

UCMExporter: Enabling UCM-Based
Transformations

Report for the summer 2003 work term

By Ali Echihabi
Student Number: 2090356

Program: Software Engineering

Table of Contents

1. ABSTRACT 6

2. INTRODUCTION 7

2.1 SCENARIOS AND USE CASE MAPS 7
2.2 RESEARCH MOTIVATION AND PAST WORK 9

3. PROJECT 10

3.1 A LOOK AT THE PREVIOUS WORK 10
3.1.1 UCM2TTCN 10
3.1.2 UCM2MSC 10
3.2 UCM2XMI : MY PROJECT’S INITIAL SCOPE 12
3.2.1 DESCRIPTION 12
3.2.2 PROBLEMS AND CHALLENGES 12
3.2.3 ARCHITECTURAL CHOICES 16
3.2.4 COMMONALITIES WITH UCM2MSC 17
3.3 EXTENDING THE PROJECT TO UCMEXPORTER 17
3.3.1 A DESCRIPTION OF UCMEXPORTER 17
3.3.2 INTEGRATING UCM2TTCN INTO UCMEXPORTER 19
3.3.3 COMBINING UCM2MSC AND UCM2XMI: THE NEED FOR AN INTERMEDIATE STEP 19
3.4 CHALLENGES AND ARCHITECTURAL CHOICES FOR UCMEXPORTER 20
3.4.1 THE MAPPING BETWEEN UCM2MSC AND UCM2XMI 21
3.4.2 PARALLELISM IN SD 22
3.4.3 XMI/SD LAYOUT PROBLEM 22
3.4.4 CONNECTORS FOR CAUSALITY AND NAMES: 22
3.4.5 ALLOWING FOR CUSTOMIZATION 25
3.5 VALIDATING THE RESULTS: 26
3.6 EXPECTED IMPROVEMENTS: 26

4. CONCLUSION 27

5. REFERENCES 28

6. APPENDIX A: MAPPING 29

6.1 UCM CONCEPTS TO SDL AND MSC CONCEPTS 29
6.2 PARALLEL CONNECTOR RULES 29

7. APPENDIX B: CASE STUDY 34

Summer 2003 co-op term report – Ali Echihabi - 2090356

2

7.1 THE USE CASE MAP 34
7.2 UCMEXPORTER TO GENERATE THE XMI/SD 34
7.3 VIEWING THE XMI/SD 35
7.4 CUSTOMIZING THE RESULT 36

8. APPENDIX C: FULL PICTURE OF UCMEXPORTER 38

Table of Figures

Figure 1 - Sample UCM defined using UCMNav .. 8
Figure 2 - Sample Scenario shown as a highlighted path (in red) 8
Figure 3 – Black-box view of UCM2TTCN... 10
Figure 4 – Black-box view of UCM2MSC... 11
Figure 5 - Sample MSC .. 11
Figure 6 - Sample UML Sequence Diagram... 12
Figure 7 - A sample parallel scenario in MSC notation.. 14
Figure 8 - Parallelism expressed in UML/SD... 15
Figure 9 - Black-box view of UCMExporter.. 18
Figure 10 - Screenshot of UCMExporter.. 19
Figure 11 – A Sample UCMNavXML (truncated) ... 20
Figure 12 – The UCMExporterXML corresponding to the UCMNavXML in Figure 11 21
Figure 13 - An example of causality problem .. 23
Figure 14 - Solution to Causality problem.. 23
Figure 15 - Sample Parallel connector rule (Rule 1) .. 25
Figure 16 – Parallel Connector Rule 1.. 30
Figure 17 - Parallel Connector Rule 2 .. 31
Figure 18 - Parallel Connector Rule 3 .. 32
Figure 19 - Parallel Connector Rule 4 .. 33
Figure 20 – Generating UCMNavXML with UCMNav... 34
Figure 21 – Generating XMI/SD using UCMExporter... 35
Figure 22 – Customized XMI/SD result ... 37
Figure 23 - Full picture of UCMExporter... 38

Summer 2003 co-op term report – Ali Echihabi - 2090356

3

Glossary

GUI GUI stands for Graphical User Interface. Most programs are now
providing a graphical interface with windows and buttons to
improve their usability.

MSC The Message Sequence Chart is the International
Telecommunication Union’s (ITU) standard for instance
interactions in a system. It is very similar to SD (below).

SD The Sequence Diagram is a scenario notation that is part of UML
(below). It describes the dynamic behavior of a system by
graphically showing the interactions between the system
components.

SDL The Specification and Description Language represents in a
graphical format real-time and event-driven systems. It is widely
used in the Telecommunication industry.

TTCN The Testing and Test Control Notation is used to write detailed test
descriptions. TTCN is used to test a wide variety of systems such as
wireless networks and mobile phones [8].

UCM Use Case Map is a requirements-gathering scenario-based notation
that is mostly used for distributed systems. It is most suitable for
the requirements gathering phase than other scenario notations.

UML The Unified Modeling Language is the industry standard for
designing and documenting software components.

XMI The XML Metadata Interchange format (XMI) is a format that
enables easy interchange of metadata (information about the data)
between modeling tools (based on UML) and between tools and
metadata in distributed heterogeneous environments [6].

XML The eXtensible Markup Language (XML) is a flexible and very
simple text format that enables the exchange of a wide variety of
data on the web or elsewhere [7].

XSL/XSLT XSL or XSLT is the eXtensible Stylesheet Language which defines
how an XML document is to be transformed or displayed.

