, and we stated the required

algorithms’ properties that are the most practical when working with clinical data,

namely global recoding, hierarchical generalizations and minimal suppression limit. We

identified three interesting approaches, and then out of these we highlighted Datafly and

Samarati’s algorithm with a brief summary and visualisation (Incognito will be detailed

in chapter 6).

We showed, as Samarati suggested in [31], that Datafly ultimately walks through

a specific generalization strategy in the lattice. From Samarati’s perspective, this may be

only the local minimum with respect to this strategy, not necessarily the global minimum.

By global minimum, she means the solution with the smallest length (generalizations) in

the lattice.

Datafly has the advantage of hitting any possible path in the lattice while

Samarati’s approach has the edge of hitting the solution with minimal length (with the

assumption that the optimal solution has more probability to be around that area). It is

worthwhile to compare the two and see which is getting better results ultimately, and how

their results compares to the optimal one with regard to certain metrics. This will be the

topic of the next chapter.

Chapter 3. Empirical Evaluation - The Optimal Solution 17

Chapter 3. Empirical Evaluation

In this chapter, we present the results of an empirical evaluation of Datafly and

Samarati’s approach, comparing their outputs to the optimal one. Although these algo-

rithms do not necessarily locate the optimal solution, if they are found to produce solu-

tions that are sufficiently close to the optimal one, then a case can be made for using them

in practice, given that they are simple and well established and understood, not to men-

tion that Datafly can execute very quickly on large data sets.

Incognito finds the set of all solutions, and consequently it always locates the op-

timal one. Given that this section focuses on optimality rather than on efficiency, Incog-

nito will not be a part of this first experiment.

3.1. The Optimal Solution

The optimal solution with respect to any metric can be computed by running a brute force

algorithm (for now). The idea is to go through the whole lattice node by node, check if a

certain node is a solution (i.e. it satisfies k-anonymity with minimal suppression), and

calculate its information loss with respect to a given metric. Eventually, an optimal solu-

tion is the one with the least information loss.

We also specify an “acceptable suppression threshold (MaxSup)”, i.e. the suppres-

sion limit discussed in (Def. 9), provides the maximum number of records which can be

suppressed from the data set. This value can be set taking into account the types of sup-

pression techniques that can be applied to the data and compensate any power2 loss from

having missing records [25]. Therefore, as long as the number of suppressed records is

below MaxSup, suppression should not play a significant role in deciding the optimality

of the solution.

2 The power to retrieve critical information or conclusions out of the anonymized data.

Chapter 3. Empirical Evaluation - Measuring Information Loss 18

3.2. Measuring Information Loss

In the literature, there are many definitions of information loss measures. According to

Domingo-Ferrer [10], information loss can be obtained by comparing the original data to

the masked one, the more similar the data is, the less is the information loss. A similar

definition is given by Xu et al. in [44]: the information loss measures “how well the gen-

eralized tuples approximate the original ones”.

Nowadays, there is no single information loss metric that is globally accepted by

the community. However, when criticising the current metrics, researchers have implic-

itly pointed out many criteria that a good metric should satisfy [4][10][13][44]. For this

reason, we picked three metrics that cover the majority of these criteria.

An information loss metric that takes into account the height of the generalization

hierarchy is Precision or Prec. Prec was introduced by Sweeney [39] as an information

loss metric that is suitable for hierarchical data. For every attribute, the ratio of the num-

ber of generalization steps applied to the total number of possible generalization steps

(total height of the attribute hierarchy) gives the amount of information loss for that par-

ticular variable. For example, if age is generalized from a value in years to a value in five

year intervals, then the information loss value in that particular cell in the table is ¼ (one

step generalization over the number of total generalizations allowed. See Figure 3). Total

Prec information loss is the average of the information loss across all quasi-identifiers in

the data set. As a result, the more a variable is generalized, the higher the information

loss. Moreover, variables with more generalization steps (i.e., more levels in their genera-

lization hierarchy) tend to have less information loss than ones with shorter hierarchies.

Another commonly used information loss metric is the discernability metric or

DM [4]. DM assigns a penalty to every record that is proportional to the number of

records that are indistinguishable from it, and following the same reasoning, DM assigns

a penalty equal to the whole data set for every suppressed record (since suppressed

records are indistinguishable from all other records).

The DM metric is calculated as follows:

ܯܦ ൌ ෍ ଶ|ܥܧ|

|ா஼|ஹ௞

൅ ෍ |ܥܧ||ܦ|
|ா஼|ழ௞

where |EC| is the size of an equivalence class, and D is the total number of records.

Chapter 3. Empirical Evaluation - Measuring Information Loss 19

Table 8 (a) is a data set, and (b) is its generalization with respect to [0,0,1]

Race Marital Status Age

asian single 18

asian single 18

asian single 18

asian single 13

asian single 19

black married 18

black married 22

black married 26

black married 20

asian single 22

Race Marital Status Age

asian single [15-20[

asian single [15-20[

asian single [15-20[

asian single [10-15[

asian single [15-20[

black married [15-20[

black married [20-25[

black married [25-30[

black married [20-25[

asian single [20-25[

(a) (b)

However, DM is not monotonic within a generalization strategy due to the impact of the

second term incorporating suppression. The example in Table 8 shows a data set and its

generalization with respect to the vector [0,0,1]. For Table 8 (a) to satisfy 3-anonymity,

seven out of ten records need to be suppressed, and therefore the DM value is 79. For Ta-

ble 8 (b), the DM value is 55. This reduction in information loss as we generalize means

that we would select the k-anonymity solution with the maximum generalization as the

best one, which is counter-intuitive. Moreover, even with the introduction of MaxSup

where we specify the accepted margin of suppression in order to achieve the least gener-

alizations, DM could still favour less suppression over more generalization. It therefore

makes sense not to include the suppression penalty in DM. In other words, we will use a

modified version of DM as follows:

כܯܦ ൌ ෍|ܥܧ|ଶ

The DM * value for (a) in Table 8 is 16 and for (b) is 28.

Chapter 3. Empirical Evaluation - Measuring Information Loss 20

The concept behind the DM has been criticized because it does not measure how

much the generalized records approximate the original records [44]. For example, if we

have a quasi-identifier such as age and six records with the following age values: 9, 11,

13, 40, 42, and 45, the minimal DM * value is when all of the records are grouped into

three pairs: <9,11>, <13,40>, and <42,45> (to achieve 2-anonymity). The criticism is that

this grouping has a very wide range and that a more sensible grouping would have only

two equivalence classes: <9,11,13> and <40,42,45>. In our context this criticism is not

applicable, since we assume that all data are hierarchical and that the end-user would

specify the age grouping in the generalization hierarchy.

The discernability metric has also been criticized because it does not give intuitive

results when the distributions of the variables are non-uniform [24]. For example, consid-

er two data sets, the first with 1000 records where 50 are male and 950 are female, and

the second with 500 males and 500 females. If the gender is generalized to “Person”, then

intuitively losing the 950 females should result in low information loss since the female

records dominate the data set, and in this case having “Person” in the data is almost as

good as having “Female”. However, the DM * values show that the information loss for

both data sets is the same after generalization.

One information loss metric based on entropy [41] has recently been extended to

address the non-uniform distribution problem [13].

ܧܰ ൌ ෍ ෍ െlogଶ

௥

௝ୀଵ

௡

௜ୀଵ

Pr ቆ
ܴ௜ሺ݆ሻ
തܴ௜ሺ݆ሻቇ

This calculates the Non-uniform Entropy (NE), where n is the number of rows in the data

set, r the number of QIs, and Pr is the probability that a particular value in the row Ri is to

be found in the generalized set in തܴ௜.

Returning to our example, the 50/950 male/female distributed data set has a NE of

286 bits whereas the 500/500 male/female distributed data set has a NE of 1000 bits.

Therefore, the information loss in the former data set is much lower, and as stated above,

this makes more intuitive sense.

Chapter 3. Empirical Evaluation - Data Sets 21

3.3. Data Sets

The data sets used for the comparison are summarized in Table 9. The first three are pub-

licly available for research, where the first (Adult) has been frequently used for similar

studies [4][23]. The last three are real hospital and registry data sets and can be consid-

ered highly representative. The maximum height of a hierarchy is shown in Table 9 be-

tween parentheses near the corresponding attribute (More details in Appendix A).

Table 9 Summary information of the data sets

Description Quasi-Identifiers # Rows

Adult
The adult data set from the UC Irvine machine learning data
repository. This is an extract from the US census:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult

• Age (3)
• Profession (2)
• Education (2)
• Marital status (2)
• Position (2)
• Race (1)
• Sex (1)
• Country (3)

30,162

CUP
Data from the Paralyzed Veterans Association on veterans
with spinal cord injuries or disease:
http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

• ZIP code (5)
• Age (4)
• Gender (2)
• Income (3)

63,411

FARS
Department of Transportation fatal crash information:
http://www-fars.nhtsa.dot.gov

• Age (4)
• Race (1)
• Month of Death (3)
• Day of Death (2)

101,034

Pharm
Prescription records from the Children’s Hospital of Eastern
Ontario pharmacy for 18 months. This is for inpatients only
and excludes acute cases. This data is disclosed to commercial
data aggregators.

• Age (4)
• Postal code (FSA) (3)
• Admission date (6)
• Discharge date (6)
• Sex (1)

63,441

ED
Emergency department records from Children’s Hospital of
Eastern Ontario for July 2008. This data is disclosed for the
purpose of disease outbreak surveillance and bio-terrorism
surveillance.

• Admission date (3)
• Admission time (7)
• Postal Code (7)
• Date of Birth (6)
• Sex (1)

7,318

Niday
A newborn registry for Ontario for 2006-2007:
https://www.nidaydatabase.com/info/index.shtml

• Maternal postal code (7)
• Baby DoB (4)
• Mother DoB (6)
• Baby sex (2)
• Aboriginal status (2)
• Language (2)

124,933

Chapter 3. Empirical Evaluation - Methodology 22

3.4. Methodology

We aim to compare the optimal solution to the output of Datafly and Samarati with re-

spect to the three information loss metrics mentioned in section 3.2.

For each data set, the maximum suppression is set at 1%, 5%, and 10% of the to-

tal number of records. Therefore, we basically have 3 different experiments overall.

