From Timethreadsto LOTOS:
A First Pass

Daniel Amyot

Report SCE-93-38
December 8, 1993

Depar tment of Systems and Computer Engineering
Carleton University
Ottawa Canada K1S5B6
email: damyot@csi.uottawa.ca
tel: (613) 564-9439
fax: (613) 564-9486

Thiswork has been supervised by Professor R.J.A. Buhr (U. Carleton) and
Professor L. Logrippo (Ottawa U.).

© Copyright Danid Amyot
Department of Computer Science, University of Ottawa.



From Timethreadsto LOTOS: A First Pass

Daniel Amyot
Telecommuni cation Software Engineering Research Group
University of Ottawa
Department of Computer Science
Ottawa, Ont. Canada K1S9B4
email: damyot@csi .uottawa.ca

Abstract

A LOTOS interpretation of the Timethread notation is given in this docu-
ment. Timethreads are an informd technique that focuses on end-to-end
behaviours of a system while LOTOS is a formd technique with well
devel oped theories of transformation, vaidation and testing. Timethreads
constructors and their interpretation are discussed in the context of ther
possible use as athinking tool in adesign framework.

K eywor ds: Design methodology, Forma Description Techniques, LOTOS, Timethreads

1 I ntroduction

1.1 Motivation

Forma methods provide many ways to transform, validate, verify, and test a specification.
However, they are limited in their use mostly because they are often not justified on a cost
benefit andyss and they are seen as being rather mathematical and intellectudly hard to
use [Tur 93].

Engineers usng forma methods may find too long the step from requirements to specifi-
cation. They can lose trace of some basic end-to-end behaviours, while being in their
design process. Visualization is a so essentid from a design perspective, and most forma
methods do not provide such facility.

Where forma methods done fail, a combination of engineering principles and formd
methods may lead to rigorous and cost-eff ective computer system desgn.
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1.2 TheTimethread Notation

"A timethread is a path traced over a system to show operationa behaviour. They are use-
ful for design discovery and system reasoning at a gl oba perspective’ [LaB 92]. A timeth-
read links activities performed by the system, resulting from some stimulus (cause) and
terminating with some eventua response (effect). We use timethreads to stay focused on
the end-to-end behaviour of the system we want to design.

This notation is considered intuitive and appealing by many engineers. At a very abstract
leve, timethreads leave intentionaly many detals unresolved. Refinement permits to
clarify many of these detalls.

Still very young and not really formad, the Timethread notation has many open-ended
problems. This document tries to provide a better semantics to this notation and to solve
some of its problems, while keeping it appeding to engineers.

1.3 WhyLOTOS?

LOTOS [1SO88] is a standardized Forma Description Technique that has been chosen as
aformd bads for our Timethread notation. Other forma methods, e.g., Petri nets [FCB
93] and event structures, could be cond dered as options, but some problems are associ ated
with these techniques:

Petri nets: Petri nets are a well-known specification technique. One of the major draw-
backs of Petri nets, particularly in a system design perspective, is the complexity of com-
postiondity features that are avalable. Nowadays, to solve these modularity and
compostiondity problems, enhancements to the basi c model are provided, such asusing a
state machine as the bas ¢ component in the theory of modular Petri nets. Nevertheess, a
few problems still exist: modul arity is achieved only for limited c asses of nets and behav-
ioral properties are still very hard to anayse. Correctness preserving transformations are
beng deve oped, but much work still remains to be done in this area. These points are
developed in [BDC 92].

Event structures: Event structure are a poset based model for describing the behaviour of
di stri buted systems. They have an independent theory rooted in the theory of formd lan-
guages, but are too weak to express more general nets and problems, such as the producer
and consumer paradigm (for example, see [Roz 92]). Extensions have been proposed and
could seem as powerful aslabelled transition systems (LTS), which are LOTOS' underly-
ing modd. However, there is no standardized event structures-based language available
for the moment, and LTS, which are well understood, can be considered sufficient for our
work.
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What is very interesting in LOTOS s that we can manipul ate, combine, factor, and trans-
form various expressons quite easly. Many properties can be verified, tested and vali-
dated by the numerous avalable tools [GLO 91]. Extensions, dthough not standardized
yet, will eventualy provide other functiondities and facilities very useful for real-time
and di stributed systems design.

Previous work has been done on amilar approaches. In [ViB 91], the authors presented a
technique that can be used to support an effective process for generating the design of con-
current systems, with the hdp of timethreads (called slices in the paper) and LOTOS. In
[LaB 92], the authors try to seeif two different approaches of a design conception, Objec-
Time! and LOTOS, could be used in a complementary way in order to add timethreads
concepts to ObjecTime. The approach presented in the current document differs consider-
ably from these two but the experience gained from [ViB 91] and [LaB 92] will hdp in
avoiding some mistakes.

1.4 Organization of the Document

Section 2 introduces some definitions and a sequence of activities notation used in most
examples. Section 3 presents many concepts related to LOTOS interpretation of timeth-
reads. a basic timethread set, levels of specifications, and instance identifiers. Section 4
defines the basc LOTOS interpretation of single timethreads, while section 5 deals with
ample timethread interactions. Section 6 mentions some specid symbols that are part of
in the Timethread notation. In section 7, we discuss a number of topics related to a more
compl ete design methodology. Findly, aconclusion is given in section 8.

2 Definitions and Notation

2.1 Definitions

Snce LOTOS and the Timethread notation use some common words with different mean-
ings, we define a specific terminology that will be used in this document:

Timethread: Cause-to-effect re ationship.
Triggering event: Starting event of atimethread.
Resulting event: Ending event, termination of a timethread.

1. ObjecTime isthe new name for the real-time CASE toolset Telos.
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Process: By default, will be used to denote a LOTOS behaviour abstraction,
except where the meaning is expressed explicitly as in Machine
Charts process and design process.

Interaction: Genera relation of observation between the environment and atrig-
gering or resulting event, or between many timethreads on a wait-
ing place.

Synchronization: Specid case of interaction, usudly artifica and internal, within
one timethread. Multiway synchronization refers however to the
LOTOS concept.

Activity: Action or event along a timethread.

Event: Activity on which there is interaction. Events are of three kinds:

triggering, resulting or synchronization events.

Action: Activity on which no timethread interaction is dlowed. An action
corresponds to a certan functiona ity within the system.

2.2 Notation Used

In the following examples, a specid notation to represent sequences of activities and
LOTOS behaviours will be used:

» L istheaphabet, or the set of activities (including theinterna action ).
« A* isanon-empty sequence of activities with the BNF:

A" =ala A'.
* Aisaseguence of activities with the following BNF notation:

A:=@ | A", where & represents the empty sequence.

* BisalLOTOS behaviour expression. For instance, a sequence A followed by
stop, exit Or aprocess instantiation is a behaviour expression.