Summer 2003 co-op term report – Ali Echihabi - 2090356

4

Acknowledgement

I would like to take this opportunity to thank Dr. Daniel Amyot for having selected
me as his co-op student for the summer of 2003 and making me part of his group.
I would like as well to thank Jacques Sincennes and Yong He for their technical and
theoretical help and advice.
Finally, I thank the co-op office of the University of Ottawa for their commitment and
hard-work.

Summer 2003 co-op term report – Ali Echihabi - 2090356

5

1. Abstract
In this report, I summarize my work with Dr. Amyot during my summer 2003 co-op
work term at the University of Ottawa.
My project consisted of implementing a tool to transform Use Case Map (UCM)
scenarios to Sequence Diagrams in the XMI standard. However, the project’s scope
grew to include previous work and to plan for future similar transformations. I gave
my project the name of UCMExporter.
The UCM notation is used at the early requirements gathering phase of the Software
Engineering Process in order to validate the functional requirements. It is most useful
for high-level modeling of real-time distributed systems. Being able to transform
UCM scenarios to other scenario notations such as MSC and Sequence Diagrams
facilitates the transition from the requirements phase to the design phase. The goal of
UCMExporter is to enable UCM-based transformations and group them under one
tool.
In this report, I address the problems and challenges faced in my project. I also
illustrate the important concepts and give a simple case study to show how to use
UCMExporter.

Summer 2003 co-op term report – Ali Echihabi - 2090356

6

2. Introduction

2.1 Scenarios and Use Case Maps

Use Case Map (UCM) is a modeling notation that helps software engineers think of
and express their system at a high level of abstraction [1]. UCM models define the
responsibilities at each step of a possible execution path of the system. An execution
path, which we refer to as a scenario, defines both the responsibilities for a normal
(expected) execution, and those for an execution with exceptions. The scenarios
presented graphically are enough for the client to confirm the requirements of the
system without going too much into the details (e.g. no component definitions) [1].
There are other scenario notations that are used in the industry. The most commonly
known are the Message Sequence Charts (MSC) and Sequence Diagrams (SD). While
both these notations describe a possible scenario, the software engineer needs to
decide about several lower-level issues (e.g. components involved, communication
patterns). Such decisions are necessary for building the system, however not at the
initial step of gathering the requirements from the user. This is why it was found that
the UCM notation was more adequate for the analysis phase and the other notations
more suitable for the design phase [2].
The UCM notation allows us also to bind the scenario responsibilities to components
in the system. This is especially important because the notation is mostly used for
distributed systems [2]. A component in the UCM notation is very abstract. It can be
anything from a person to a computer hard-drive. Moreover, the UCM notation is
used at such a high level of abstraction that the software engineer does not need to
worry about the communication between the components.
The strength of the UCM notation for the modeling of distributed systems is
gradually being accepted and their usefulness appreciated by the academic and
industrial sectors. There is now a UCM Users’ Group [5] website that promotes the
use of UCM and publicizes the related news and events. Dr. Amyot is currently the
chair of the UCM Users’ Group.
UCM models can be defined using the open-source tool UCMNav (UCM Navigator).
By using this tool the software engineer can capture the requirements from the client,
and define the possible scenarios of execution in the system. The following two
figures show a sample Use Case Map and a possible scenario defined with UCMNav:

Summer 2003 co-op term report – Ali Echihabi - 2090356

7

Figure 1 - Sample UCM defined using UCMNav

Figure 2 - Sample Scenario shown as a highlighted path (in red)

Summer 2003 co-op term report – Ali Echihabi - 2090356

8

As stated above, UCM models are more suitable for the requirements phase, but other
scenario notations (e.g. MSC) along with their tools are more suitable and more
widely used for the design phase. Both phases are necessary for the development of a
well-structured and robust system. Hence, it is important to have tool interoperability
in order to transfer the time and effort put in one phase to the next.

2.2 Research Motivation and Past Work

Providing the tool support for the UCM notation and enabling the UCM-based
transformations to other scenario notations was a major goal for Dr. Amyot and the
members the UCM User’s Group.
A lot of effort was put to implement, maintain, and evolve UCMNav. One feature that
was added to the original UCMNav was to generate an MSC by doing a UCM
scenario traversal. This feature was very limited and inflexible to generate another
scenario notation from the UCM scenario traversal [2]. It was also hard to maintain
and error-prone because it was traversing the scenario and generating the MSC at the
same time.
In order to solve the problem of the programming complexity and inflexibility, a two
step approach was devised by Dr. Amyot and collaborators [2]. The first step
consisted of generating a description of the scenario traversal in XML format. The
second step consisted of taking the XML scenario traversal description and
transforming it into another scenario notation (MSC for instance).
The separation of the scenario traversal and the transformation steps allowed for
easier transformation algorithms that were based on the XML description. The use of
XML as a description format meant that all transformation programs knew the format
and structure of their input, and could then be programmed separately by different
programmers using different programming languages.
Two of Dr. Amyot’s past students wrote XSL programs to transfer the XML input
into TTCN and MSC files. They used XSL to implement a predefined mapping
between UCM concepts and test case concepts for TTCN and message and action
concepts for MSC. The TTCN and MSC files were generated in a format that was
supported by the most widely used tools in industry. Their work showed that the
UCM scenario traversal description in XML format contained enough information in
order to generate a description of the system’s UCM model in another modeling
language.
By allowing the transformations from UCM to TTCN and MSC, a step was made
towards the interoperability of tools and the transfer of effort from the analysis phase
to the design phase.