In practice, a minimal value of k=3 is sometimes recommended [10][12][41], but

more often a value of k=5 is used [33][32][28][29]. To ensure a reasonable amount of

variation in our analysis we use values of k between 2 and 15 inclusively.

As stated earlier, Datafly has a random element in the choice of its solution. When

two or more quasi-identifiers have the same maximum number of unique items, one at-

tribute has to be chosen at random [34]. In order to overcome this randomness, Datafly

was processed 101 times for every value of k. For every iteration, the information loss is

calculated with regard to all metrics. Finally, the average information loss is computed

for every value of k with respect to each metric.

3.5. Results

The purpose is to highlight, in a readable manner, how far is the output of the two chosen

algorithms from the optimal one. Therefore, the information loss of the optimal solution

is considered as the baseline of the comparison, and Datafly and Samarati’s outputs are

represented as a percentage of that baseline.

For example, in the following charts, if Datafly’s solution has an information loss

value of 100% it means that the optimal solution and Datafly’s output have exactly the

same information loss. Alternatively, if it is 200% then that means the information loss of

Datafly is twice as large.

Chapter 3. Empirical Evaluation - Results 23

Figure 6 Information loss comparison for Adult and CUP data sets

Chapter 3. Empirical Evaluation - Results 24

Figure 7 Information loss comparison for FARS and ED data sets

Chapter 3. Empirical Evaluation - Results 25

Figure 8 Information loss comparison for Pharm and Niday data sets

Chapter 3. Empirical Evaluation - Conclusion 26

The information loss results on all data sets with respect to the aforementioned metrics,

for the 5% suppression limit, are presented above in Figure 6, Figure 7 and Figure 8. The

x-axis shows the value of k ranging from 2 to 15, while the y-axis is the information loss

percentage of the algorithms with respect to each metrics separately.

The remaining information loss results for the 1% and 10% suppression limit are

included in Appendix B and are consistent with those shown here.

3.6. Conclusion

It is clear from the graphs above that overall, and across multiple data sets, the perform-

ance of Datafly and Samarati did vary significantly depending on the data set, the value

of k, and the suppression limit. However, on average, Samarati produced better results

than Datafly with respect to all information loss metrics. Moreover, for the Prec metric,

there is less of a difference between the optimal solution and Samarati’s, and this is due

to the nature of Prec which takes into account the height of the generalization hierarchy.

On the other hand, we also notice that the optimal solution is rarely attained by ei-

ther algorithm, especially in the case of DM and NE, and in most cases the difference is

very significant. Hence, because of the medical nature of the researches conducted on the

anonymised clinical data, there is zero tolerance for mistakes and thus a better approach

is needed, one that actually searches for the optimal solution as opposed to a mere ap-

proximation.

Furthermore, since the search space is limited to the lattice, and since there exist

many helpful insights on the nature of this search problem, such an algorithm should be

feasible.

Chapter 4. New Algorithm - Motivation 27

Chapter 4. New Algorithm

4.1. Motivation

The results from the previous chapter show that overall, the optimal solution has signifi-

cantly lower information loss than the output of the algorithms studied so far. However,

although a brute force approach can locate the solution needed, the procedure is very

slow and impractical, especially when we process large data sets with bigger lattices.

Moreover, although other approaches that return the set of all possible solutions might be

efficient, the search for the optimal one within this likely huge set is impractical. Hence,

there is definitely a need to develop an enhanced algorithm that can efficiently find that

optimal solution.

Still, looking at the properties of this problem, we see that it is only a search prob-

lem within a very precise search space, the lattice. Nevertheless, due to the cost of evalu-

ating each node in the lattice to see if it satisfies k-anonymity with minimal suppression,

any approach that would try to go through a relatively large number of nodes within that

lattice while searching for the optimal solution would be considered impractical, time

wise. Actually, after observing our implementation of all the above algorithms, we found

that the function Satisfy(V), which checks if a vector V satisfies k-anonymity with mini-

mal suppression (where k and MaxSup are already set by the user), consumes almost all

of the overall time of the process. Therefore, for any approach to be practical, it needs to

deal with the time complexity of that function first. In what follows, we will refer to the

evaluation of a node V to see if it satisfies k-anonymity with minimal suppression, as Sat-

isfy(V).

The aforementioned two algorithms deal with this issue in a heuristic manner.

That is, they cut large parts of the search space based on pre-made assumptions or heuris-

tics, while unsure at this point whether the rest of the nodes actually contain the optimal

solution or not. That way, they ultimately lower the number of calls to that function, and

Chapter 4. New Algorithm - Observations 28

therefore the overall computation time, at the price of a relatively poor output as shown

from the results of the previous chapter.

Therefore, before thinking of a practical approach to find the optimal solution,

one has to address the above probelm. Our main attempt to solve this particular issue is

twofold:

1- Enhance the implementation of Satisfy(V) and make that function as efficient as

possible.

2- Minimize the number of invocations of the function Satisfy(V) without cutting

any part of the search space and while keeping full confidence in finding the op-

timal solution.

(1) is the obvious approach and is actually strictly related to the development phase, not

to any of the algorithms per se. Nevertheless, it proved to be very critical and allowed us

to consider searching the whole lattice. In chapter 5, we show some of the optimizations

that were very helpful in our implementation.

On the other hand, (2) at first seems to be an abstract goal. However, in the next

sections we show that simple observations, and a bit more insights and knowledge of the

overall nature of the problem at hand, can make (2) actually very simple.

4.2. Observations

4.2.1 Prediction

Samarati in [31] proved that: “the number of tuples that need to be removed to satisfy a k-

anonymity requirement can only decrease going up in a strategy. Hence, the cardinality

of the table enforcing minimal required suppression to satisfy a k-anonymity constraint

can only increase going up in a strategy”. From this she also proves that: “if a table Tz

with a distance vector DVi,z cannot provide k-anonymity by suppressing a number of tu-

ples lower than MaxSup, then also all tables Tj such that DVi,j < DVi,z cannot”.

This means that for any two nodes in the lattice that are directly connected, say V1

and V2, where V2 is a generalization of V1 (i.e. one step higher in the lattice within the

Chapter 4. New Algorithm - Observations 29

same strategy), if V1 satisfies k-anonymity with minimal suppression, V2 must as well be

a solution and thus also satisfy these requirements.

The contraposition is also true. That is, if V2 is a generalization of V1, and V2 can-

not satisfy k-anonymity with minimal suppression, then V1 is not a solution either. For-

mally we get two equations out of this:

a) if (Vi < Vj AND Satisfy(Vj) == false) Satisfy(Vi) = false.

b) if (Vj < Vi AND Satisfy(Vj) == true) Satisfy(Vi) = true.

Where by Va < Vb we mean that Vb is a generalization of Va , and where Satisfy(V) is

a function that evaluates if a vector V satisfies k-anonymity with minimal suppression

and returns true or false accordingly.

Figure 9 Lattice illustrating “Predictions”

Chapter 4. New Algorithm - Observations 30

If we correctly use the above formulas, we can end up with a powerful “prediction3” pro-

cedure. The idea is that by knowing if one vector (or node in the lattice) is a solution or

not (satisfies k-anonymity with minimal suppression), we can truly deduce if the vectors

of the same strategy are solutions or not without the need to actually them.

To illustrate this, consider the lattice in Figure 9. The vector [1,1,1,2] on level 5

was evaluated and was found to be a non-solution (and highlighted in light-gray, the

color pointing to non-solutions in this example). According to equation (a) above, the

vectors that are strictly related to this vector and are one level lower in the lattice are as

well non-solutions, namely {[0,1,1,2], [1,0,1,2], [1,1,0,2], [1,1,1,1]}. However, since we

now know that these are not solutions, we can run the same logic on each one of them. In

other words, without reprocessing Satisfy([0,1,1,2]), we know it is a non-solution, and

thus all the nodes related to it and one level lower in the lattice are also non-solutions.

Accordingly, we end up deducing that all the light-gray nodes in Figure 9 are non-

solutions.

In addition, the vector [0,4,0,1] on level 5 in the same lattice was processed by the

“satisfy” function and was found to be a solution, and was highlighted in dark-gray. Ac-

cording to equation (b), the vectors that are strictly related to it and one level higher in the

lattice are solutions too, namely {[0,4,0,2], [0,4,1,1], [0,5,0,1], [1,4,0,1]}. Again, since

we now know that the vectors in this set are all solutions, we can apply the logic of equa-

tion (b) to each one of them. We end up predicting all the dark-gray nodes in Figure 9 as

solutions.

Note that we did not need to invoke the “Satisfy” function for any of the predic-

tions. We called it only twice and ended up tagging the lattice with 48 solutions and non-

solutions. As the whole lattice has 84 nodes, we now know the status of more than 57%

of the nodes, and already saved ourselves 46 expensive evaluations of the vectors. This

“prediction” mechanism is clearly a powerful tool that will allow us to further investigate

the whole lattice and search for an optimal solution while minimizing the number of

evaluations.

3 The word “prediction” is somewhat weak here since there is no real prediction, but logical deduction.

Chapter 4. New Algorithm - Observations 31

4.2.2 Candidates

The next step is to locate where in the lattice the optimal solution is likely to reside. By

optimal solution we mean the solution with minimal information loss with respect to a

certain metric.

As argued earlier, a metric that correctly calculates the information loss, after

generalization and suppression, needs to take many properties of the data into considera-

tion. More importantly, such an InfoLoss(V) function needs to be monotonic4 even while

giving a penalty for suppressed rows.

c) if (Vi < Vj) (InfoLoss(Vj) ≥ InfoLoss(Vi))

The above equation means that if a vector Vj is a generalization of Vi, then the informa-

tion loss caused by the former is greater than or equal to the information loss caused by

the latter. This is the case in all the information loss metrics we chose in this thesis.

The reasoning behind this observation is rather simple. Consider the example in

Figure 9. The two vectors [0,4,0,1] and [0,5,0,1], on levels 5 and 6 respectively, are solu-

tions. Since these vectors are connected within the same strategy, the one with more gen-

eralizations will definitely cause more (or equal) information loss. Also, since the user

specifies the suppression limit, this means any suppression under that limit is accepted

and has been compensated for already. Hence, if any penalty should be applied on the

suppressed rows, it should be in a way that respects equation (c) above.

Note that, the above logic is not true for unrelated vectors. That is, if two vectors

do not belong to the same strategy, even if one has higher generalization with respect to

the hierarchies, we cannot infer that it causes more or less information loss.