* P,QandRareusualy used as LOTOS processidentifiers.

Most LOTOS process definitions in our examples will not indude gate parameters for
conciseness. Note al so that, in abehaviour expression:

* (J; exit reduces to exit
* (J; stop reduces to stop
* J; P reducesto P (where P is a process instantiation)
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These equiva ences are given to match LOTOS' syntax.

New words or concepts, as well as references to timethreads and LOTOS code, will be
italicized.

3  Basic Conceptsof Timethreadsin LOTOS

3.1 BasicTimethread Set and Notation Elements

The Timethread notation [BuC 93][Buh 93a] ind udes the basic set of timethreads, possi-
ble interactions between timethreads and specid symbols. Sections 4, 5 and 6 of the cur-
rent document will present the LOTOS semantics of these timethreads and we will see
that, from a LOTOS point of view, many detals will become more abstract, reducing the
complexity of the interpretation. Basically, there will be one LOTOS process per timeth-
read. However, extra processes may be created to accommodate asynchronous or concur-
rent behaviours.

Figure 1 shows the bad ¢ notation el ements of timethreads:

—~—_ — b

On which activities are placed.

Waiting place
‘ At the beginning of body, for a start triggering event.
Along a body, for atriggering event from another timethread
or from the environment.
I Junction point
At the end of body, for aresulting event.
Along a body, for synchronization between concurrent timethreads.

Figure 1: Basic notation elements

Waiting places and junction points will be represented as LOTOS gates on which interac-
tion with the environment or with other timethreads will occur. The body will only repre-
sent the sequencing of activitiesaong it.

Note that some LOTOS operators, like the disabling and the enabling, will be put aside at
this stage for smplicity reasons. Abstract data types and ther corresponding operators
will also be put asde. We try to use only a smdl set of LOTOS operators to be able to
answer questions asked to a specification obtained from timethreads.

For instance, timethread interactions, which coul d be cons dered a case of enabling, can be
easily generalized in LOTOS with multiway Ssynchronization on extra hidden gates. We try
not to use the LOTOS enabling operator (>>) Snce most of its functionality can be simu-
lated with synchronization on hidden gates. This "simulation” adlows us to have fewer
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LOTOS operators to consider (thus more generality) for the creation, the trangf ormations
and the verification of our specifications. Some specid symbols in [BuC 93] and [Buh
93a] will not be discussed in depth since they may not be essentid to the notation.

Our interpretation of timethreads may often result in anew style of LOTOS code, i.e., with
a lot of concurrent instances and many resulting stop processes. This timethread style
reflects the timethread structure of the system under design but not its find architecture.
Since we are only concerned with a purely behavioural interpretation without any archi-
tectural consideration, at |east for the moment, thisfact isnot area problem.

3.2 Levelsof Specifications

P~ —1
Figure2: Basic timethread

Figure 2 represents a basic timethread, or a cause-to-effect relationship. It would be easy
to think about this behaviour in a sequentia way and to defineits LOTOS equivdence as
P:= A;stop, Where A represents a sequence of activities. A timethread's activity can
identify future fragments of sequentia code: an abstract sequence of actions, afunction, a
procedure, amethod or parts of processes. Timethread activities are mapped onto LOTOS
gates: gates without interaction (from the environment or other timethreads) for actions,
and gates on which there isinteraction for events (refer to 82.1 for the terminology).

We should & so cond der the start point and the end point as LOTOS gates. The start point
has a triggering event coming from the environment (or from another timethread) and the
end point has a resulting event that will be caled Result when it goes to the environment,
and Continue when it triggers another timethread. Thus, a unique instance of this timeth-
read could be represented as follows (we deliberately forget the gate parameters for con-
ciseness dthough they should be all present in each definition and i nstantiation):

process P[...] : noexit :=
TriggerP; A; ResultP; stop
endproc (* process P, level 1 without recursion *)

Neverthe ess, since we deal with a reactive system, our timethread’s representation must
be able to react to more than oneinitid stimulusfromits environment, i.e., we would like
this process to be executed as often as the environment desires to. Hence, some recursion
has to be induded i n the process definition:
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process P[...] : noexit :=
TriggerP; A; ResultP; P[...]
endproc (* process P, level 1 with recursion ¥*)

We al so need these i nstances to execute concurrently, which is not the casein the last def-
inition. LOTOS paralldism needs to be introduced:

process P[...] : noexit :=
TriggerP; (A; ResultP; stop ||| P[...])
endproc (* process P, level 3 *)

As expressed, A could be an empty sequence of activities, but the timethread still repre-
sents the cause-effect relationship between Trigger P and ResultP. Besides, since the first
action, TriggerP, is observable (or synchronized with other timethreads, as it will be
explaned | ater), unguarded recursion is avoi ded?.

For execution purposes, we may prefer not to have an unbounded number of instances of a
timethread at once in a system. Hence we could parametrize the maximum number of
instances using, for exampl e, the Number Instances abstract data type:

type NumberInstances is NaturalNumber
opns Pred : Nat -> Nat
eqgns
forall x : Nat
ofsort Nat
Pred(Succ(x)) = x;
endtype

This parametrized number of concurrent instances could be done, for example, usng
recursion and sd ection predicates in the following way:

1. A first attempt in defining this kind of recursonwas P := (A; stop ||| i; P),
Although recursion is guarded, this process introduces infinite sequences of internal events.

Thiskind of problem must be avoided for the verification and execution of LOTOS specifica
tions.
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process P[...] (n:Nat): noexit :=
(* n is the maximal number of instances *)

TriggerP; (
A; ResultP; P[...] (Succ(0))
|l
[n ne Succ(0)] -> P[...] (Pred(n))

)
endproc (* process P, level 2 with recursion and *)
(* with concurrent execution ¥*)

The guard [ n ne Succ(0)] together with the parametrized recursion P(Pred(n)) instantiate n
instances of process P, as in a countdown, named P(n) to P(Succ(0)). Then, no other con-
current process will be created. Tal recursion (P(Succ(0))) will keep the number of
instancesto nin the system.

Another possibility would be to instantiate an absolute maximum of n occurrence of pro-
cess P in paralld, without any tal recursion. Therefore, only n concurrent instances will
exist and terminate:

process P[...] (n:Nat): noexit :=
(* n is the maximal number of instances *)
TriggerP; (
A; ResultP; stop
|11
[n ne Succ(0)] -> P[...] (Pred(n))
)
endproc (* process P, level 2 without recursion and ¥*)
(* with concurrent execution *)

The last posdbility presented here is a parametri zation where we have a bounded number
(n) of instances, executed sequentidy:

process P[...] (n:Nat): noexit :=
(* n is the maximal number of instances *)
TriggerP; (
A; ResultPp;
( [n ne Succ(0)] -> P[...] (Pred(n)) )

)
endproc (* process P, level 2 with sequential ¥*)
(* execution *)

Many different types of behaviours could be associated with one timethread. Depending
on what exact behaviour we want to Smulate or verify, some levds of abstractions, with
thelr options, can be defined.
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Table 1 presents a summary of options assodciated to our leves of specification. A short
exampl e (without gate parameters) is given for each:

Table 1: Levelsof abstraction and their options.