Summer 2003 co-op term report – Ali Echihabi - 2090356

9

3. Project

3.1 A Look at the Previous Work

3.1.1 UCM2TTCN
UCM2TTCN was the name I gave to the application developed by Bryan Mulhivill
which generated test cases and test goal descriptions from the XML description of a
scenario. Bryan worked under the supervision of Dr. Amyot and wrote a C++
program that applied an XSL sheet on the XML input to get the sought after result.
The figure below shows the black-box view of UCM2TTCN:

Figure 3 – Black-box view of UCM2TTCN

3.1.2 UCM2MSC
UCM2MSC was the name I gave to the XSL sheet written by S. Cui to transform the
input XML into an MSC file. The generated MSC files were in a textual format that
could be visualized with Telelogic Tau 4.4. Below are two figures showing the black-
box view of UCM2MSC and a sample MSC:

Summer 2003 co-op term report – Ali Echihabi - 2090356

10

Figure 4 – Black-box view of UCM2MSC

Figure 5 - Sample MSC

Cui defined a mapping between UCM concepts (such as responsibilities) and MSC
concepts (such as actions and messages). Cui implemented the mapping using XSL only
which made the XSL sheet fairly complicated. I assessed the complexity of the XSL
sheet when I had to fix a few defects in it. It became clear to me that XSL was not
appropriate for complicated and logic intensive programming (as Cui had to do) but
rather suitable for quick and predefined transformations.

Summer 2003 co-op term report – Ali Echihabi - 2090356

11

3.2 UCM2XMI : My project’s initial scope

3.2.1 Description
UCM2XMI was the name I gave to my initial project. It consisted in the beginning of
defining an XSL sheet like Cui’s in order to generate a Sequence Diagram (SD) in the
XMI format for each input scenario description (in XML format). Sequence Diagrams
are UML’s popular notation to describe the dynamic behavior of a system. Hence it
was important to provide the transformation between UCM scenarios and SD. XMI
(XML Meta-model Interchange) is a standard format of UML models. Theoretically,
this standard would allow complete interoperability between UML tools. This meant
that the result of UCM2XMI would be compatible with all tools that respect the
standard. We refer to the Sequence Diagrams in XMI format as XMI/SD. Below is a
figure showing a sample XMI/SD:

A B

m2

m1

Figure 6 - Sample UML Sequence Diagram

3.2.2 Problems and Challenges
Initially, UCM2XMI seemed to be a close replication of the effort done for
UCM2MSC since their outputs (Figure 6 and Figure 5 respectively) had many things
in common (such as instances). The similarity between the two helped save time in
the initial mapping between UCM and SD concepts by reusing the mapping between
UCM and MSC. Unfortunately, UCM2XMI faced problems and challenges that made
it much harder to implement and test. I explain the important challenges and problems
faced below:

Summer 2003 co-op term report – Ali Echihabi - 2090356

12

a) The Layout of the Sequence Diagram:
The XMI (version 1.1) standard did not define how to represent the layout
information, but left this matter as tool specific. Moreover, no tool on the market at
the time we started the project could do an auto-layout starting from a correct XMI
file. This meant that we could not visualize the XMI output as defined by the
standard, and that was a major problem because all testing and validation could only
be done visually (being able to answer the question: does it look correct?).
Something that made this problem even harder was the lack of documentation. Even
though we approached some tool vendors concerning this issue, we did not find the
documentation that described how a tool specifically did its diagram drawing.
Therefore I had to find myself how tools drew their diagrams.
Since that was clearly a time consuming effort, we decided to limit our support to the
most widely used tool in industry and that was Rational Rose. For a period of almost
a month, I analyzed the diagrams generated by Rational Rose and modified them in
order to obtain the format that the output of UCM2XMI needed to obey.
After that period, I was able to manually write XMI files and add diagram
information to them and successfully visualize them with Rational Rose. While that
opened the door for the implementation, it stayed a major concern for us because my
output would be tool specific and would depend on non-documented rules that I
learned from examples. This meant that my output could not be visualized with other
tools, and that it could be affected by unadvertised changes in the internal workings
of Rational Rose.

b) Expressing the Parallelism:
Concurrency, or parallelism, is a common and powerful behavior of real-time and
distributed systems that the UCM notation is mostly used for. Parallelism means that
two responsibilities can be executed in parallel (at the same time) in either one or
separate components. Parallelism is not limited to two sequences. It can happen
among several sets of responsibilities, each set having responsibilities happening in
sequence or in parallel themselves. The idea behind parallelism is not to impose an
order (sequence) between sets of responsibilities, but rather let them execute at the
same time each at its own speed. Generally, we cannot expect the order of the
execution of the parallel sequences. Hence, drawing an SD or MSC (as shown in
Figure 6 and Figure 5 respectively) does not express the parallel aspect of execution
but rather captures only one of the many possibilities.
The MSC notation has been augmented to visually express the concept of parallelism.
A sample parallel scenario is expressed in MSC in Figure 7. However, SD lacks this
concept (It is expected to be added in the next version of UML).

Summer 2003 co-op term report – Ali Echihabi - 2090356

13

Figure 7 - A sample parallel scenario in MSC notation

In order not to loose the (important) parallel aspect of a UCM scenario when we
translate it to XMI/SD, I tried three methods to show that aspect visually. The three
methods were: putting comments in the SD to mark the beginning and end of a
parallel block, using colors to show what is parallel with what, or using labels (text)
to do so.
In the first method, I tried to express parallelism using comment blocks that could be
put as markers of the beginning and end of a parallel block. For one parallel block,
this method would yield a result similar to removing the “par” box from the MSC in
Figure 7 and putting small comment boxes at the top left and bottom left corners.
Unfortunately, I could not implement this method because the XMI importer Rational
Rose used (and that was Unisys) discarded the location of the comment boxes and put
them in a default location. Even if this method had worked, it would still be limited in
expressing multi-level nested parallelism (it would overcrowd the SD with comment
boxes).