Based on (c), one would assume that the set of solutions that are candidates to be

an optimal one are the set of all the “local minima” in the lattice, where by “local mini-

mum” we mean the first solution (the one with the least generalizations) in a cer-

tain strategy.

4 A monotonic function is always non-decreasing or non-increasing, and it does not oscillate in relative
value.

Chapter 4. New Algorithm - Observations 32

This reasoning is valid; yet, knowing that many strategies interrelate, we can go

even further and eliminate any local minimum that is actually a generalization of other

local minima. Eventually, we find the set of Optimal Solution Candidates (OSC).

Figure 10 Optimal solution candidates

Figure 10 shows a lattice where the white nodes are non-solutions, the gray nodes are so-

lutions, and the dark-gray nodes are the set of OSC. In this lattice, the OSC vectors are

not related to each other, and all other solution nodes in the lattice are generalizations of

one or more vector in this set. Therefore, based on equation (c), the optimal solution has

to be one of the local minima specified in OSC.

Chapter 4. New Algorithm - Limitation of Datafly and Samarati’s Algorithms 33

4.3. Limitation of Datafly and Samarati’s Algorithms

In order to explain why most of the time, these two algorithms do not agree with the brute

force’s output in the results obtained, we show that these do not actually search for the

optimal solution but an approximation of it.

We know that Samarati searches for the solution with the least generalization.

However, as shown in Figure 10, the optimal solution can be one of the OSC, where the

solution(s) with the least generalization are only a subset of this search area. Therefore,

Samarati’s output always has a chance to be an optimal solution, and that is why it had

good results when compared to Datafly. However, this chance varies dramatically with

regards to many variables such as the data, k, MaxSup, the lattice size, etc., and is almost

never 100% unless all the optimal solutions candidates are the solutions with the least

generalization, which is rarely the case.

On the other hand, Datafly is basically of a heuristic nature, going through the

minimum number of nodes possible in the lattice. This approach does not even assure a

solution that is part of the OSC. For example, in Figure 10, if Datafly finds itself at the

vector [0,1,1,0], it has three options to go to, namely {[1,1,1,0], [0,2,1,0], [0,1,1,1]}

where two of them are solutions that are not even a part of the OSC. Actually, out of the

many possible strategies, there is only a very few that overlap with the possible optimal

solutions.

Moreover, since Datafly chooses its path, or the next generalization at a given

node, based on the variable with the most unique items, it can be compared to a greedy

approach solving a “Traveling Salesman” type of problems. These approaches follow the

problem solving metaheuristic of making the locally optimum choice at each stage with

the hope of finding the global optimum [18]. However, as Bang-Jensen, Gutin and Yeo

show in [3], such approaches do not guarantee an optimal solution, or not even a good

solution. They also provide a characterization of the cases when such a greedy approach

may produce the unique worst possible solution on similar problems.

That is why Datafly has a very slim chance to locate the optimal solution. Never-

theless, the reason why it is sometimes competitive with Samarati is because it can al-

ways produce outputs that are near the area where the optimal solution resides in the lat-

Chapter 4. New Algorithm - New Approach 34

tice and thus might have less or similar information loss than the output of Samarati’s

algorithm.

The main point here is that these algorithms fail to find the optimal solution be-

cause they are only searching for an approximation. Therefore, we believe that an algo-

rithm that aims to systematically find the optimal solution needs to locate the set of OSC

first and then search within this set.

4.4. New Approach

Having good insight of how to efficiently search the lattice, and knowing exactly where

to search in the lattice for the optimal solution, constitutes an ideal approach to success-

fully and efficiently achieve optimal k-anonymity.

Furthermore, knowing that the optimal solution is nothing but the solution that is

considered the best from an information loss (IL) perspective, with respect to a certain

metric, we understand that an appropriate approach should be flexible enough to take into

consideration the users’ choice of information loss metric.

Therefore, our approach takes as input 2 parameters: The data set to be k-

anonymized, and an IL metric. The level of anonymization k, and the suppression limit

MaxSup, are also parameters but they will be set as global variables.

Accordingly, this method mainly consists of two steps:

1- Find the set of OSC

2- Go through this set of vectors, one by one, check their information loss with re-

spect to the given metric and return the node with the least information loss.

Step (2) is straightforward; a simple loop through the set of vectors where we check each

one for its respective information loss, while keeping track of the vector having the least

information loss so far. Eventually the vector with the least information loss will be con-

sidered as the optimal solution with respect to the given metric.

However, step (1) is somewhat trickier. In order to locate the set of OSC, we will

have to identify which of the nodes in the lattice are solutions and which are not. The idea

Chapter 4. New Algorithm - New Approach 35

is to find a way to traverse the lattice, minimizing the evaluation of the vectors (i.e. Sat-

isfy(V)) while maximizing the prediction made about the other nodes.

This can be done recursively going vertically through the lattice as a binary search

over all the strategies, each possible strategy at a time. That way, based on the location of

the solutions, we traverse the lattice up and down while making the respective predic-

tions. The more strategies covered, the more predictions are made and the fewer calls to

Satisfy(V) are needed. Eventually, after a very small number of evaluations, we will have

most of the lattice already tagged as solutions or non-solutions, and accordingly the

search for the OCS would be very quick. The status of all the nodes in the lattice will ul-

timately be identified.

Table 11 is the pseudo-code for the function that computes step (1). But first, Ta-

ble 10 shows a list of auxiliary functions used.

GetOSC is a recursive function that takes as parameters the minimal vector of a

(sub)lattice Bnode (initially the null vector) and the maximum vector Tnode (initially the

vector with the maximum generalizations). The idea is to go through every strategy in the

given lattice and evaluate the nodes for solutions and non-solutions, while keeping track

of the local minima found.

This function makes use of the “Prediction” procedure highlighted earlier, as well

the “Rollup” technique, a bottom-up aggregation along the lattice. This is explained in

more detail in section 5.1.4, but this is not shown in the pseudo code for the sake

of simplicity.

Chapter 4. New Algorithm - New Approach 36

Table 10 Auxiliary functions

Function Description

InfoLoss(node)

Computes the information loss for a particular node

in the lattice. The information loss should apply to

equation (c) above.

Satisfy(node)

Evaluates if a given vector is a solution, i.e., if it sa-

tisfies k-anonymity with minimal suppression. Re-

turns True or False.

IsTaggedSolution(node)
Determines whether a particular node has already

been tagged as a solution. Returns True or False.

IsTaggedNotSolution(node)
Determines whether a particular node has already

been tagged as a non-solution. Returns True or False.

TagSolutions(node)

This will tag node and all the higher nodes in the lat-

tice along the path of the same generalization strate-

gies as solutions.

TagNotSolutions(node)

This will tag node and all the lower nodes in the lat-

tice along the path of the same generalization strate-

gies as non-solutions.

Lattice(bottom-node, top-node)
Creates a lattice with a particular node at the bottom

and another at the top.

Height(lattice, node)
This function returns the height of a particular node

in the particular (sub-)lattice.

midLvl (lattice)
Returns the set of nodes located on the middle level

of the lattice.

CleanUp(node)

Removes all nodes in the OSC set that are on the

same generalization strategies as node, and are not

local minima.

Chapter 4. New Algorithm - New Approach 37

Table 11 Pseudo code for getting the optimal solution candidates (GetOCS)

Input: Two nodes that represent the bottom and top of a (sub)lattice
Output: Void
Global variables: S the set of OSC, k the anonymity level and MaxSup
the suppression limit (the last two are used in the “Satisfy(node)”
function

GetOSC(Bnode,Tnode)
{

L=Lattice(Bnode,Tnode)
HH=Height(L,Tnode)
If HH ≠ 0 then

middle = midLvl(L)

Foreach V in middle
If IsTaggedSolution(V) == True then

GetOSC(Bnode, V)
Else if IsTaggedNotSolution(V) == True then

GetOSC(V,Tnode)
Else if Satisfy(V) == True then

TagSolutions(V)
GetOSC(Bnode,V)

Else
TagNotSolutions(V)
GetOSC(V,Tnode)

End If
End For

Else
S = S + Tnode
CleanUp(Tnode)

 End if

}

Whenever this function is called, it first checks if the Bnode and Tnode are not the same

vector. If that is the case, it creates a lattice with Bnode as its base and Tnode as its top

(which is initially the main lattice). Next, it identifies the mid level of that lattice. For

every vector V at that level, it first checks if V has been tagged either as a solution or a

non-solution. If it was not, it calls Satisfy(V) and processes the prediction with respect to

the outcome of that function, by tagging the main lattice accordingly. Either way, if V

was identified as a solution, it means that all the local minima of the strategies going

through V are within the lattice between Bnode and V. However, if V was identified as a

non-solution, it means that all the local minima of the strategies going through V are

within the lattice between V and Tnode.

Chapter 4. New Algorithm - New Approach 38

Therefore, it then recursively calls GetOSC with the right parameters according to

the status of V. Again and again, it recursively goes through the same process for the sub-

lattices until eventually the Bnode and Tnode are the same vector. At that point, it adds V

to the set of OSC and then cleans it by removing all the vectors that are generalizations of

other vectors in that set. The last step is needed because as stated earlier, knowing that

many strategies interrelate, we should eliminate the local minima that are actually gener-

alizations of other local minima and thus eventually find the set of OSC.

Whenever a recursive invocation ends, the process gets back to the next vector at

the mid-level of the respective sub-lattice. At that point, it would have made enough pre-

dictions that the number of the expected calls of Satisfy(V) will decrease considerably

and consequently so will the time to find the OSC.

Figure 11 to Figure 26 illustrate a trace of the algorithm on a plausible lattice.

Some obvious steps have been omitted. Note that in these figures, the solutions are high-

lighted in dark-gray while the non-solutions are in light-gray. The local minima have a

dotted line, and the nodes with bold lines are the ones on the midlevel of a (sub) lattice

that are still to be processed. The non-transparent nodes are the nodes of the sub-lattice in

consideration. The trace is explained in detail afterwards.