Level Options Example
L1: Without taill | process P : noexit :=
Singleinstance | recursion TriggerP; A; ResultP; stop
endproc
With tail process P : noexit :=
recursion TriggerP; A; ResultP; P
endproc
L2: With process P (n:nat) : noexit :=
Parametrized | sequentia TriggerP; (
number of execution A; Resultp;
instances ( [n ne Succ(0)] -> P(Pred(n)) ))
endproc
Withouttaill | process P (n:nat) : noexit :=
recursion, TriggerP; (
Concurrent A; ResultP; stop
execution |l ]
[n ne Succ(0)] -> P(Pred(n)) )
endproc
With tail process P (n:nat) : noexit :=
recursion, TriggerP; (
Concurrent A; ResultP; P(Succ(0))
execution |l ]
[n ne Succ(0)] -> P(Pred(n)) )
endproc
L3: None process P : noexit :=
Unbounded TriggerP; (
number of A; ResultP; stop
instances | ]
P )
endproc

Depending on what questions we want to ask to a generated specification, and on how
much detai | we want to consider, we may prefer to use different levels. For example, if we
wi sh to quickly test some behaviours or play some easy scenarios, aleve 1 (L1) specifica-
tion should be enough and could be rapidly generated and tested. For more complex and
realistic scenarios or for the generation of testsfor the implementation, alevd 2 specifica
tion could be used. The last levd (L3) may be useful to check equivalences between a
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refined specification and a previous one, to va idate some kind of extend on between asys-
tem with added behaviours and the previous system, or to cover a leve 2 specification
without committing to a specific number. Note that (L 3) has a semantics nearly equiva ent
to the Petri nets' presented in [FCB 93], while (L1) gives more workable and understand-
able but less complete LOTOS code.

Of course, a natural extension of this concept would be to alow mixed-levels specifica-
tions, i.e., each timethread would independently have its own level and options. These
specifications could simulate the behaviour of afina system in a very redistic way and
would be more impl ementation-oriented than pure L3, L2 or L1.

Usi ng such concurrent and recursive interpretation, the execution of our specification will
result in a large number of stop processes interleaving with the rest of the behaviour.
Although this type of resulting behaviour is usualy unwanted, it does not redly lead to
any problem, even for simulation tools (like XELUDO or LITE). What isreally dangerous
isthe recursion in pardldism (leves 2 and 3), which is not accepted by some tools (for
instance, the tool CAESAR).

One way to avoid problems arising from recursion in parallelism might be to add a macro
command in a metalanguage (or a tool control language) to manage the number of
instances of a process. No option would be needed with such an operator: level 3 specifi-
cations could dways be used for any amulation. Further research is needed to solve this
issue.

3.3 Instanceldentifier

For verification and S mulation purpose, we may like to formdize the separate identity of
timethread instances. Each instance has an implicit state or a set of locd variables that
determine, e.g., choices of (guarded) paths taken a ong it. Observe figure 3:

a process P[...] : noexit :=

P‘/—\b/_l TriggerP; (a; b; ResultP; stop ||| P[...])

endproc (* process P, level 3 *)

Figure 3: Timethread without instance identifier

What happens when the environment is:
TriggerP; TriggerP; a;

The first two events will instantiate two concurrent processes and the activity a will have
to synchronize with one or the other, non-deterministically (seefig. 4). One may rai se the
question if we need thiskind of verification or if we want thefirst action a to synchronize
with the first instance, the second action a with the second i nstance, etc.
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First instance of P
Environment/v‘/‘-\/'l
TriggerP
2 T A

Figure 4 : Non-deter minism on activity a

a

At ahigh level of abstraction, we shall not need to determine which timethread we are cur-
rently dealing with. We have to let this situation as abstract as possible. If adistinction is
real ly needed, the designer could include such identification mechanism or we could pro-
vide an instance identifier to timethreads and events. This identifier could be a natural
number associ ated to (some) events and actionsin a timethread:

process P[...] (id: Nat) : noexit :=
TriggerP!id ; (a!id ; b!id ; ResultP!id; stop
|l
P[...] (Succ(id)) )
endproc (* process P, level 3 *)

This approach has however many weaknesses:
* How will the environment associ ate identifiers to its events? How can we be
sure an event goes to a specific timethread while avoiding possible unwanted
deadl| ocks?

* How do we represent, verify and test a race problem in such a specification?

* Isn't the identification of some activities part of a kind of protocol to be
designed anyway?

This problem will not be discussed any further in this document, athough it will have to
be solved at alater stage.

4  Single Timethreadsin LOTOS

We now look at some of the basic d ements of the Timethread notation in order to define
some correspondence of its semantics in LOTOS. A true semantics (level 3in 83.2) will
be dways given first, and afew timethreads will dso have alevel 1 and/or level 2 descrip-
tiont, to give a general idea of what these levels could look like. Some problems and
restrictions will be raised and discussed. Note that the full LOTOS syntax (gate parame-
ters and processidentification) is not respected here.
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Section 4.1 presents basic timethread combinations, i.e. unconstrained and constrained
starts, and the loop constructor. Section 4.2 shows the use of concurrent and al ternate seg-
ments within a given timethread.

4.1 Basic Combinations
Sequence
r@— ~2A—1

Figure5: Basic timethread, unconstrained start

The basic timethread has been dready fully discussed in 83.2. Therefore, here are the
three specifications given in 8§3.2:

P := TriggerP; A; ResultP; P (*L1%*)
P(n:Nat) := TriggerP; (A; ResultP; P(Succ(0)) (*L2%*)
|l ]
[n ne Succ(0)] -> P(Pred(n)) )
P := TriggerP; (A; ResultP; stop ||| P) (*I,3%)
nstrain [
P

Figure 6 : Constrained start

The corresponding behaviour of figure 6 is that a constrai ned start timethread only accepts
one instance of process P at atimein the system, i.e., P hasto terminate for a new instance
to start. However, the triggering event should not be refused, for level 2 and leve 3 speci-
fications, while an instance is executed. In fact, those tri ggering events have to be accumu-
lated to alow many instances of P to be executed, one at atime.