Summer 2003 co-op term report – Ali Echihabi - 2090356

14

The second method aimed at defining a coloring scheme that would express which
messages happened in parallel with which and which happened in sequence. Before
going too far with this method, I tested the Unisys XMI importer that Rational Rose
used and I found that it discarded the color information too and would use its default
color instead. This method would be limited as well even if it had worked, because
there was no intuitive way to express nested parallelism.
Being left with the third method only, I tried to formulate a labeling mechanism for
messages in order to express their parallelism relationship. The idea being that from a
simple label added to the message name, the software engineer would be able to
determine what was in sequence with that message and what could be in parallel, and
also at what level of nestedness that message took place.
The labeling method worked very well to answer our needs. In Figure 8, I am giving
the equivalent SD of the MSC that we looked at in Figure 7.

Figure 8 - Parallelism expressed in UML/SD

Summer 2003 co-op term report – Ali Echihabi - 2090356

15

In the above figure, the label “p1.s1” in the messages means that these messages
belong to the first sequence of the first parallel block, and hence happen in the
specified order. The same interpretation holds for “p1.s2”. Messages labeled “p1.s1”
are in parallel with messages labeled “p1.s2”. This method was successfully tested
with parallel blocks having more than two sequences with nested parallelism. To give
an example, the label for a message in the first sequence of the first parallel block
nested inside the second sequence of the first parallel block in the scenario would be
“p1.s2.p1.s1”.

The labeling system used was very easy to get used to and expressed the parallelism
relationship of any message with respect to the rest of the scenario.

3.2.3 Architectural Choices
In order to cope with the problems and challenges explained in the previous section, I
had to make an architecture that would allow for easy maintenance and evolution.
Because the output would be tool dependent and affected by future changes in the
standard or the internal workings of the tool, I broke the process into two steps. In the
first step, I transformed the input XML scenario description into XMI that strictly
corresponded to the standard (version 1.1). The second step was responsible for
taking the generated XMI of the first step and adding the diagram information to it.
The reason of having a step that would generate standard XMI was that we have
hoped that there would be a tool that could do the diagram auto-layout. The second
step separated the generation of XMI and the final tool dependent output. Changes in
the internal workings of the tool would necessitate modifying this second step alone.
While this step supported Rational Rose only, it was designed to independently
support other UML tools as well.
Another important architectural choice I made was the separation and coherence of
the logic, i.e. I have separated things that were related and grouped things that were.
Because the transformations were logic intensive based on rules that would be
refined, I defined a module that would specialize in synthesizing the messages. This
module, called MessageSynthesizer, applied the mapping between UCM and
XMI/SD concepts independently from the context it was used in. As
MessageSynthesizer applied its mapping it knew whether a message was in a parallel
block and hence could assign a label to it according to the mechanism described in
3.2.2 b).

Summer 2003 co-op term report – Ali Echihabi - 2090356

16

3.2.4 Commonalities with UCM2MSC
As SD and MSC scenarios were visually similar, I found that UCM2XMI and
UCM2MSC had many technical commonalities as well. Duplicating parts of
UCM2MSC in order to use them for UCM2XMI would have been a bad software
engineering decision. Finding an error in a common part to both applications
(determining the instances for example) would necessitate the modification of two
separate pieces of software. So there was a clear advantage and gain in software
quality if duplication was avoided. However, avoiding duplication (a copy paste
operation) and opting for reuse (effective sharing) had the disadvantage of time
constraints.
It is considered as a software engineering principle that the advantages of reuse
largely outweigh its disadvantages (the advantages of duplication). This principle
held very well in my situation since by opting for reuse I was able to meet the
deadline and produce software of higher quality.

3.3 Extending the project to UCMExporter

The need for reuse between UCM2MSC and UCM2XMI that we discussed in 3.2.4
enlarged the scope of my project. After discussing the new scope with Dr. Amyot, we
agreed to evolve the project to building an open source tool that would enable the
UCM-based transformations. I chose the name of UCMExporter for this tool (in
parallel to UCMNav).

3.3.1 A Description of UCMExporter
The goal behind UCMExporter was to have a unique piece of software that would
enable the UCM-based transformations. Software engineers would use UCMNav to
generate XML scenario traversal descriptions, which we refer to from now on as
UCMNavXML. Then, they would use UCMExporter to transform the UCMNavXML
into TTCN, MSC, XMI/SD, or any other notation that we would support in the future.
Figure 9 gives a black-box view of UCMExporter.

Summer 2003 co-op term report – Ali Echihabi - 2090356

17

Figure 9 - Black-box view of UCMExporter

UCMExporter consisted of a command line application and a GUI (shown in Figure
10). I chose to implement it in Java in order to make it platform independent, but also
because Java had well documented XML libraries (JDOM) and well known and
capable XSL engines (XSLTC).
UCMNav was made open source, and similarly we wanted UCMExporter to be open
source as well. The idea of having open source software was to encourage the
involvement of other engineers from the academic and industrial sectors. Users of
UCMExporter would have access to the source code and could hence review it,
improve it, or make suggestions for us to do so. UCMExporter was hosted in the
well-known open source software website SourceForge.net. SourceForge.net
provided tools that were tailored to the needs of open-source software developers
such as version control (CVS), backups, and web-hosting.