Figure 11 Getting OSC ‐ step A Figure 12 Getting OSC ‐ step B

Chapter 4. New Algorithm - New Approach 39

Figure 13 Getting OSC ‐ step C Figure 14 Getting OSC ‐ step D

Figure 15 Getting OSC ‐ step E Figure 16 Getting OSC ‐ step F

Figure 17 Getting OSC ‐ step G Figure 18 Getting OSC ‐ step H

Chapter 4. New Algorithm - New Approach 40

Figure 19 Getting OSC ‐ step I Figure 20 Getting OSC ‐ step J

Figure 21 Getting OSC ‐ step K Figure 22 Getting OSC ‐ step L

Figure 23 Getting OSC ‐ step M Figure 24 Getting OSC ‐ step N

Chapter 4. New Algorithm - New Approach 41

Figure 25 Getting OSC ‐ step O Figure 26 Getting OSC ‐ step P

Here is a brief description of the above example. In step A, the midlevel of the whole lat-

tice is taken into consideration, and the first vector on that level has been evaluated as a

non-solution. As our algorithm suggests, the local minima going through that vector re-

side in the sub-lattice between itself and the top vector. Thus, the respective predictions

are tagged, and recursively, the midlevel of that sub-lattice is now taken into considera-

tion, while the first vector on that level has been evaluated as a solution as shown in step

B.

At this point the highlighted sub-lattice in step C contains local minima, and again

the first vector on the midlevel of that sub-lattice has been evaluated as a solution. Even-

tually, after going through the same process, this vector is identified and tagged as a local

minimum (step D) and more predictions are tagged through the lattice.

Now, since this recursive invocation ended, we get back one level up to the for-

mer sub-lattice where the next vector on its mid-level ([0,1,3]) is evaluated as a non-

solution (E). The process continues similarly without finding a local minimum. Thus, an-

other invocation ends and we get back one more level up to the sub-lattice shown in step

F where more predictions are tagged. At this point, the vector to be processed is already

tagged as a solution and does not need to be evaluated. Accordingly, another sub-lattice is

processed without finding a local minimum. The algorithm keeps on going through the

lattice, tagging the predictions, but not finding another local minimum until step J. How-

Chapter 4. New Algorithm - Efficiency 42

ever, later on, we remove this local minimum from the OSC list since it is only a gener-

alization of the one found in step M.

Notice that in step N all the secondary recursive invocations have ended and we

got back to the initial lattice, where only one vector of its midlevel has been considered.

This means that the remaining vectors on that level still have to go through the same

process as above. Nevertheless, at this point, the majority of the lattice is already tagged

and there are very few evaluations left that are now needed.

Finally, in step P, although there are many more strategies to be checked, all the

nodes in the lattice have been already identified as solutions or non-solutions and we

have already located the set of OSC.

In this particular trace we had to call the function Satisfy(V) 9 times in a lattice

composed of 30 vectors. Therefore, we predicted 21 nodes. This is a total of 70% predic-

tions and 30% checks, where 6% were the optimal solution candidates found.

4.5. Efficiency

In order to further highlight the efficiency of this approach, we used it on all the afore-

mentioned data sets and captured the percentage of the number of evaluations (i.e. calls to

Satisfy(V)), and the percentage of the size of OSC, with respect to the lattice size. Table

12 shows the size of the lattice for each data set.

Table 12 Lattice size of the data sets

Adult CUP FARS Pharm ED Niday
Lattice size 5184 360 120 2352 3584 7560

In Figure 27, we show the percentage of the number of nodes evaluated with respect to

the total number of vectors in the lattice for k=2 to k=15 inclusively. These results are for

a fixed suppression limit of 5%. Additional results for 1% and 10%, consistent with the

ones shown here, can be found in appendix B (see Figure 63 and Figure 72).

Chapter 4. New Algorithm - Efficiency 43

Figure 27 “Number of evaluations” to “lattice size” ratio

Notice that, when dealing with small lattices, the percentage of predictions tends to be

relatively small. For CUP and FARS, the approach evaluated on average 20 to 25 percent

of the lattice. For the data sets with larger lattices, e.g. Niday, ED and Pharm, with lattice

sizes of 7560, 3584 and 2352 respectively, the approach evaluated on average between 4

and 14 percent of the lattice, therefore predicting about 90% of the nodes. It is important

to emphasize that these three data sets are real clinical records and are real life examples

of what such an approach will have to handle.

Figure 28 highlights the percentage of the size of OSC with respect to the total

number of nodes in the lattice for k=2 to k=15 inclusively. It shows that the size of OSC

is on average very small compared to the size of the lattice, and these results are consis-

tent with results shown in Figure 27. Again, these are for a fixed suppression limit of 5%,

while more results can be found in appendix B (see Figure 64 and Figure 73).

0%

5%

10%

15%

20%

25%

30%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

k

Nodes Evaluated to Lattice size ratio

adult

CUP

FARS

Pharm

ED

Niday

Chapter 4. New Algorithm - Summary 44

Figure 28 “OSC” to “lattice size” ratio

Since the size of the OSC is relatively small, the step (2) of our approach, which consists

mainly of going through this list and checking for information loss, is considered to be

straightforward and does not need much attention. The reason we show the percentage of

OSC, is to highlight that as opposed to the set of all possible solutions, it is practical to go

through this small number of nodes in order to find the optimal solution.

4.6. Summary

This new approach is made possible and pragmatic because of the prediction equations

that correctly deduce the status of many vectors, and hence avoid unnecessary computa-

tions. Moreover, as opposed to some of the existing approaches, this method does not

produce an approximation, but precisely locates the optimal solution. Even so, as a sanity

check, we ran our algorithm versus the brute force method on all the aforementioned data

sets, and the outputs of the two approaches were absolutely identical.

Furthermore, this approach produces output in a very acceptable time frame (more

details about this in section 5.2), and the results in Chapter 6 will suggest that on average

it is more efficient than its competitors.

0%
2%
4%
6%
8%

10%
12%
14%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

k

OSC to Lattice size ratio

adult

CUP

FARS

Pharm

ED

Niday

Chapter 5. Optimizations - Four Main Optimizations 45

Chapter 5. Optimizations

As stated earlier, the time required to evaluate whether the vectors are solutions or not

represents almost all of the total computation time. Therefore, any algorithm that aims to

find the optimal solution, which requires the evaluation of a relatively high number of

vectors, has to deal with the complexity of this process and make it as efficient as possi-

ble.

Consider a straightforward implementation of Satisfy(V) that goes as follows:

1- Generalize the table with respect to V

2- Find the equivalence classes

3- Check if we need to suppress more than MaxSup so that all the remaining equiva-

lence classes have a size >= k

We acknowledge the fact that a better approach than the above might exist. Nevertheless,

the optimizations cited below are general programming shortcuts and enhancements, and

are not restricted to this method.

5.1. Four Main Optimizations

We tackled the complexity of the process mentioned above through many programming

optimizations, out of which we cite four. All of these are somewhat interrelated, while

some are strictly dependent on the others.

5.1.1 A: Numbers versus Strings

Comparing strings is always more expensive than comparing integers. This is a very ob-

vious observation.

Therefore, a clean way to make the data strictly consisting of integers is to locate

and sort the unique items of every attribute, and then hash each item with respect to its

Chapter 5. Optimizations - Four Main Optimizations 46

location in its corresponding array. Consequently, this encodes the data set into a matrix

of numbers.

Although this is very straightforward, the following example is needed to illus-

trate further optimizations.

Table 13 Race ‐ unique items Table 14 Marital status ‐ unique items

index Race

0 Asian

1 Black

2 White

index Marital Status

0 Divorced

1 Married

2 Single

3 Widow

Table 15 Original data Table 16 Transformed data

Race Marital Status

asian married

asian single

black married

white widow

white divorced

black single

asian married

... ...

Race Marital Status

0 1

0 2

1 1

2 3

2 0

1 2

0 1

... ...

At this point, and as shown in Table 16, the data now consists of only integers, and any

comparison of the data afterwards will be less expensive.

For example, finding the equivalence classes for the Adult data set (which has

30162 rows), under our implementation, used to take 22 seconds before; now, this takes

only 6 seconds. This represents almost a four times speedup for this data set.

Chapter 5. Optimizations - Four Main Optimizations 47

5.1.2 B: Flat hierarchies

The hierarchies are usually in a tree-like form such as in Figure 1 and Figure 2 back in

chapter 2. When an item in a tuple needs to be generalized, one has to search the leaves

of the related hierarchy tree for that item, generalize it as needed by going up the hierar-

chy, and then return the corresponding value. In a worst-case scenario, this process can

have a time complexity of O(n), where n is the number of leaves in the hierarchy. This

does not seem very significant in this example since the trees are relatively small. How-

ever, when having an attribute with thousands of unique items, and hence a huge hierar-

chy tree, and when a very large data set is being processed, it becomes critical to have a

more efficient way for generalization, such as the one introduced below.

First, we hash the hierarchies with regard to the corresponding hashed values of

the unique items. Figure 29 and Figure 30 are the hashed versions of the hierarchies

shown in Figure 1 and Figure 2 respectively. Moreover, leaves in both hierarchies are

hashed with respect to the hashed unique items in Table 13 and Table 14.

Figure 29 Hashed GH for Marital Status. Figure 30 Hashed GH for Race.

Table 17 GH Array – Race – (GHR) Table 18 GH Array – Marital Status – (GHM)

index G0 G1

0 0 3

1 1 3

2 2 3

index G0 G1 G2

0 0 4 6

1 1 4 6

2 2 5 6

3 3 4 6

6

4

1 0 3

5

2

3

0 1 2

Chapter 5. Optimizations - Four Main Optimizations 48

As shown in Table 17 and Table 18, the hierarchies are then extracted into a two-

dimensional array. That way, after optimization A has been applied, the number found in

a cell in the data set, and the number of generalizations required, is the index of the new

value.

For example, if the second tuple {0,2} in Table 16 above needs to be generalized

once on the marital status attribute, the new value would be GHM[2][1] = 5.

Therefore, the time complexity for any generalization is now O(1), regardless of

the data set or its hierarchies.

5.1.3 C: Sorting always helps

Finding the equivalence classes is the essence of the efficiency issue we face when trying

to evaluate whether a vector is a solution or not. This is the procedure that consumes the

majority of the computation time.

In order to find the equivalence classes, a first intuitive approach would look like

this: For each row in the data set, if we did not identify this row as an equivalence class

yet, then add it to the equivalence classes array, else update the size of this equivalence

class.

However, since for each and every row, we always need to check if it is contained

in the equivalence classes array, then the time complexity is O(n2). In addition, we are

comparing full arrays that represent the rows, which is an expensive procedure by itself.