1. Wewill use thetail recursion option of L1 and L 2, and also the concurrent option of L 2. Refer
to §3.2 for more details.
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This representation of a constrained start is a shortcut notation for this timethread:

P
A

Figure 7: Equivalent behaviour of a constrained start

Thus, we obta n the following LOTOS representations:

P := TriggerP; A; ResultP; P (*L1¥)

hide Sync in P |[Sync]l| P2 (*L2%*)

where
P(n:Nat) := TriggerP; (Sync; P(Succ(0))
|11
[n ne Succ(0)] -> P(Pred(n)))
P2 := Sync; A; ResultP; P2

hide Sync in P |[Sync]l| P2 (*L3%*)

where
P := TriggerP; (Sync; stop ||| P)
P2 := Sync; A; ResultP; P2

This behaviour possesses a representation very similar, w.r.t synchronization on extra hid-
den gates, to those of 85.3.

Loop

Figure 8: Loop

In the LOTOS representation of the generd loop, we have to define a sub-process (Psub)
corresponding to the loop part and the ending part. Of course, recursion still has to be sup-
ported as well for levds 2 and 3:

P := TriggerP; A;; Psub
where
Psub := A;; (A,; Psub [] A5; ResultP; P) (*L1¥*)
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P(n:Nat) := TriggerP; (A,; Psub (*L2%*)

[n ne Succ(0)] -> P(Pred(n)) )
where
Psub := Aq; (A,; Psub [] A;; ResultP; P(Succ(0)) )
P := TriggerP; (Ay; Psub ||| P)
where
Psub := Aq; (A,; Psub [] A;; ResultP; stop) (*L3%*)

Note that A1, A, and Ag can be empty sequences, aslong as A; and A, are not both empty
at the same time. The latter case would not be a desrable LOTOS expresson for execu-
tion, although it would be a vaid one from asyntactic point of view. We aready said that
a timethread is never really empty, but an empty loop (without any event nor activity)
could be asign of abad design.

4.2 Concurrent and Alternate Segments

Two very intuitive junction points (OR paths and AND paths) will be used to represent
concurrent and dternate segments. Each can have 2, 3, 4 or more branches. Two examples
or fork-join with 3 branches are presented to give agenera idea of the LOTOS interpreta-
tion of these behaviours.

A

Aq 2
P EE%J As I

Ag

Figure9: Fork-join (concurrent segmentswith an AND junction point)

In the fork-join path presented in figure 9, A,, A3 and A4, may represent a sequence of
more than 1 activity. In aprevious attempt to define this behaviour, we were using the exit
and enable operator (>>) to synchronize concurrent segment. Here, we prefer to stay more
homogeneous and cond stent by using the hiding operator with a synchronization gate:
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P := hide Sync in

TriggerP; ((A;; ( A,; Sync; stop
| [Sync] |
A5; Sync; stop
| [Sync] |
A,; Sync; stop )
| [Sync]| (Sync; Ag; ResultP; stop))
||| P) (*L3%)

The same type of structure applies when we start concurrent threads (85.2).

P A Ag

Figure 10 : Fork-join (alternate segmentswith an OR junction point)

In the dternate segments of figure 10, one and only one path (Ay, Az or A,) will be exe-
cuted:

P := hide Sync in
TriggerP; ((A;; ( A,; Sync; stop
[l
A5; Sync; stop
[l
A,; Sync; stop )
| [Sync]l | (Sync; Ag; ResultP; stop))
||| P) (*L3%)

In the refinement process, conditions or predicates will have to be somehow inserted to
determine which guarded path to follow, but thiswill not happen until we consider data as
part of our modd .

In [BuC 93], the difference between xor (exclusive or) and ior (inclusive or) for dternate
segments of a timethread is explained. We will probably formaize only the xor part since
thisoneis eader to define and probably more useful for des gners.
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5  Simple Timethreads Interactions

A timethread diagram of a system isviewed as a collection of interacting timethreads. We
can differentiate two types of interactions. starts (85.2), where one or many timethreads
start one or many other timethreads, and other synchronous and asynchronous interactions
(85.3), where different interactions occur dong timethread paths. The structural part of
these interactions will be obtained using a LOTOS structural method defined in [Bor 93]
(85.2).

5.1 LOTOSArchitectural Representation Graphs

In [Bor 93], aLOTOS architectura interpretation method is defined. This method is based
on a particular type of architectura interpretations called LARG (LOTOS Architectura
Representation Graph) from which architectural expressions are generated. These graphs
are very useful to timethread diagrams because interaction architectures are easly
obtained inaLOTOS format, and timethreads’ loca behaviours can then be expressed fol-
lowi ng the approach presented in section 4.

Figure 11 shows an example of the LARG representation of a small timethread diagram:

Figure 11 : Example of atimethread diagram and itsL ARG representation

The LOTOS architecture of such aLARG (binary grouped, however) would smply be:
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(P | [ContinueP] | Q) | [ContinueR]| R
where ... (* behaviour of processes P, Q and R *)

By consdering timethreads as entities or processes in their own rights, without reference
to the system architecture, modul arity is achieved and behaviours (and constrai nts) can be
described locally on atimethread by timethread bass.

Thus, to compl ete our exampl e, the behaviours of P, Q and R have to include the pertinent
gates at the right place. Such behaviours are presented in §5.2 and §5.3'. Note that in the
next two sections, synchronization gates are hidden, i.e., not accessible from the environ-
ment. On atimethread desgn, what is to be shown to the environment and what is to be
hidden is still a research topic. Snce we do not consgder any skeleton architecture to
present what shoul d be hidden, we will not propose any solution to this problem right now.
However, we will consgder any combination of hidden and accessble gates vdid for the
moment.

5.2 Starting Concurrent Timethreads

In this section, we present many different scenari os where timethreads are started.

Off End Start

f ‘/\O/p/\l/l

Figure 12 : Off end start

Hereis one of the most 9 mple interaction: the off end start. P will enable Q when it termi-
nates and Q cannot start by itsalf. This could represent a sequence that has been refined for
some design decision. The corresponding LOTOS behaviour is:

(* Timethreads’ architecture section ¥*)
hide ContinueP in P | [ContinueP] | Q (*L3*)
where
(* Timethreads’ behaviours section ¥*)
P := TriggerP; (A,; ContinueP; stop ||| P)
Q := ContinueP; (A;; ResultQ; stop ||| Q)

Again, we see that guarded recursion is present in both processes. Some precisions are
needed here: we do not have an event TriggerQ any more because the triggering event of
timethread Q isnow ContinueP from timethread P.