Summer 2003 co-op term report – Ali Echihabi - 2090356

18

Figure 10 - Screenshot of UCMExporter

3.3.2 Integrating UCM2TTCN into UCMExporter
In order to allow the transformation of UCM scenarios into TTCN, UCMExporter
needed to integrate the functionality of UCM2TTCN. The past work on UCM2TTCN
consisted of one XSL sheet that did fairly simple transformations; hence integrating it
was a simple matter. All that UCMExporter needed to do was to take the
UCMNavXML (the input) and apply the UCM2TTCN XSL sheet on it.

3.3.3 Combining UCM2MSC and UCM2XMI: The Need for an
Intermediate Step

The need to reuse the shared aspects of UCM2MSC and UCM2XMI resulted in
introducing an intermediate step between the input (UCMNavXML) and the two
applications. This intermediate step was responsible for generating the information
that both UCM2MSC and UCM2XMI needed (such as instance names).
This intermediate step made the final transformations to MSC and XMI easier since
all the needed information was ready to use. The intermediate step also improved
code quality because it abstracted the complicated functionality and allowed for
easier defect fixing, code maintenance, and evolution. Therefore, we expected that the
transformations for future notations would be made easy as well.

Summer 2003 co-op term report – Ali Echihabi - 2090356

19

3.4 Challenges and architectural choices for
UCMExporter

As described in 3.3.3, I introduced an intermediate step between the UCMNavXML
and the transformation applications. The intermediate step was packaged as
XMLInputTransform. It became responsible then for modifying the UCMNavXML by
adding more information to it and making it readily available for the later
transformations. In order to benefit from the advantages of XML, we decided to make
the result of XMLInputTransform in XML format. And in order to provide some
backwards compatibility, and reuse the existing UCMNavXML DTD (Data Type
Definition) we decided to extend it instead of defining a new one. We refer to the
result of XMLInputTransform as UCMExporterXML.
Therefore, UCMNavXML and UCMExporterXML looked very similar but the latter
had more readily available information than the former. Figure 11 and Figure 12
show a short example of a UCMNavXML and its corresponding UCMExporterXML
respectively.

Figure 11 – A Sample UCMNavXML (truncated)

Summer 2003 co-op term report – Ali Echihabi - 2090356

20

Figure 12 – The UCMExporterXML corresponding to the UCMNavXML in Figure 11

Since UCMExporter was to integrate the functionality of all existing transformations,
it had to cope with their problems as well. And because we wanted it to be a complete
tool that could be extended for future transformations, it had some challenges of its
own.
Let’s look at the main problems and challenges that UCMExporter faced and how I
approached them.

3.4.1 The mapping between UCM2MSC and UCM2XMI
In order to define the mapping between both UCM to MSC and SD concepts, we
reused and augmented the MessageSynthesizer described in 3.2.3. The sole
responsibility of MessageSynthesizer was to detect the messages that needed to be
shown in any of the supported notations. By using the attributes of a message, the
later transformations knew if that message was suitable for them to show or not. For
example, a message that had a timer flag set would be interpreted differently by
UCM2MSC and UCM2XMI.
This separation of responsibilities, made the potential support of another notation
easier. As I explained in 3.3.3, UCM2MSC and UCM2XMI became easier to
implement. In fact UCM2MSC and the first step of UCM2XMI (described in 3.2.3)
became both straight forward. That was due to the choice of using XSL for
implementing the transformations.

Summer 2003 co-op term report – Ali Echihabi - 2090356

21

Even though UCM2MSC, UCM2XMI, and any other potential transformation would
receive the same UCMExporterXML input, they would only see the parts that were
specified in their XSL sheet and would discard the rest. This would make adding new
information to the UCMExporterXML in order to satisfy the needs of a new
transformation invisible to the existing ones. In fact that was experienced as I had to
change the intermediate step to add information that was needed by UCM2MSC but
not UCM2XMI in order to improve the former. And that caused no side-effects to the
latter.

3.4.2 Parallelism in SD
As mentioned in 3.4.1, I augmented MessageSynthesizer which was already applying
the parallelism labeling mechanism described in 3.2.2 b). Therefore, when the
intermediate step added a message for UCMExporterXML it defined a parallelism
label attribute that would hold that information (e.g. para-lable=”p1.s2”). And as I
explained, the use of XSL for the transformations made this piece of SD-specific
information visible to UCM2XMI but not to UCM2MSC.
Hence the decision to opt for reuse instead of duplication helped applying the same
implementation of the solution to this problem.

3.4.3 XMI/SD Layout Problem
In 3.2.3 we looked at the architectural choices for the initial UCM2XMI. The decision
to split UCM2XMI into two steps proved fruitful. The changes to UCM2XMI
described in 3.4.1 concerned only the first step and consisted of writing a straight
forward XSL sheet to produce standardized XMI. The second step required no
modifications since it only depended on a standardized XMI and added tool-
dependent diagram information to it regardless of how the input was generated.
The layout problem was a major one and the fact that I was able to reuse the second
step proved the ease of maintainability and evolution of the design.

3.4.4 Connectors for Causality and Names:
After the problems mentioned above were tackled and successfully solved, we moved
to an issue that concerned both MSC and SD notations and that was the issue of
causality. The problem of causality consisted of making sure that the execution of the
scenario was continuous, i.e. that there were no sudden unconnected jumps from one
instance to another. Figure 13 shows a sample causality problem.