Therefore, we rather propose the following: For each row in the data set, hash the

row into a string, then SortInsert the hash value in an array. Afterwards, simply go the

through the resulting array and count the equivalence classes and their frequencies.

For example, the rows in Table 19 have been hashed into strings, which enable a

perfect hash function, and sorted as shown in Table 20. Notice that at this point, we only

need to go through the table once and count the sizes of the equivalence classes which

can be clearly distinguished without the need for any kind of search.

Under this scheme, finding the equivalence classes will have the complexity O(n

log n). Moreover, at this point comparing strings is less expensive than comparing a full

row as before.

Chapter 5. Optimizations - Four Main Optimizations 49

Table 19 Original data Table 20 The same data hashed and sorted

Race Marital Status Age

1 2 2

1 3 0

1 2 1

1 2 2

1 2 2

0 0 2

1 2 0

0 0 2

1 2 1

Hashed and sorted results

“0-0-2”

“0-0-2”

“1-2-0”

“1-2-1”

“1-2-1”

“1-2-2”

“1-2-2”

“1-2-2”

“1-3-0”

Furthermore, using this approach, we will not always need to go through the whole table

in order to figure out if a data set satisfies k-anonymity with minimal suppression. For

example, in Table 20, if k = 3 and MaxSup = 4, the first three ECs have a frequency less

than k, and thus they need to be suppressed if this data set is to satisfy k-anonymity.

However, at this point there is already a suppression of 5 rows, which is greater than

MaxSup. Therefore, there is no need to continue the verification, and we can declare this

as a non-solution right away.

For the Adult data set, under our implementation, when both A and C are applied,

it takes only 0.3 seconds to find the EC rather than the original 22 seconds, a 73x

speedup.

5.1.4 D: Rollup

Another shortcut is to compute Satisfy(V) on a frequency set, rather than to compute it on

the whole data set.

If we only calculate the frequency set of the original data set and evaluate all

other nodes that need to be evaluated, with respect to that set, the speedup will be the ra-

tio of the number of rows in the original data set to the number of ECs in the frequency

Chapter 5. Optimizations - Overall Time Complexity 50

set. For example, the Adult data set has 30,162 row and 12,005 equivalence classes. Gen-

eralizing 12,005 rows and finding the corresponding ECs while adding up their frequen-

cies, is much faster than doing so on the whole data set. The speedup is then around 3x.

Since we traverse the lattice in a seemingly random manner as opposed to a

breadth-first bottom-up search, we cannot take advantage of this shortcut to the fullest

extent by always using the frequency set of the parents of the current node that is being

evaluated. However, we can still benefit a lot from this shortcut by always using the fre-

quency set of the closest node in the same strategy. That is, whenever we evaluate a node

in a strategy and we find that it is not a solution, we save the frequency sets of this node.

Then, since we have to go up the lattice, all the nodes that need to be evaluated herein can

use the closest saved frequency set.

Eventually, the number of rows that need to be processed in order to find the

overall equivalence classes within all the evaluated nodes diminishes dramatically. Thus,

as shown in the next section, since this is a crucial criterion that defines the efficiency of

the process, the speedup tends to be significant.

5.2. Overall Time Complexity

We incorporated the above optimizations, and then processed our approach on the afore-

mentioned data sets on a 3.2 GHz Pentium D processor with 3GB of RAM.

The execution times for the proposed algorithm with MaxSup = 5% are shown

in Figure 31 below. Considering the large sizes of the data sets, and the sizes of the lat-

tices with regards to the proposed QIs, the execution time can be considered practical.

Note that the time registered in this chart is the time to find the set OSC and then go

through all the nodes in this set and find the optimal solution with regard to an informa-

tion loss metric.

Chapter 5. Optimizations - Overall Time Complexity 51

Figure 31 Execution time in seconds. Suppression limit of 5%.

Notice that even for large data sets such as FARS (101,030 rows), the computation time

was below 40 seconds. The worst case was the Niday data set (124,933 rows) with a

computation time of, on average, around 12 minutes. This was due to the relatively large

lattice corresponding to the numbers of QIs we chose for this data set, which required the

evaluation of a larger number of vectors before finding the OSC.

Comparing the graph in Figure 31 to the one in Figure 27, we notice that the

curves are very much consistent. The most noticeable ones are the Adult and Niday

curves. In both graphs the shape of these curves is similar, which means that the higher

the percentage of nodes being evaluated, the more time is taken by the algorithm to exe-

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
1000
1020
1040

2 3 4 5 6 7 8 9 10 11 12 13 14 15

ti
m
e
in
 s
ec
on

ds

Adult

CUP

FARS

Pharm

ED

Niday

Chapter 5. Optimizations - Overall Time Complexity 52

cute. If the graph in Figure 27 had plotted the exact number of vectors evaluated instead

of the percentage of vectors with respect to the lattice size, the two curves would have

looked exactly the same.

Eventually, the execution time depends mainly on the number of vectors in the

lattice that the algorithm needs to evaluate. Consequently, since we use the optimization

D above, the time complexity will depend on the overall number of rows processed.

To further discuss this, here is again the implementation of Satisfy(V) that was

mentioned in the beginning of this chapter:

1- Generalize the table with respect to V

2- Find the equivalence classes

3- Check if we need to suppress more than MaxSup so that all the equivalence

classes will have a size >= k

Based on this implementation, the time to evaluate a single vector is the sum of the times

of every step:

1- As shown in step B, any generalization is of complexity O(1), and the time com-

plexity of generalization with respect to a vector is O(n * |QIg|), where n is the

number of rows in the current data set (or frequency set) and |QIg| is the total

number of QI that were generalized. Hence, n * |QIg| is the number of generalized

cells. In a worst-case scenario, we would need to generalize all the cells in the

data set.

2- As shown in optimization C, the complexity of finding the equivalence classes is

O(n log n).

3- Again in C we show that in a worst-case scenario we need to pass once through

the resulting sorted array to determine whether it satisfies k-anonymity with

minimal suppression or not. Therefore, its complexity is O(n).

Therefore, the complexity of the evaluation of one node in the lattice would be:

ܱሺ݊ log ݊ሻ

Chapter 5. Optimizations - Summary 53

where n is the number of rows in the current data set (or frequency set5). |QIg|. the total

number of QI that were generalized, is not taken into consideration in the complexity

measure since the dominant part in this scheme is finding the equivalence classes.

Hence, the total complexity to find the set of OSC, after evaluating a certain num-

ber of nodes, is roughly:

ܱሺ݈ܰ݃݋ሻ

where ܰ ൌ ∏ ሺ݊௜
௡೔

௜ ሻ , that is, the product of the number of rows processed for every node

evaluated in the lattice, to the power itself . For example, if we evaluated two nodes in the

lattice where the number of rows in the first is X and in the second is Y, then their com-

plexity becomes:

ܺ݃݋݈ܺ ൅ ܻ݃݋݈ܻ ൌ ௑ܺ݃݋݈ ൅ ௒ܻ݃݋݈ ൌ ሺܺ௑݃݋݈ כ ܻ௒ሻ

The remaining execution time results for the 1% and 10% suppression limits can

be found in Appendix B (see Figure 65 and Figure 74), which also show a consistent exe-

cution time for all data sets.

5.3. Summary

In this chapter, we highlighted a number of programming optimisations used for imple-

menting our approach, which give the algorithm a substantial speed improvement. It was

also shown that this algorithm finds the optimal solution in a practical time with respect

to the size of the data sets and the size of the lattices.

 Moreover, we identified the time complexity of finding the OSC and more pre-

cisely the complexity of evaluating whether a vector satisfies k-anonymity with minimal

suppression. This complexity analysis will be useful for comparing the efficiency of our

approach with other existing approaches.

5 When taking advantage of the rollup optimization, we generalize over an already generalized dataset that
has been transformed into a frequency set. Therefore, the number of rows evaluated for a specific node in
the lattice would be the number of EC it has at that point.

Chapter 6. Efficiency - Incognito 54

Chapter 6. Efficiency

LeFevre, DeWitt and Ramakrishnan [23] proposed an efficient algorithm for computing

k-minimal generalization, called Incognito, which takes advantage of a bottom-up aggre-

gation along dimensional hierarchies and a priori aggregate computation. However, a ma-

jor drawback of this approach is that it returns the set of all possible solutions in the lat-

tice, and thus it is impractical to check the information loss of all of them in order to find

the optimal one.

Regardless, the method used to retrieve this set of all solutions is interesting and

proven to be efficient. Incognito was compared to several algorithms, including

Samarati’s, and was shown to be the fastest in locating the corresponding set of solu-

tions [23]. Moreover, one can argue that Incognito can be altered to return the same set of

OSC as our approach, and thus it would be interesting to compare this approach to our

algorithm in order to identify which of these two is more efficient.

6.1. Incognito

The Incognito algorithm generates the set of all possible solutions, i.e. all the generaliza-

tion vectors that satisfy k-anonymity with minimal suppression.

Based on the subset property6, the algorithm begins by checking single-attribute

subsets of the quasi-identifiers, and then iterates for i = 0 to |QI|, checking k-anonymity

with respect to increasingly large subsets. Each iteration consists of two main parts:

1- Every iteration considers all the nodes in a set S constructed from subsets of

the quasi-identifiers of size i. Then it goes through these nodes in a breadth-

first bottom up search taking advantage of the rollup phenomenon presented

above in section 5.1.4, and of the generalization property stated in equation

(b) in section 4.2.1.

6 Let T be a dataset, and let Q be a set of attributes in T. If T is k-anonymous with respect to Q, then T is
also k-anonymous with respect to any set of attributes P such that P ك Q [23].

Chapter 6. Efficiency - Comparison 55

2- The algorithm then constructs the set of candidate nodes S with quasi-

identifiers of size i + 1, taking advantage of the subset property by pruning the

nodes that cannot be solutions when the set of attributes is larger.

The authors mention three versions of this approach, each one applying different pro-

gramming optimizations to the base approach. Then they show that the “Super Root In-

cognito” is the fastest of all three. This is the version where they simply take more advan-

tage of the rollup property by computing the frequency sets of the parent of the candidate

nodes in S after each iteration, and then use this set as a base to evaluate the nodes and

before continuing in (1) normally.

In what follows, we will be comparing our approach to the “Supper Root Incog-

nito”. However, for convenience, we will refer to this approach simply as Incognito.