1. Examplesof LOTOS architectures will aso be present, although L ARGs will not be shown.

December 8, 1993 From Timethreadsto LOTOS: A First Pass, page 17 of 39



P, @ ~——1 Py O’\/‘l—g."\/'l
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(a) Wrong behaviour using exit (b) Good behaviour using a hidden gate ContinueP

P, @ ~——1 Ql.’\/‘l
P, @ ~——1 Qz."\/‘l
P; @ ~——1 ‘o~
P @ ~——1 e N |

(c) Non-deter ministic behaviour using a hidden gate ContinueP

Figure 13: LOTOS synchronization on an off end start

With alevd 3 semantics, we cannot use the LOTOS enable operator (>>) to describe the
internd interaction because dl instances of P, dthough they are executed in parallel,
would have to synchronize on exit before Q starts (see fig. 13a), which is impossible.
Using a hidden gate ContinueP, an instance of process Q is created every time aninstance
of process P terminates (fig. 13b). Note that the termination order of process P instancesis
not know. For exampl e, as shown in figure 13c, the third instance may terminatefirst, fol-
lowed by P,, P, and P;, and instances of Q would be created accordingly®. Therefore, fig-
ure 13b is a specid (or constrained) case of figure 13c, which is the intended and more
genera behaviour.

Generdized termination, as presented in [QUA 92], would be an other option to represent
this behaviour. In their document, the authors present an unsynchronized termination
obtaned by anew exit process and a new enabling operator (>¢€;>), which could solve the
exit problem of figure 13a. Nevertheess, as explaned in 83.1, adding hidden gates for
timethreads synchronization is more homogeneous and cong stent with our work than
using exit and the generalized enable operator. M oreover, the extens on of [QUA 92] needs
some changesin the underlying model of LOTOS (a new compound event) and their pro-
posal isfar from being standardi zed.

A levd 1 specification of figure 12 lookslikethis:

1. Thisstuation isnot areal problem since all instances of process Q are the same when created.
Datafrom an instance of P may eventually be passed to an instance of Q through gate Contin-
ueP when our model will support data flow.
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hide ContinueP in P | [ContinueP] | Q (*L1%)

where
P := TriggerP; A,; ContinueP; P
Q := ContinueP; A;; ResultQ; O

If P and Q are the refinement of a previous timethread, then the refinement would be sim-
ilar to apipe or aproduction line; as soon as P terminates, Q can start while P can work on
something else. At a level 1, the previous unrefined timethread (Ppye,) could be repre-
sented by figure 14:

Ao A
P‘/\/l'l

P := TriggerP; Ay; A;; ResultQ; Pprev

prev

Figure 14 : Timethread beforerefinement of figure 12

Interestingly enough, we can now observe that Ppe, and the composition of P and Q are
not weak bisimul ation equivaent with leve 1 specifications since there is this production
line effect. Note however that alevel 3 off end start is weak bismulation equivdent toits
level 3 unrefined basic timethread. This kind of relations has to be cond dered while study-
ing poss ble transformations.

In Passing Start

Figure 15: In passing start

hide Sync in P | [Sync]l| Q (*L3%)

where
P := TriggerP; (A;; Sync; A,; ResultP; stop ||| P)
Q := Sync; (A;; ResultQ; stop ||| Q)

In the"in pasang" start of figure 15, timethread P never redly waits since thereis always
aprocess Q ready to synchronize with P.

The last four figures of this section present other types of scenarios where timethread
instances are created. Only find results are given since they do not really need additiond
explanations.
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Or (Eork) Start

Figure16: Or (fork) start

hide ContinuePQ, ContinuePR in (*L3%)

P | [ContinuePQ, ContinuePR]| (Q ||| R)
where
P := TriggerP; ((A;; ContinuePQ; stop

[]
A,; ContinuePR; stop)

1l P
Q := ContinuePQ; (A;; ResultQ; stop ||| Q)
R := ContinuePR; (A,; ResultR; stop ||| R)
r (Join
P Aq
A2
Q
Figure 17 : Or (join) start

hide ContinueR in (P ||| Q) | [ContinueR]| R (*L3¥%)
where

P := TriggerP; (A;; ContinueR; stop ||| P)

Q := TriggerQ; (A,; ContinueR; stop ||| Q)

R := ContinueR; (A;; ResultR; stop ||| R)

And (Fork) Start

Figure18: And (fork) start
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hide ContinueQR in
P | [ContinueQR]| Q | [ContinueQR]| R (*L3%)

where
P := TriggerP; (A;; ContinueQR; stop ||| P)
Q := ContinueQR; (A,; ResultQ; stop ||| Q)
R := ContinueQR; (A;; ResultR; stop ||| R)
An in
P Aq
Q A,

Figure19: And (join) start

hide ContinueR in
P | [ContinueR] | Q |[ContinueR]| R (*L3%*)

where
P := TriggerP; (A;; ContinueR; stop ||| P)
Q := TriggerQ; (A,; ContinueR; stop ||| Q)
R := ContinueR; (A;; ResultR; stop ||| R)

The hide operator and synchronization on on events are a powerful combination |etting us
specify these types of behaviours quite eadly in a homogeneous way. The next section
shows more about the useful ness of this LOTOS operator.

5.3 Other Synchronousand Asynchronous Interactions
This section deals with different kinds of shared paths, synchronizations and triggering
events between timethreads. Waiting places on the timethreads will be used. The quite

exhaustive list of behaviours may appear unnecessary; it is however there to show that
amost any combination can be easly expressed in LOTOS following the same approach.

Join-Fork (Synchronous)

P Aq A1y
o ‘\‘l.Az A A21_I

Figure 20 : Join-fork (synchronous)
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One easy way to formdize the synchronous join-fork would be the following representa-
tion where the synchronization between processes P, Q and R is on dl gatesincluded in
the sequence A:

P |lag,.--ag)l| Q |[ag,...ap] | R (*L3%)

where
P := TriggerP; (A;; A; A;;; ResultP; stop ||| P)
Q := TriggerQ; (A,; A; A,;; ResultQ; stop ||| Q)
R := TriggerR; (A3; A; A3q; ResultR; stop ||| R)

However, this synchronization on observable gatesis not very meaningful in atimethread
context. Moreover, synchronizationin al other timethread combination is done on hidden
gates. Therefore, for homogenety purpose, we introduce a new process, executing the
sequence A, and we synchronize al these processes on hidden gates. This method will aso
ease transformations like regrouping and splitting:

hide S1, S2 in

SynchroPQR
| [s1, s2]|
P |[S1, s2]| Q |[S1, s2]| R (*L3*)

where
P := TriggerP; (A;; S1, S2; A;;; ResultP; stop ||| P)
Q := TriggerQ; (A,; S1, S2; A,;; ResultQ; stop ||| Q)
R := TriggerR; (A;; S1, S2; A;;; ResultR; stop ||| R)
SynchroPQR := S1; (A; S2; stop ||| SynchroPQR)

This solution corresponds to the usual way of representing asemaphorein LOTOS.

Of course, the data that could be passed from P, Q and R to SynchroPQR and then passed
back to P, Q and R will require some special attention. However, we are not concerned
with data for the moment.