Summer 2003 co-op term report – Ali Echihabi - 2090356

22

Figure 13 - An example of causality problem

As we can see from the figure above, the scenario started when A sent a question to B
and then B started thinking about an answer. Suddenly, C gave B a hint and then B
answered. To contrast this with the real-life, imagine A was a teacher and when she
asked her student B a question, B’s classmate C gave him a hint. While this sounds
normal in a classroom setting, it is implicitly said that B heard the question and C did
too (or maybe B asked C for a hint after some thought). This shows that it would not
be normal that C gives B a hint if C did not hear the question (received a message
from A) or if B did not ask for one (B sent message to C). Therefore, it would be
more correct to preserve the causality by having a message sent to C (either form A or
B depending on the scenario we choose). Figure 14 shows how the scenario should
have been displayed in MSC.

Figure 14 - Solution to Causality problem

Summer 2003 co-op term report – Ali Echihabi - 2090356

23

UCM models are used to think of a system at a very high level of abstraction. They
don’t express the causality explicitly because it is a lower level issue. The UCM
models allow the software engineer to express things implicitly about the
communication between components (as the classroom example I gave above).
Therefore, UCMExporter had to account for those missing (implicit) communications
between the components (or instances) of a system.
After the need of messages to keep the causality was established, we moved to
defining the rules to detecting them. We referred to that type of messages as
connectors.
The general rule consisted of detecting transitions of execution from one instance to
another that lack communication (e.g. sending a request). While detecting this
visually was straight forward, we needed to detect it by analyzing the UCMNavXML.
I introduced a module in the intermediate step that would be responsible for the
generation of the connectors. The modularized architecture allowed for such
integration of new modules with minimal changes to the rest of UCMExporter. We
later implemented the rules as they became available. We found two sets of rules. A
set of rules that dealt with instances interacting in sequence, and another set of rules
for parallel communication. The first set of rules was straight forward compared to
the second.
Detecting connectors for sequential communication consisted of remembering the
current instance and the previous instance as we parsed the UCMNavXML. If we
detected that the previous and current instances were different, and that there was no
explicit communication between them then we generated a connector between the
two.
However, detecting connectors for parallel communication necessitated a larger
understanding of what was happening in the UCMNavXML. Dr. Amyot and I
identified four rules that were based on the following information:

1. The last instance (or instances) before entering a parallel block.
2. The instances that first execute inside the parallel block
3. The instances that last execute inside the parallel block
4. The first instance (or instances) after exiting the parallel block.

Based on the information above we could detect the need for connectors and
determine the sender instance and the receiver for each connector. Figure 15 shows
one of the rules for parallel related messages. It defines a mapping between a parallel
structure in UCM and the corresponding SD. The detected connectors are shown as
m1 and m2. For a description of the UCM notation for parallelism and the rest of the
parallel connector rules, please refer to Appendix A: Mapping

Summer 2003 co-op term report – Ali Echihabi - 2090356

24

Figure 15 - Sample
Parallel connector rule

(Rule 1)

The names that
were given to the
connectors (e.g.
m1, m2) were
not descriptive
enough. While
descriptive
names would
help software
engineers better
understand the
scenario, they
were important
for the
synthesizing of
SDL models
form a set of
MSC files.
Yong He, one of Dr. Amyot’s Phd students, pointed out the need for having
consistent names for the connectors. This meant that a connector called m1 should
have the same meaning in different scenarios of the same model.
Therefore, instead of incrementally generating connector names (m1, m2, m3, etc…)
I defined a simple method to give context dependent names. The method consisted by
looking at what the message connector’s sender was doing before sending it, and
what the receiver would do after receiving it. If the sender was doing operation X,
and the receiver would do operation Y, then the connector would be named
“did_X_do_Y”. In the classroom example given above, we would change the
message m1 in Figure 14 to “did_Thinking_do_hint”.
The method I defined gave a context dependent description, and solved part of the
problem by making sure that if two connectors had the same name than they must
mean the same thing with respect to what was happening immediately before and
what would happen immediately after. The method was not suitable for giving names
by looking at the entire context because they would be too long. Therefore, that was a
partial solution to answer a particular need for synthesizing SDL models from a set of
MSC files.

3.4.5 Allowing for Customization
One major requirement for UCMExporter was to allow for results customization, i.e.
allow the user to override an existing or specify a new transformation rule. The main
application of the customization would be the definition of specific communication
protocols between participating instances.

Summer 2003 co-op term report – Ali Echihabi - 2090356

25

In order to add this functionality I added a customization module that could execute a
user specified XSL sheet. In the XSL sheet, the user would write the new rules to
apply in order to modify the final result. Normally a user would view the default
output of UCMExporter and then write one or many XSL sheets to test different
communication patterns. The user could define a communication protocol between a
specific pair of instances, or introduce a group of instances that would act as brokers.
Please refer to Appendix B: Case Study for a sample customization.
The modularity of UCMExporter made plugging-in a new customization module
easy. The module was inserted at the end of the intermediate step. Hence the results
of the intermediate step (UCMExporterXML) contained the customized information
and therefore the later transformations to MSC or XMI/SD needed no modifications.

3.5 Validating the Results:

After the implementation of the transformation rules, and after I verified that they
were working properly (no defects), I needed to validate their results to make sure
that what they were doing was correct.
In order to validate the transformation process, Yong He gave me 15 UCM scenarios
and their manually generated corresponding MSC files. The 15 scenarios contained
the different aspects of scenarios such as parallelism and timers. The rules would be
considered valid, if the output of each UCM corresponded to its manually generated
MSC.
We successfully reproduced the given MSC files from the UCM scenarios. Each
generated XMI/SD was easy to check against the expected MSC. However, I
expected the need for future rule corrections or refinements and used the modularized
approach in order to localize the required changes as much as possible.