6.2. Comparison

We do not compare our algorithm with Incognito in terms of “seconds to produce a re-

sult” for two reasons. First, the exact timing will be dependent on the implementation de-

tails, and second, such a comparison would be perceived as inherently biased because we

would be expected to put more effort optimizing the implementation of our algorithm.

Therefore, we measure elements that are inherent to the algorithms rather than their im-

plementations. Note however that the actual time comparison was very much consistent

with the following results.

 As argued earlier, the most time-consuming activity in all of the aforementioned

algorithms is evaluating a node in the lattice to determine whether it is a solution or not.

An obvious way to compare the algorithms is to count the number of nodes that need to

be evaluated. Figure 32 shows the original search space of Incognito with respect to the

original search space of our approach (the lattice). Similar to the charts in the compari-

sons of chapter 3, the charts herein are the ratio of Incognito’s output to the output of our

approach. Moreover, the following graphs (Figure 33 to Figure 35) are for MaxSup = 5%,

and additional consistent graphs for MaxSup = 1% and 10% can be found in Appendix B.

Chapter 6. Efficiency - Comparison 56

Figure 32 Original search space size.

We see that the search space considered by Incognito is always larger, which is normal

since it conceptually generates all the lattices for all the subsets of QI for i = 1 to |QI|.

This is not a performance measure per se since Incognito will eventually prune a very

large number of nodes, but it is important to see the difference in the search space size,

which mainly explains the difference in the number of nodes evaluated.

Figure 33 shows the ratio of nodes evaluated. We see that on average Incognito

always evaluates many more nodes than our approach.

Figure 33 Nodes evaluated ratio.

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%
1000%
1100%
1200%

Adult CUP Fars ED Pharm Niday

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

Original Search Space Size

0%

100%

200%

300%

400%

500%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Nodes Evaluated

Adult

CUP

FARS

ED

Pharm

Niday

Chapter 6. Efficiency - Comparison 57

However, the complexity of nodes evaluation is not the same because the nodes vary in

terms of the number of records being evaluated (as a result of the different frequency set

attained by the rollup property) and the number of QI being generalized. The number of

nodes evaluated is not sufficient to capture the efficiency difference between the two ap-

proaches.

Therefore, since both algorithms can use the same function in order to evaluate a

node, we make use of the complexity measure of the Satisfy(V) function introduced in

section 5.2 above.

The different number of QI in Incognito is strictly related to the frequency set

produced in the dataset. The smaller the number of QIs, the fewer ECs will be produced,

and thus the number of rows considered. Therefore, this is taken into account, along with

the rollup optimization that Incognito takes advantage of, by counting the overall number

of rows N as stated earlier.

We can then compare the performance of our algorithm and Incognito’s by com-

puting this score across all evaluated nodes. Note that N will be different for both algo-

rithms since they evaluate a different number of nodes, as shown in Figure 33, and the

number of equivalence classes on each of these nodes varies.

One can argue that a different implementation of Satisfy(V) can be more efficient,

however, the same implementation can always be used on both algorithms and the results

will be similar.

The performance comparison with Incognito over all the aforementioned data sets

is shown in Figure 34. Incognito performed better on the CUP data set across all values

of k. Otherwise, the performance is more or less the same for the Pharm and Niday data

set, and our algorithm performs better for the remaining three data sets. In the case of the

Adult data set and FARS, the difference in performance is significant.

Chapter 6. Efficiency - Comparison 58

Figure 34 Performance score of Incognito with respect to our approach.

Note that this performance comparison is only for the process of getting the re-

spective sets of solutions, in our case OSC and in Incognito’s case the set of all possible

k-anonymous solutions. Figure 35 shows that the size of the set of solutions that Incog-

nito returns, and that need to be checked for information loss in order to get the optimal

solution, is at least 5 times larger than the set of OSC located by our approach. This

means that our approach will be at least 5 times faster than Incognito in this phase of the

process.

Figure 35 Size of solutions output by Incognito.

0%

100%

200%

300%

400%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

log N

Adult

CUP

FARS

ED

Pharm

Niday

0%

500%

1000%

1500%

2000%

2500%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Size of Solutions Output

Adult

CUP

FARS

ED

Pharm

Niday

Chapter 6. Efficiency - Summary 59

However, as argued earlier, Incognito can probably be altered to find the set of OSC in-

stead, and then both algorithms will perform similarly in the second step (the process of

finding the optimal solution). Also note that since in our approach we tag all the possible

k-anonymous solutions, we can return the set same as Incognito.

6.3. Summary

In this chapter we compared the performance of Incognito to our approach. Only the first

step, which consists of finding the respective set of solutions, was considered. The em-

pirical results showed that our approach outperformed Incognito in many cases. How-

ever, in some cases both algorithms perform the same more or less, and in rare cases In-

cognito outperforms our approach.

Then we show that the number of solutions returned by Incognito is very high and is at

least 5 times more than the set of OSC. This is a major drawback of the current setup of

Incognito since all the vectors in that set need to be evaluated from an information loss

perspective and then the one with the least information loss must be returned. Therefore,

in this phase of the process, our approach will outperform Incognito. It is worth to note

that Datafly is faster than both our approach and Incognito. However, in the context of

clinical data, the trade-off between speed and optimality is not possible since researchers

needs to work on an anonymised data set with minimal information loss.

Chapter 7. Conclusions - Contributions 60

Chapter 7. Conclusions

7.1. Contributions

In this thesis, we presented the results of an empirical evaluation of Datafly and

Samarati’s algorithms versus a brute force approach that extracts the optimal solution

with respect to a given metric. The comparison in chapter 3 showed that the performance

of Datafly and Samarati did vary significantly depending on the data set, the value of k,

and the suppression limit. However, on average Samarati’s solution was better than Data-

fly’s. Moreover, it was clear that these approaches give on average a result of poor qual-

ity when compared to the one provided by the brute force method.

Therefore, after showing the need to find an optimal solution rather than a mere

approximation, we proposed our own approach, a new method to efficiently find an op-

timal solution with regards to any given information loss metric that is monotonic. In the

literature this property is argued to be important in order to produce generalizations that

are most practical for research and data mining. Afterward, we highlighted some pro-

gramming optimizations that were used in our implementation, and showed that our ap-

proach executes in a satisfactory time. Finally, we compared the performance of our ap-

proach to Incognito and concluded that in many cases our approach outperforms Incog-

nito, especially in the current setup where the latter returns the set of all possible k-

anonymous solutions in order to locate the optimal one.

One limitation with our study is that we compared our proposed algorithm with

only three other approaches. However, we contend that these are the most suitable for the

de-identification of clinical data because they work with hierarchical variables and use

global recoding. Furthermore, they are foundational k-anonymity algorithms that are of-

ten cited in the literature.

Another limitation might be the assumption of monotonic information loss met-

rics. However, and stated earlier, this is a very important feature that needs to be present

in a metric in order to assure better solutions. Moreover, the information loss metrics we

Chapter 7. Conclusions - Future work 61

used did not take into account different variable weights. We assumed that all quasi-

identifiers were equally important. However, this should not change the outcome of the

comparisons.

Nevertheless, regardless of the above limitations, the proposed approach appears

to be sound and practical. Moreover, as opposed to the heuristic-based approaches, by

insuring an optimal solution that can be located efficiently, researchers will benefit im-

mensely, since the better the quality of the anonymized data, the more valuable that data

is for the research.

7.2. Future work

The future work we foresee is mainly twofold:

1- The subset property that Incognito uses is very interesting. However, one

main drawback of the way Incognito goes through the search space is the

breadth-first bottom up search. In the case that the solutions are high in the

lattice, and when not much pruning was introduced to that same lattice, it will

have to evaluate a very large number of nodes. Even with the rollup advan-

tage, the complexity of these nodes adds up to an inefficient result. Therefore,

we might consider the case of using the subset property and our approach and

dropping the breadth-first search. It would be interesting to see the outcome

efficiency of the resulting algorithm.

2- Since there is not one globally accepted information loss metric, and since

many current metrics capture different logical aspects on how the information

is being changed and how much information we are approximately losing, we

see a good chance of proposing a new metric that mainly joins these aspects

and provides a better approximation.

References 62

References

[1] Adam, N. R. and Wortman, J. C. (1989) Security-Control Methods for Statistical
Databases: A Comparative Study, ACM Computing Surveys, vol. 21, no. 4.

[2] Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy. R., Thomas,
D., and Zhu, A. (2005) Approximation algorithms for k-anonymity. Journal of
Privacy Technology, 1–18.

[3] Bang-Jensen, J., Gutin, G. and Yeo, A. (2004) When the greedy algorithm fails.
Discrete Optimization 1, 121–127.

[4] Bayardo, B. and Agrawal, R. (2005) Data privacy through optimal k-anonymity.
In Proc. of the 21st Int'l Conference on Data Engineering. IEEE CS, 217–228.

[5] Canadian Institutes of Health Research (2004). Guidelines for protecting privacy
and confidentiality in the design, conduct and evaluation of health research.

[6] Canadian Institutes of Health Research (2005) CIHR best practices for protecting
privacy in health research.

[7] Ciriani, V., De Capitani di Vimercati, S., Foresti, S., and Samarati, P. (2007) k-
Anonymity. Secure Data Management in Decentralized Systems. Advances in In-
formation Security, Vol. 33, Springer, 323–353.

[8] Cox, L. H. (1980) Suppression methodology and statistical disclosure analysis.
Journal of the American Statistical Association, 377–385.

[9] Dalenius, T. (1986) Finding a needle in a haystack - or identifying anonymous
census record. Journal of Official Statistics, 329–336.

[10] Domingo-Ferrer, J.T.V. (2003) Risk Assessment in Statistical Microdata Protec-
tion via Advanced Record Linkage. Journal of Statistics and Computing, 13(4).

[11] Du, Y., Xia, T., Tao, Y., Zhang, D., and Zhu, F. (2007) On Multidimensional k-
Anonymity with Local Recoding Generalization. IEEE 23rd International Con-
ference on Data Engineering, IEEE CS, 1422–1424.

[12] Duncan, G., Jabine, T., and de Wolf, S. (1993) Private Lives and Public Policies:
Confidentiality and Accessibility of Government Statistics. National Academies
Press.