Join-Fork (Asynchronous)

Figure 21 : Join-fork (asynchronous)
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P Il o [l R (*13%)

where
P := TriggerP; (A;; A; A;;; ResultP; stop ||| P)
Q := TriggerQ; (A,; A; A,;; ResultQ; stop ||| Q)
R := TriggerR; (A3; A; Azq; ResultR; stop ||| R)

The join-fork of figure 21 represents ssmply 3 paralld timethreads sharing common activ-
ities (A) without any synchronization. This is probably the easest way to represent this
behaviour.

End-Trigger

The next figure represents a process P waiting (after the execution of sequence Aq) for an
instance of Q to terminate before continuing:

P Ay A,
A3
Q
Figure 22 : End-trigger
hide ContinueP in P | [ContinueP] | Q (*L3*)
where
P := TriggerP; (A;; ContinueP; A,; ResultP; stop
|l ]
P)
Q := TriggerQ; (A;; ContinueP; stop ||| Q)
Trigger-1n-Passing

Figure 23: Trigger-in-passing

The synchronization part or the diagram presented in figure 23 is redlly "asynchronous"
for Q,i.e., thetimethread Q will never wait for P while P has to wait for Q to be ready:
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hide ContinueP in P | [ContinueP] | Q (*L3*)

where
P := TriggerP; (A;; ContinueP; A,; ResultP; stop
P)
Q := TriggerQ; (A;; (ContinueP; stop

A,; ResultQ; stop)

|11
Q)

The last three figures show some combinations, with more than 2 timethreads acting in the
synchronization, of the previous behaviours:

And-Trigger
P A1 A,

A3
Q

Figure24: And-trigger

hide ContinueP in
P | [ContinueP] | Q |I[ContinueP]| R (*L3%*)

where
P := TriggerP; (A;; ContinueP; A,; ResultP; stop
P)
Q := TriggerQ; (A;; ContinueP; stop ||| Q)
R := TriggerR; (A,; ContinueP; stop ||| R)
And-Tri 1In-Passin

Figure25: And- trigger (1in-passing)
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hide ContinueP in
P | [ContinueP] | Q |I[ContinueP]| R (*L3%*)

where
P := TriggerP; (A;; ContinueP; A,; ResultP; stop
|1
P)
Q := TriggerQ; (A;; ContinueP; stop ||| Q)
R := TriggerR; (A;; (ContinueP; stop
|11
Ag; ResultR; stop)
|1
R)
Or-Trigger
P Al A2
A3

Q
Figure 26 : Or-trigger

hide ContinueP in

P | [ContinueP]| (Q ||| R) (*L3%*)
where
P := TriggerP; (A;; ContinueP; A,; ResultP; stop
|11
P)
Q := TriggerQ; (A;; ContinueP; stop ||| Q)
R := TriggerR; (A,; ContinueP; stop ||| R)

More complex behaviours can also be described using the same approach. A separate
architectural approach, like the LARG method presented in [Bor 93], combined with a
timethread-by-timethread description, gives us the LOTOS architecture required to repre-
sent the most compl ex timethreads i nteractions. The method for such compl ete timethread
diagramsis presented in [BoA 93].

6  Special symbols

We discuss here some specid-purpose timethread symbols mentioned in the literature
[BuC 93] [Buh 93a].
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6.1 Time

Figure 27 : After timeout (or delayed) start

hide Sync in P | [Sync]l| Q (*L3%)

where
P := TriggerP; (A;; Sync; A,; ResultP; stop ||| P)
Q := hide TimeOut in

Sync; (TimeOut; A;; ResultQ; stop ||| Q)

The timer symbol is awaiting place which istriggered by atimeout. In fig. 27, the internd
action TimeOut in timethread Q represents the desired delay or timeout. Note here that the
timeout represents effectively adel ay, because TimeOut will aways occur.

Timeisavery abstract notion in LOTOS and we will have to determine what timed exten-
sons (if any) would be the most appropri ate to us to represent this behaviour.

6.2 Stubs

Stubs represent a non-refined behaviour. They are treated as activities representing part of
a process that has to be defined at a later stage (fig. 28a), or as empty timethreads when
they are not directly on the body of another timethread (fig. 28b). Stubs could then be
refined easily while providing a better semantics sooner.

P > P
S
P P
(b)

@

Figure 28: Possible LOTOSrefinement for stub Sin timethread P

Discontinuities are another type of constructor that are very similar to stubs. Sincethey are
not essential to us (at least for the moment), we will not condder them as part of our basc
timethread set.
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6.3 Abort

This operator has to be associated with the LOTOS disabling operator ([>). Note that an
abort redly kills all instances of a timethread until a new instance is triggered. Figure 29
shows an exampl e of a timethread Q aborting atimethread P:

P A1
Az
Az
Q
Figure29 : Example of an abort
hide Abort in P | [Abort]| Q (*L3%*)
where
P := TriggerP; (A;; ResultP; stop ||| P)

[> Abort; P
TriggerQ; (A,; Abort; A;; ResultQ; stop

|11
Q)

Q :

Note here that the Abort is really hidden, and that dl instances of P can be killed anytime
after they have been triggered.

Itisdifficult to know if this approach becomes quickly too complex or evenimpossible to
deal with. Neverthdess, some smple examples could be deve oped to see what are the
real problemsand limitations of this LOTOS correspondence.

6.4 Other Symbols

Other specid symbols, introduced in the timethread literature, will not be fully formdized
gncether usefulness may not worth their compl exity. Memoryless waiting places and dif-
ferent relationships are such symbols. They will not be part of our basic timethread set
until we get a better understanding of their exact meaning and importance.
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7 Discussion

7.1 Action Refinement

Actions in the basic timethread can represent many different abstract concepts: a proce-
dure, a function, a method, etc., which could be refined later, in a desgn process, into a
more concrete representation. Action refinement i s recognized as afundamentd technique
for desgning complex systems, as it permits to consder designs at different leve's of
abstraction. Note that we use the term action because we do not cons der eventsyet in our
refinement process. In [CoS 93], two ways of performing action refinement are defined:
(i) syntactica substitution, i.e., substituting a process for any action to be refined, and (ii)
by using anew operator of the language.

Syntactica substitution appears more difficult to perform than the second option, manly
in respect with synchronization mechanisms, particul arly the implicit multiway synchroni-
zation of LOTOS. However, we do not real ly have synchronization on actionsin our time-
thread context, aswe saw in 84 and 85. Therefore, syntactica substitution could be amore
efficient way to introduce action refinement in our methodology. Also, some equivalence
rel ations have been defined for this type of transformation. We will have to look at exist-
ing relations like branching bisimulation [vGW 89], which is a relation with the same
expressiveness of a weak bigmulation, but which remains preserved under action refine-
ment.

Refin n f Action

We can use the concept of event refinement expressed in [CPT 92]. Thisisadesgn trans-
formation in which an action of the initid high-level design is replaced by multiple sub-
actions in the resulting desgn. This refinement allows concurrent activities to overlap in
time, which is not poss ble using single actions due to the atomicity of LOTOS events.