3.6 Expected Improvements:

There were improvements that I wanted to make but could not given the time
constraints. One improvement was the creation of a web interface for UCMExporter.
The web interface would allow users to use the internet to enter their UCM scenarios
and get the corresponding TTCN, MSC or XMI/SD files. This would eliminate the
need for packaging and installing the application.
Another improvement that I attempted was the definition of a module that would
generate all the possible interleavings in a parallel block. Implementing it would
allow an automated SDL synthesizer to synthesize better models from a set of MSC
files. However, that was a complex matter that I could not tackle within the given
time frame.
Also, the code could also be improved by simplifying some parts and adding some
error checking. In order to allow for such improvements, I commented my code
abundantly and used the Javadoc program to put the code documentation online for
future developers.

Summer 2003 co-op term report – Ali Echihabi - 2090356

26

4. Conclusion
I was very satisfied with my co-op term with Dr. Amyot during the summer of 2003. I
enjoyed completing my project and benefited at the professional, personal, and
technical levels.
At the professional level, I improved my ability to work independently under minimal
supervision. The weekly group meetings and my regular discussions with Dr. Amyot
helped me improve my presentation and communication skills in both French and
English. I also had the chance to do requirement gathering and improve my ability to
identify the rules and requirements.
At the personal level, I enjoyed working in the new SITE building of the University
of Ottawa. I also enjoyed meeting PhD and Master’s students of the faculty and
asking them for career recommendations and advices. Moreover, because of the time
flexibility I could organize my schedule to do more extracurricular activities.
The technical level was certainly the level at which I benefited the most. I used some
technologies for the first time (such as XML, XMI, and XSL), and had the chance to
review some others (such as UML and MSC). I became more familiar with the
Eclipse Java Development platform since I used it to write, test and execute around
six thousand lines of Java code for this project. I also used the Xselerator tool for the
first time for writing, testing and executing 1200 lines of XSL code.
The job description explained very well the purpose of the project and referred to the
technologies that would be used. And during the interview, Dr. Amyot explained to
me the possible problems and challenges that could be faced and gave me the big
picture of his work.
Dr. Amyot considers his co-op students as full members of his group and they are
informed of other members’ work and progress. The projects that Dr. Amyot assigns
to his co-op students are important ones in terms of scope and future integration with
other projects.

Summer 2003 co-op term report – Ali Echihabi - 2090356

27

5. References

[1] F. Bordeleau, D. Cameron: Relationship between MSC and UCM
[2] D. Amyot, Y. He, D. Amyot, Y. He, X. He: Generating Scenarios from

Use Case Map Specifications
[3] http://www.geocities.com/SiliconValley/Network/1582/uml-

example.htm#toc, Anuar Musa: Unified Modeling Language by Example
[4] Y. He, D. Amyot, A. Williams: Synthesizing SDL from Use Case Maps:

An Experiment
[5] http://www.usecasemaps.org : The Use Case Maps Web Page
[6] http://www.oasis-open.org/cover/xmi.html : Cover Pages: XMI
[7] http://www.w3.org/XML/: EXtensible Markup Language
[8] http://www.etsi.org/frameset/home.htm?/ptcc/ptccttcn3.htm: ETSI

Telecom Standards

Summer 2003 co-op term report – Ali Echihabi - 2090356

28

http://www.usecasemaps.org/
http://www.oasis-open.org/cover/xmi.html
http://www.w3.org/XML/
http://www.etsi.org/frameset/home.htm?/ptcc/ptccttcn3.htm

6. Appendix A: Mapping

6.1 UCM Concepts to SDL and MSC Concepts

In this section I give a summary of the main three concepts of UCM that are
translated into MSC and SD concepts, and they are:

1. The concept of responsibility in UCM is translated as an action in MSC and a
self message in SD.

2. The concept of Timer_Set is translated as a Timer Set in MSC which shows
that a timer was started. In SD this will mark the start of a self message.

3. The concept of Timer_Reset is translated as a Timer Reset in MSC which
shows that a timer was reset. This will mark the end of a self message in SD.

The mapping for other UCM concepts such as Start, Connect_Start, and
Connect_End is explained in the UCMExporter documentation.

6.2 Parallel Connector Rules

As mentioned in 3.4.4, we identified four rules to detect the connector messages in
parallel blocks. The first rule was show in Figure 15, but I put it here again and
explain it in more detail.
In each rule we give a Use Case Map that shows a possible parallel behavior and
below it is the corresponding MSC.

Summer 2003 co-op term report – Ali Echihabi - 2090356

29

Figure 16 – Parallel Connector Rule 1

The Use Case Map expresses the following:
• There are two actions x and y that are in parallel
• The action x is happening in component A and y is happening in component C
• When both actions x and y are finished, we go to a third component B and

execute action R.

The parallel connector m1 shown above expresses the implicit communication between A
and B. The parallel connector m2 expresses the implicit communication between C and
B. When receives both messages, it will know that A and C finished their respective
actions. Therefore B can go ahead and execute R.

Summer 2003 co-op term report – Ali Echihabi - 2090356

30

Figure 17 - Parallel Connector Rule 2

The Use Case Map expresses the following:
• We have three components: A, B, and C
• We start by having two parallel actions (x and y) inside A
• Once x and y are completed we start two other parallel actions (w, z).
• The parallel actions w and z are in separate components: B and C respectively

From the UCM we can see that actions w and z should not start until x and y are finished.
Therefore there should be a message that will signal the end of x and y. Since there are
two components when we leave the parallel block we need A to send two messages for B
and two for C.
Connector messages m1 and m3 tell B that actions x and y are done. Connector messages
m2 and m4 tell C that x and y are done. Actions w and z in B and C respectively should
only start when those messages are received.