[13] El Emam, K., Brown, A., and Abdelmalik, P. (2008) Evaluating Predictors of
Geographic Area Population Size Cutoffs to Manage Re-identification Risk.
Journal of the American Medical Informatics Association (accepted).

[14] El Emam, K., Jabbouri, S., Sams, S., Drouet, Y., and Power, M. (2006) Evaluat-
ing common deidentification heuristics for personal health information. Journal of
Medical Internet Research; 8(4):e28.

References 63

[15] El Emam, K., Jonker, E., Sams, S., Neri, E., Neisa, A., Gao, T., and Chowdhury,
S. (2007) Pan-Canadian De-Identification Guidelines for Personal Health Infor-
mation. Report prepared for the Office of the Privacy Commissioner of Canada.
Available from:
http://www.ehealthinformation.ca/documents/OPCReportv11.pdf. Archived at:
http://www.webcitation.org/5Ow1Nko5C. (last access: January 2009)

[16] Federal Committee on Statistical Methodology. (2005) Report on statistical dis-
closure limitation methodology. 2005; Office of Management and Budget.

[17] Gionis, A. and Tassa, T. (2007) k-anonymization with minimal loss of informa-
tion. Algorithms – ESA 2007, LNCS 4698, Springer, 439–450.

[18] Greedy Algorithm, available online at
http://en.wikipedia.org/wiki/Greedy_algorithm (last access: December 2008)

[19] Health Insurance Portability and Accountability Act, Available online at
http://www.hhs.gov/ocr/hipaa, (last access: December 2008).

[20] Iyengar, V. (2002) Transforming Data to Satisfy Privacy Constraints. Eighth
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, Edmonton, Canada, ACM, 279–288.

[21] Katirai, H. (2006) A Theory and Toolkit for the Mathematics of Privacy: Methods
for Anonymizing Data while Minimizing Information Loss. M.Sc. thesis, Dept. of
Electrical Engineering and Computer Science, MIT, USA.

[22] Kim, J. and Curry, J. (1977) The treatment of missing data in multivariate analy-
sis. Social Methods & Research; 6:215-240.

[23] LeFevre, K., DeWitt, D.J., and Ramakrishnan, R. (2005) Incognito: Efficient Full-
domain k-anonymity. Proc. ACM Management of Data, Baltimore, Maryland,
USA, ACM, 49–60.

[24] Li, T. and Li, N. (2006) Optimal k-anonymity with flexible generalization
schemes through bottom-up searching. Sixth IEEE Int. Conf. on Data Mining
Workshops, Hong Kong, China, IEEE CS, 518–523.

[25] Little, R. and Rubin, D. (1987) Statistical Analysis With Missing Data. John
Wiley & Sons.

[26] Meyerson, A. and Williams, R. (2004) On the complexity of optimal k-
anonymity. Proc.of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on the
Principles of Database Systems, Paris, France, ACM, 223–228.

[27] Ochoa, S., Rasmussen, J., Robson, C., and Salib, M. (2001) Reidentification of
individuals in Chicago's homicide database: A technical and legal study. Massa-
chusetts Institute of Technology.

[28] Office of the Information and Privacy Commissioner of British Columbia (1998),
Order No. 261-1998. Available at:
[http://www.mser.gov.bc.ca/privacyaccess/Summ_IA_Order/Orders/order_261.ht
m] (last access: January 2009)

References 64

[29] Office of the Information and Privacy Commissioner of Ontario (1994) Order P-
644. Available at: [http://www.ipc.on.ca/images/Findings/Attached_PDF/P-
644.pdf].

[30] Personal Health Information Protection Act, available online at http://www.e-
laws.gov.on.ca/html/statutes/english/elaws_statutes_04p03_e.htm (last access:
January 2009)

[31] Samarati, P. (2001) Protecting Respondents’ Identity in Microdata Release. IEEE
Transactions on Knowledge and Data Engineering, 13 (6), 1010–1027.

[32] Statistics Canada (2007) Therapeutic abortion survey. Available from:
[http://www.statcan.ca/cgi-
bin/imdb/p2SV.pl?Function=getSurvey&SDDS=3209&lang=en&db=IMDB&dbg
=f&adm=8&dis=2#b9]. Archived at: [http://www.webcitation.org/5VkcHLeQw].

[33] Subcommittee on Disclosure Limitation Methodology - Federal Committee on
Statistical Methodology (1994) Working paper 22: Report on statistical disclo-
sure control. Office of Management and Budget, USA.

[34] Sweeney, L. (1997) Guaranteeing Anonymity When Sharing Medical Data, The
Datafly System. Proc. AMIA Annual Fall Symposium, 1997:51-5.

[35] Sweeney, L. (1997) Computational Disclosure Control for Medical Microdata:
The Datafly System. Record Linkage Techniques. National Academy Press.

[36] Sweeney, L. (2000) Uniqueness of Simple Demographics in the US Population.
Carnegie Mellon University, Laboratory for International Data Privacy.

[37] Sweeney, L. (2002) Comments of Latanya Sweeney, Ph.D., to the Department of
Health and Human Services On Standards of Privacy of Individually Identifiable
Health Information. Available at: [privacy.cs.cmu.edu/dataprivacy/HIPAA/
HIPAAcomments.html] (last access: January 2009)

[38] Sweeney, L. (2002) k-anonymity: a model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5): 557–
570.

[39] Sweeney, L. (2002) Achieving k-Anonymity Privacy Protection Using Generali-
zation and Suppression. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5): p. 18.

[40] Truta, T.M., Campan, A., Abrinica, M., and Miller, J. (2008) A Comparison be-
tween Local and Global Recoding Algorithms for Achieving Microdata P-
Sensitive K-Anonymity. Acta Universitatis Apulensis, Alba Iulia, Romania, No.
15, 213–233.

[41] Willenborg, L and DeWaal, T. (1996) Statistical Disclosure Control in Practice.
Lecture Notes in Statistics, Vol. 111, Springer.

[42] Winkler W. (2002) Using simulated annealing for k-anonymity. Research Report
Series Number 2002-07, US Census Bureau Statistical Research Division, Wash-
ington, DC, USA.

References 65

[43] Wong, R., Li, J., Fu, A., and Wang, K. (2006) {alpa,k}-Anonymity: An enhanced
k-anonymity model for privacy-preserving data publishing. ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Philadelphia,
USA. ACM Press, 754-759.

[44] Xu, J., Wang, W., Pei, J., Wang, X., Shi, B. and Fu, A.W. (2006) Utility-Based
Anonymization Using Local Recoding. 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, Philadelphia, USA, ACM, 785–
790.

Appendix A: Data Sets Details and Hierarchies 66

Appendix A: Data Sets Details and Hierarchies

In this appendix, we provide some details about the data sets used for the evaluations,

including the hierarchies for every QI (The QIs chosen are quite typical of what is seen in

realistic situations [14][15][27][36]). We have six data sets: Adult, CUP, FARS, Pharm,

ED, and Niday, introduced in Table 9. We will go through them in that order.

Adult

This is a machine Learning Database from the US Census Bureau, provided by Bren

School of Information and Computer Science at the University of California, Irvine. This

data set has 31062 records and 15 attributes. More information can be found at:

http://archive.ics.uci.edu/ml/datasets/Adult

Eight quasi-identifiers were chosen for this experiment, we list them with their

corresponding hierarchies:

Figure 36 GH of Native‐Country

Figure 37 GH of Age Figure 38 GH of Occupation

Earth

America

North
America

...

South
America

...

Asia

Far East

...

Middle
East

...

Europe

Eastern
Europe

...

Western
Europe

...

[0‐100[

[0‐50[

[0‐25[

...

[25‐50[

...

[50‐100[

[50‐75[

...

[75‐100[

...

POS

TYPE A

...

TYPE B

...

TYPE C

...

Appendix A: Data Sets Details and Hierarchies 67

Figure 39 GH of Education Figure 40 GH of Marital Status

Figure 41 GH of Race Figure 42 GH of Sex Figure 43 GH of Work Class

With respect to these hierarchies, the lattice size is equal to 5184 nodes.

The above hierarchies were chosen as such because of the nature of the unique

items in each attribute. As well, the hierarchies for the remaining data sets were chosen

related to the corresponding unique items.

CUP

The data set for CUP has been provided by the Paralyzed Veterans of America (PVA).

PVA is a not-for-profit organization that provides programs and services for US veterans

with spinal cord injuries or disease. With an in-house database of over 13 million donors,

PVA is also one of the largest direct mail fund raisers in the country. For more informa-

tion, see http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

This data set has 63,411 records and 479 variables. The quasi-identifiers are: Zip

code, Age, Gender and Income.

EDU

High

...

Medium

...

Low

...

MS

Been
Maried

...

Never
Maried

...

Person

...

Person

...

WC

Emp

...

UnEmp

...

Appendix A: Data Sets Details and Hierarchies 68

Figure 44 GH of Age

Figure 45 GH of Income

Figure 46 GH of Postal Code

[0‐100[

[0‐50[

[0‐10[

[0‐5[

...

[5‐10[

...

[10‐20[

[10‐15[

...

[15‐20[

...

[20‐30[

[20‐25[

...

[25‐30[

...

[30‐40[

[30‐35[

...

[35‐40[

...

[40‐50[

[40‐45[

...

[45‐50[

...

[50‐100[

...

...

...

Undisclosed

LowInc

Lowest

...

Med

...

HighIncome

Higher

...

Highest

...

NoZip

0****

01***

010**

0100*

...

0101*

...

...

...

011**

...

...

...

...

...

02***

...

...

...

...

...

...

...

1****

...

...

...

...

...

...

...

...

...

Appendix A: Data Sets Details and Hierarchies 69

Figure 47 GH of Gender

The gender hierarchy has one more level because the unique items for this variable are

composed as follows:

M = Male

F = Female

U = Unknown

J = Joint Account, unknown gender

FARS

FARS stands for Fatality Analysis Report System. The National Highway Traffic Safety

Administration (NHTSA) decided in 1996 to make FARS data easier to obtain by using

Internet technologies. This FARS Web-based Encyclopedia offers a more intuitive and

powerful approach for retrieving fatal crash information. For more information about the

Web site, visit http://www-fars.nhtsa.dot.gov/

This data set has 101,034 records and 120 attributes of which 4 are chosen as

quasi-identifiers: Age, Race, Month of Death and Day of Death. The hierarchy for Age is

similar to Figure 44, and the hierarchy for Race is a straightforward hierarchy with one

level where all races are generalized to person.