Since there is no paralldism within an action, we will consder action refinement as the
replacement of an action by a sequence of sub-actions (a — A) or by awhole process (a —
P). Therefore, concurrent actions could be refined by intervals to overlap, and not just to
interleave with each other. This trangformation adlows us to test and verify some kind of
true concurrency in a multiple timethreads diagram. For example, suppose we have two
concurrent timethreads P and Q (fig. 30) that have actions a and b respectively:

r@—~p—1 co——_-

Figure 30 : Unrefined actions

December 8, 1993 From Timethreadsto LOTOS: A First Pass, page 28 of 39



Using simple interleaving in LOTOS, we can only know that a occurs before or after b,
dthough a and b may not be atomic and could be executed on a certain interva of time.
These could be refined in the following way:

Apegin begin
P @ Gend —| QQ/-\E”O'/'I

Figure 31 : Refined actions

There could be other intermediate new sub-actions between apegin and agng, and between
Ppegin and beng in figure 31 Although no problem concerning the synchronization of these
refined actions will occur?, their individual hidi ng will have to be considered.

Refin n Pr

The refinement of an action into a process can be achieved in two ways. Thefirst oneisto
repl ace the action by aL OTOS process, e.g., if we want to refine b into P in the sequence
a; b;c; ..., thenweget a; P>> c; ..., where Pis a process definition with exit functional-
ity. The problems here are that we use the enable operator (>>), which may complicate
other correctness preserving transformations, and that there is no real correspondence
between P and its timethread correspondence. Furthermore, due to the semantics of the
LOTOS paralld operator (|||), all instances of a process P would have to synchronize with
each other before Q could start (see fig. 13a). The second (and better) option is to use
stubs (see 86.2) instead of an action to be refined.

lue Refin

Refinement could a so be done on the glue that links activities on a timethread. Figure 32
shows the link between a and b. This glue could represent some means by which a com-
municates with b.

glue

{ b
P ‘/!a\|./I
Figure 32: Gluelinking activities

Our LOTOS representation should not consider the glue specification unlessiit is refined
explictly with other activities, or with anew timethread. A LOTOS transf ormation cannot
guess what is not specified on the timethread! Therefore, we will not consder this glue
any further in our approach.

1. aandb are actions, therefore they will never be part of synchronization gates between two or
more L OTOS processes representing timethreads.
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Naturally, in our representation, some refinements could be impossible or not meaningful
w.r.t. posd ble equivalence relations. "Given a well-established equivd ence notion which
is not preserved under refinement, is there away of restricting either the alowed refine-
ments or the class of system representations under cond deration such that preservation of
this equiva ence in the restricted setting is obtaned?' [CGG 92]. Therefore, we will have
to work not only on new possible relations for our framework, but dso on restrictions on
action refinement.

7.2 Context and Constrained Use of Timethreads

In this document, we try to map timethreads diagrams onto LOTOS processes. Since
LOTOS can be very (and sometimes too) abstract and can express only some of the time-
thread’s informal semantics, mapping a LOTOS process back onto timethreads could be
too complex for usright now. Thisis true even if LOTOS processes are obtained from a
previous mapping. By using formalism, we lose the shape, the environment, the context of
the timethread, and thus part of its semantics. We may have a projection of the timethread
design onto LOTOS semantics, but we cannot directly map LOTOS back onto timethreads
if we do not remember or cong der the context.

If we work with an informal use of our Timethread notation, we may be able to map some
of its semantics on a LOTOS specification. Thelatter could however have some incons s-
tencies (w.r.t. gate names, mapping of timethread constructs, etc.) and many difficulties
will arise when working in such a design environment. Snce timethreads are abstract,
ambiguous and often incompl ete from a forma methods point of view, a constrained use
has to be described. This constra ned use has to be more suitable for forma methods (and
thus LOTOS) while still being intuitive and attractive for designers.

A constrained use also means that we need a formal definition of timethreads diagrams.
This strict definition might be represented as a grammar where all information needed by
forma methods® concerning the timethreads' behaviours will be induded. Timethreads
interactions might be represented by LARGs [Bor 93], for instance. A sngle model to rep-
resent both timethreads behaviours and interactions might be difficult to find.

Timethreads are a visua notation, thus visua and spatid information has to be recorded
somewhere. Our formal definition will probably not include such information, athough a
more generd description, cdled intermediate representation, induding both the forma
definition and the visual information should a so be defined.

1. LOTOS is not the only forma methods to be considered. This description has to be abstract
and not focused on a specific Formal Description Technique only. It may be mapped later on
other formal methods, e.g., Petri nets or event structures.
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Intermediate representation (Constrained use)

Formal definition

Context
Grammar LARG (Visual information)
(Behaviours)| |(Interactions)

Figure 33: Intermediate representation of a timethreads diagram

This intermediate representation of a timethreads diagram (fig. 33) will be especidly use-
ful for interactive desgn and for automatic transformations at the forma methods leve
(see §7.3).

In future work, we will have to find from the context what is to be mapped onto LOTOS
and what is to be left out exactly. To decide what is to be represented, questions to be
asked about the specification have to be defined. Building some examples will hep us
finding what are the real needs for verification and testing. This will help us defining a
useful, pertinent and efficient forma definition.

7.3 Timethread Refinement and LOTOS Relations

One of the timethreads strengths is the way they can be refined, transformed and
extended to represent more detailed and compl ete behaviours. LOTOS possesses similar
characteristics; a process can be refined and extended in many ways. Usng correctness
preserving trangormations [CPT 92] and other LOTOS relations [BoB 87] [KhB 92]
could help usformaiz ng timethread refinement.

When we add new timethreads, activities or dternatives, we may want to preserve some
characteristics or some behaviour of our previoudy specified system. The papers men-
tioned previoudy give us some tools and rd ations aready existing to answer such ques-
tions:

» Functiondity extension,

* Reduction (red), conformance (conf), extension (ext) and other new extenson
relations,

« Event refinement, etc.

During the mapping of timethreads on a skel eton architecture, we would like our specifi-
cation to be arranged, composed or decomposed in some specific way (network of compo-
nents) while preserving the correctness of the defined behaviour. Some methods al so exist
to solve part of this problem:

» Splitting and regrouping paralle processes [Lan 90],

* Interaction points (gates) rearrangement,
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» Bisimulation (strong, weak and congruence), testing and trace equi va ences,
* Inverse expanson (to get more pard leism),
» Multiway to two-way Synchronization, etc.

Generd restructuring agorithms for LARGs [Bor 93] are dso needed for timethreads
splitting, merging, etc.