Summer 2003 co-op term report – Ali Echihabi - 2090356

31

Figure 18 - Parallel Connector Rule 3

The Use Case Map expresses the following:
• We start with two parallel actions R1 and R2.
• R1 is happening inside A, and R2 inside B.
• When both R1 and R2 are done, we execute action R3 which is in B.

The message m1 is shown in this MSC to trigger the parallel behavior. It could be
removed without loosing the causality. However m2 is needed to show that R3 will only
execute once the parallel execution is complete.

Summer 2003 co-op term report – Ali Echihabi - 2090356

32

Figure 19 - Parallel Connector Rule 4

The Use Case Map used in this rule expresses the following situation:
• The execution starts with action R in component A
• We then have a parallel execution of actions x and y in components B and C

respectively
• When x and y are done, we go inside a fourth component D and execute action z.

We start the execution with action R in component A. In order to have the parallel action
x and y start, A sends m1 and m3 to B and C respectively. Once the parallel execution of
x and y is finished, B and C inform D that it can start z by sending it m2 and m4.

Summer 2003 co-op term report – Ali Echihabi - 2090356

33

7. Appendix B: Case Study
This case study serves the purpose of illustrating how UCMExporter would be
typically used. The case study is broken into several steps, each being commented.
This case study shows how to generate XMI/SD only, but the same procedure holds
for MSC and a more straight forward one for TTCN.

7.1 The Use Case Map

A software engineer wishing to use UCMExporter must define or use a predefined
UCM. To define a new UCM or to edit an existing one, the software engineer would
use the UCMNav tool.
In this case study, we will use the UCM shown in Figure 1 and transform the scenario
highlighted in Figure 2. The user should generate the UCMNavXML by selecting the
scenario name and then hit the “To XML” button shown at the bottom.

Figure 20 – Generating UCMNavXML with UCMNav

7.2 UCMExporter to Generate the XMI/SD

The software engineer would then launch UCMExporter and choose the
UCMNavXML generated in the previous step as the input. The user could choose the
three types of output available TTCN, XMI, or MSC. In our case study, we will
choose XMI.

Summer 2003 co-op term report – Ali Echihabi - 2090356

34

Figure 21 – Generating XMI/SD using UCMExporter

The user could choose to generate only standardized XMI, i.e. XMI with no tool
specific diagram information. This would be useful if some tool would do the XMI
auto-layout in the future. However since no tool was known to do that, we provided
the option to target a specific UML tool. UCMExporter supported Rational Rose 98
only (Rational Rose for short); however it was designed to be extended to target other
tools as well. Once ready, the user will hit the “Generate the XMI file” button. The
XMI file would be given the name and would be put in the directory specified in the
GUI.

7.3 Viewing the XMI/SD

The user could visualize the result using Rational Rose 98 as specified in the previous
step. As I mentioned in 3.2.2 b), Rational Rose used a plug-in developed by Unisys
for its XMI importing and exporting.

Summer 2003 co-op term report – Ali Echihabi - 2090356

35

The result that Rational Rose would show was given earlier in Figure 8. The resulting
SD had two connector messages whose names were customized to
did_snd_req_do_ringTreatment and did_ringingTreatment_do_fwd_sig respectively
using the mechanism explained in 3.4.4.

7.4 Customizing the result

Now that the user saw the output, they could decide to implement a specific
communication protocol when some conditions of their choice hold. A condition
could be:

• Use the protocol between some specific instances
• Use the protocol for some specific type of messages
• Use the protocol for some specific messages (given their IDs)

In this example, we decided to customize all connector messages using a dummy
protocol named “Say It Again Please”. This protocol defines a communication
pattern for all connector messages that consists of having the receiver request a
repetition of the message.
The protocol would be defined in an XSL sheet which would define the new protocol
rule. The user would then tell UCMExporter where to find the customization XSL
file.
I wrote such an XSL sheet, and below is the output after the customization took place.
The figure blow shows the resulting XMI/SD. It shows that the protocol was applied
to the two connector messages and not the rest as the rules specified.

Summer 2003 co-op term report – Ali Echihabi - 2090356

36

User_Orig User_Term Agent_Orig Agent_Term

req

checkTime

snd_req

did_snd_req_do_ringTreatment

SAY_IT_AGAIN_PLEASE

did_snd_req_do_ringTreatment

ringTreatment{p1.s1}

ring{p1.s1}

ringingTreatment{p1.s2}

did_ringingTreatment_do_fwd_sig

SAY_IT_AGAIN_PLEASE

did_ringingTreatment_do_fwd_sig

fwd_sig{p1.s2}

ringing{p1.s2}

Figure 22 – Customized XMI/SD result

Summer 2003 co-op term report – Ali Echihabi - 2090356

37

8. Appendix C: Full picture of UCMExporter
Below is the overall picture of UCMExporter. It shows the steps for the supported
transformation from UCMNavXML to TTCN, MSC or XMI/SD. Some notes and
comments are given as well.

Figure 23 - Full picture of UCMExporter

Here is a summary of the transformation process. We generate UCMNavXML for
one or more scenarios using the UCMNav. If we want to generate TTCN output, we
can directly call the UCM2TTCN application.
However, if we want to generate MSC or XMI/SD we have to go through the
intermediate step. The result of the intermediate step will be UCMExporterXML that
has all the information that the following transformations will need.

The figure above shows also the internal modules of the intermediate step that were
packaged as XMLInputTransform. The modular architecture allowed for inserting
modules as they were made ready and made error localization (debugging) and
correction much easier.

Summer 2003 co-op term report – Ali Echihabi - 2090356

38