Month of death:

The unique items of this attribute are the months, between 1 and 12 for January till De-

cember respectively. The hierarchy splits the year into two halves and each half into two

Person

Unknown
Gender

...

Known
Gender

...

Appendix A: Data Sets Details and Hierarchies 70

quarters in the year. Moreover, there are some other numbers that indicate that the month

was unknown or blank or undisclosed. The following is the corresponding hierarchy:

Figure 48 GH of Month of death

Day of death:

The days of the month are split into 5 weeks and an unknown.

Figure 49 GH of Day of death

Pharm

These are prescription records from the Children’s Hospital of Eastern Ontario pharmacy

for 18 months. This is for inpatients only and excludes acute cases. This data set is dis-

closed to commercial data aggregators. It has 63,441 records and 10 columns.

NoMO

1stHalf

1stQuarter

...

2ndQuarter

...

2ndHalf

3rdQuarter

...

4thQuarter

...

Unknown

Notknown

...

NoDAY

1stWeek

...

2ndWeek

...

3rdWeek

...

4thWeek

...

5thWeek

...

Unknown

...

Appendix A: Data Sets Details and Hierarchies 71

Five quasi-identifiers where chosen for this data set: Age, Postal Code (Forward

Sortation Area, FSA), Admission Date, Discharge Date, and Sex. The Sex hierarchy is

the same as Figure 42. Admission Date and Discharge Date have similar hierarchies.

This is the age of the individuals in weeks.

Figure 50 GH of Age

This is the postal code (FSA) made of first three letters of the full postal code.

Figure 51 GH of Postal Code

[1‐1400[

[0‐400[

[0‐100[

[0‐5]

...

[6‐11]

...

[12‐17]

...

...

...

[100‐200[

...

...

...

...

...

...

...

...

...

NoZIP

A

A0

...

A1

...

...

...

B

...

...

...

...

...

Appendix A: Data Sets Details and Hierarchies 72

Figure 52 GH of Admission date

ED

These are emergency department records from the Children’s Hospital of Eastern Ontario

for July 2008. This data set is disclosed for the purpose of disease outbreak surveillance

and bio-terrorism surveillance.

This data set has 7,318 rows and 15 columns. The quasi-identifiers are: Admis-

sion date, Admission time, Postal Code, Date of Birth (DOB) and Sex. The latter is simi-

lar to the above.

The date was in July 2008, thus that month was split into 5 weeks, and each week

split into two, Monday to Wednesday and Thursday to Sunday.

[2007‐
2008[

2007

2007_H1

2007_Q1

2007_Jan

2007_Jan
[1‐10]

...

2007_Jan
[11‐20]

...

2007_Jan
[21‐31]

...

2007_Feb

...

...

2007_Mar

...

...

2007_Q2

...

...

...

2007_H2

2007_Q3

...

...

...

2007_Q4

...

...

...

2008

...

...

...

...

...

Appendix A: Data Sets Details and Hierarchies 73

Figure 53 GH of Admission date

The admission time is in 24-hour format starting from 0000 and ending with 2359.

Figure 54 GH of Admission time

2008_07_##

2008_07_W1

2008_07_W1_MW

...

2008_07_W1_TS

...

2008_07_W2

...

...

...

...

...

2008_07_W5

2008_07_W5_MW

...

2008_07_W5_TS

...

24Hours

[0000‐
1200[

[0000‐
0300[

[0000‐
0100[

[0000‐
0030[

[0000‐
0010[

[0000‐
0005[

...

[0005‐
0010[

...

[0010‐
0020[

...

...

[0020‐
0030[

...

...

[0030‐
0100[

...

...

...

[0100‐
0200[

...

...

...

...

[0200‐
0300[

...

...

...

...

[0300‐
0600[

...

...

...

...

...

...

...

...

...

...

...

[1200‐
2400[

...

...

...

...

...

...

Appendix A: Data Sets Details and Hierarchies 74

Figure 55 GH of Postal Code

Figure 56 GH of DOB

NoPostal

[A‐L]

A*****

A0****

A0A***

A0A0**

A0A0A*

...

A0A0B*

...

...

...

A0A1**

...

...

...

...

...

A0B***

...

...

...

...

...

...

...

A1****

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

[M‐Z]

M*****

...

...

...

...

...

...

...

...

...

...

...

NoDOB

1960s

[1960‐
1965[

1960

1960_01

1960_01
[1‐10]

...

1960_01
[11‐20]

...

1960_01
[21‐31]

...

1960_02

...

...

...

...

...

1961

...

...

...

[1965‐
1970[

...

...

...

...

1970s

...

...

...

...

...

...

...

...

...

...

...

Appendix A: Data Sets Details and Hierarchies 75

Niday

This is a newborn registry for Ontario for 2006-2007. For more information visit

https://www.nidaydatabase.com/info/index.shtml

This data set has 125,017 records and 116 columns, out of which we chose 4

quasi-identifiers.

Maternal postal code: Similar to Figure 55.

Baby Sex: The sex was sometimes undisclosed or unknown when entering the record to

the data set. Therefore, we have the following hierarchy:

Figure 57 GH of Baby Sex

Figure 58 GH of Baby’s Date of Birth

Person

Unknown
Gender

...

Known
Gender

...

NoDOB

06

Jan_06

1st10_Jan_06

...

2nd10_Jan_06

...

Rest_Jan_06

...

Feb_06

...

...

...

...

...

07

...

...

...

Appendix A: Data Sets Details and Hierarchies 76

Figure 59 GH of Mother’s Date of Birth

NoDOB

60s

[60‐65[

60

Jan_60

1st10
Jan_60

...

2nd10
Jan_60

...

Rest
Jan_60

...

Feb_60

...

...

...

...

...

61

...

...

...

...

...

...

...

[65‐70[

...

...

...

...

70s

...

...

...

...

...

...

...

...

...

...

...

Appendix B: Additional Results 77

Appendix B: Additional Results

This appendix contains additional results corresponding to every aspects of empirical

evaluation mentioned in this thesis. The results are split into two experiments, one with

MaxSup = 1% and the other with MaxSup = 10%.

MaxSup = 1%

Empirical evaluation of Datafly and Samarati with respect to the optimal solution,

with information loss metrics: DM, Prec and Non-uniform Entropy (NE).

Appendix B: Additional Results 78

Figure 60 Information loss comparison for Adult and CUP data sets. MaxSup = 1%

Appendix B: Additional Results 79

Figure 61 Information loss comparison for FARS and ED data sets. MaxSup = 1%

Appendix B: Additional Results 80

Figure 62 Information loss comparison for Pharm and Niday data sets. MaxSup = 1%

Appendix B: Additional Results 81

Efficiency related graphs of our approach

Figure 63 “Number of evaluations” to “lattice size” ratio. MaxSup = 1%

Figure 64 “OSC” to “lattice size” ratio. MaxSup = 1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

k

Nodes Evaluated to Lattice size ratio

adult

CUP

FARS

Pharm

ED

Niday

0%

2%

4%

6%

8%

10%

12%

14%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

k

OSC to Lattice size ratio

adult

CUP

FARS

Pharm

ED

Niday

Appendix B: Additional Results 82

Figure 65 Execution time in seconds. MaxSup = 1%

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m
e
in
 s
ec
on

ds

Adult

CUP

FARS

Pharm

ED

Niday

Appendix B: Additional Results 83

Comparison with Incognito

Figure 66 Nodes evaluated ratio. MaxSup = 1%

Figure 67 Performance score of Incognito with respect to our approach

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Nodes Evaluated

Adult

CUP

FARS

ED

Pharm

Niday

0%

100%

200%

300%

400%

500%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Log N

Adult

CUP

FARS

ED

Pharm

Niday

Appendix B: Additional Results 84

Figure 68 Size of solutions output by Incognito. MaxSup = 1%

MaxSup = 10%

Empirical evaluation of Datafly and Samarati with respect to the optimal solution,

with information loss metrics: DM, Prec and Non-uniform Entropy (NE).

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%
1000%
1100%
1200%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Size of Solutions Output

Adult

CUP

FARS

ED

Pharm

Niday

Appendix B: Additional Results 85

Figure 69 Information loss comparison for Adult and CUP data sets. MaxSup = 10%

Appendix B: Additional Results 86

Figure 70 Information loss comparison for FARS and ED data sets. MaxSup = 10%

Appendix B: Additional Results 87

Figure 71 Information loss comparison for Pharm and Niday data sets. MaxSup = 10%

Appendix B: Additional Results 88

Efficiency related graphs of our approach

Figure 72 “Number of evaluations” to “lattice size” ratio. MaxSup = 10%

Figure 73 “OSC” to “lattice size” ratio. MaxSup = 10%

0%

5%

10%

15%

20%

25%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

k

Nodes Evaluated to Lattice size ratio

adult

CUP

FARS

Pharm

ED

Niday

0%

2%

4%

6%

8%

10%

12%

14%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

k

OSC to Lattice size ratio

adult

CUP

FARS

Pharm

ED

Niday

Appendix B: Additional Results 89

Figure 74 Execution time in seconds. MaxSup 10%

0
30
60
90
120
150
180
210
240
270
300
330
360
390
420
450
480
510
540
570
600
630
660
690
720
750
780
810
840
870
900
930
960
990

1020
1050
1080
1110

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m
e
in
 s
ec
on

ds

Adult

CUP

FARS

Pharm

ED

Niday

Appendix B: Additional Results 90

Comparison with Incognito

Figure 75 Nodes evaluated ratio. MaxSup = 10%

Figure 76 Performance score of Incognito with respect to our approach

0%

100%

200%

300%

400%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Nodes Evaluated

Adult

CUP

FARS

ED

Pharm

Niday

0%

100%

200%

300%

400%

500%

600%

2 3 4 5 6 7 8 9 10 11 12 13 14 15Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Log N

Adult

CUP

FARS

ED

Pharm

Niday

Appendix B: Additional Results 91

Figure 77 Size of solutions output by Incognito. MaxSup = 10%

0%

1000%

2000%

3000%

4000%

5000%

6000%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc
en

ta
ge

 ‐
ou

r
ap

pr
oa

ch
 is
 1
00

%

k

Size of Solutions Output

Adult

CUP

FARS

ED

Pharm

Niday

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