In the literature, we find alarge number of existing correctness preserving transformations
and reations. Our focus should not be exclusvey on LOTOS transformations and rel a-
tions. If we look attentively, many other domains can provide excellent hints and ideas to
hep us defining our own timethread re ations and transformations. For example, many
equiva ence semantics, from trace to testing to bis mulation equivaences, exist for these
domains [vGlI 90]:

» Graph domains (process graph, state trangtion diagram)

* Net domains ( (labelled) Petri nets)

» Event structure domains ( (labe led) event structure)

» Explict doma ns (mathematically coded set of properties)

» Term domains (term in asystem description language)

» Projective limit domains (projective limits of series of finite term domains)

Since timethreads are often related to Smple cases of such existing domains, it could be
worthwhile looking at the work aready done and adapting it for the Timethread notation
afterwards.

Timethread to

LOTOS mapping

Timethread Design 1) P> | OTOS Specification 1
Refi nement and- new Correspondence LOTOSCPT

behavioursusing
timethread CPT
Timethread Design 2 < LOTOS Specification 2

Inverse mapping

(for context purpose)

Figure 34 : Refinement using timethread CPT.

Figure 34 presents a refinement approach where timethreads correctness preserving trans-
formations (based on LOTOS CPT) are used. Corresponding LOTOS CPT supporting
these timethread trangormations in a forma way would have to be defined. Validation is
not needed using this type of refinement.
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Timethread to
LOTOS mapping

Timethread Design 1) P> | OTOS Specification 1

Correspondence Validation with
equivalence relations
and other relations

Refinement and new
behaviours

Timethread to
: . LOTOS i
Timethread Design Zw mapping

/ L

LOTOS Specification 2

Figure 35 : Refinement using validation.

Where timethreads CPT cannot be defined, a validation approach will have to be taken.
Figure 34 illustrates this type of refinement. This situation is however generally not suit-
able since vdidation using any known relation is very costly.

Validation is very hard for any but trivid systems, so vdidation of larger or complex sys-
tems is usualy not feagble in practice. "A component-based style allows components to
be verified individually. Larger combinations (or designs) of trusted components can then
be verified more easly” [Tur 93]. In our vdidation domain, a timethread-based style,
timethreads could be vaidated individually. This validation approach is not obvious for
the moment but should be studied further in the future.

In arefined specification, data might be assod ated to timethreads. LOTOS abstract data
types may then haveto be used. However, the data part will not be investigated in this doc-
ument, although we will have to congder its formdization | ater.

7.4 Design Methodology

Why would we need another design methodology using forma methods while some
dready exist? For instance, the L otosphere Methodology [LOT 92], based on the conven-
tiond stepwise refinement, offers powerful structuring and abstraction facilities that dlow
the des gner to maintain control of the different aspects of the design at dl levelsd ong the
design trgectory. Thisis achieved by enabling forma statements of design constrai nts and
objectivesin the structure of the design. The quality of the design isimproved because of
mathematica foundations of LOTOS, that allow verification of properties and extensve
support for testing.
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What we need isa thinking tool, a methodology more intuitive and appealing than the one
proposed in the Lotosphere project. It hasto be used in the framework of apractica design
process that engineersin industry can use without having to be formalists. The Lotosphere
Methodology takes aformd method (LOTOS) and tries to build a complete des gn meth-
odology on it, which isnot red ly what we said we needed. In our approach, we start with
some visua design concepts, very naturd to designers, and we try to use aforma method,
LOTOS in our case, to he p formalizing some of its part with what LOTOS offers the best.
This direction seems to be more promid ng than the former one.

Although we know how to capture the man requirements with a timethread desgn and
then get the corresponding LOTOS specification (explained in the following sections),
this does not mean that we have a complete design framework! We have to get a complete
impl ementation-oriented model, or architectural specification, of our timethread-des gned
gystem. Two mg or approaches are presented here: the derivation (fig. 36a) and the valida-
tion (fig. 36b).

Derivation: In this approach, an architectura specification of the system (AD) is obta ned
from the LOTOS mapping of the timethread desgn (TD) on which correctness preserving
trandf ormations like restructuring, process splitting and merging, etc., can be applied.

Validation: Here, we have to design both the timethread diagram and a sketch of an archi-
tecture. We then map the two designs onto LOTOS specifications (TV and AV). Findly,
we try to vdidate the LOTOS specification obtained from the architectural design (AV),
using ether some reations or test cases derived from the LOTOS specification obta ned
from the timethread desgn (TV).
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(a) Derivation approach
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Figure 36 : Derivation and validation approaches

The advantages of using CPT is quite obvious: no need for costly vaidation or for the gen-
eration of test cases. Although this solution is theoreticdly appeding, CPT are sometime
difficult to define and a so hard to apply. Neverthd ess, this solution seems promising and
deserves some good research.

8 Conclusion and Future Work

Although still theoretical, this document gives a good overview of the possibilities of a
LOTOS-Timethreads framework. The results of the correspondence of 84 and 85, which
describe the LOTOS interpretation of a new design style called timethread style, can be
very helpful and could lead to a better formdization and use of the Timethread notation as
athinking tool in a design process.
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Timethreads seem to be liked by designers, and usng LOTOS as an underlying model
gives much more power to the notation. Timethreads need to keep their "informa 1ook” to
stay appealing for users. However, in order to be used in a comprehensive software devel-
opment modd (from requirements to validated i mpl ementation), their concepts need to be
cast into amore formal framework. This could be LOTOS.

A LOTOS interpretation method for timethreads together with a case study (the trave ler
gystem) is presented in [BoA 93]. Other examples of the methodology, like the devator
gystem, the MTU or a teephony system, will help us defining a complete framework
where forma methods are integrated i n the design process.

Many topi cs presented here require further attention. In the short term, we have to:

» Formdly define timethread diagrams and the notion of context.
» Define cond stent transf ormations w.r.t. the formal definition of timethreads.

» Look at strengths of the vaidation and derivation approaches in the design
methodol ogy.

» Explore the advantages and drawbacks of a mixed-leves specification of a
timethread system.

* Look at what can and cannot be answered by a specification.

* Integrate skel eton architectures in the notation to define what activities are to be
hidden from the environment.

» Look at the real necessity of instance identifiers and specia symbols.
» Define more clearly constraintsto be applied to activity refinement.
* Look at the use of LOTOS CPT for our framework.

In thelong term, we could be more ambitious:

e Introduce datain the notation.

» Sincewemostly deal with rea -time systems, introduction of time concepts will
be needed sooner or later. A new underlying model, probably a time-extended
LOTOS, should a so be studied.

» Define the intermediate representation, more general than what is needed by
LOTOS.

» Definethe needs for timethread refinement.
» Define Timethreads Correctness Preserving Transformations (TCPT).

» Define equivalence, reduction and extension rel ations for validation purpose.
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» Look at atimethread-by-timethread validation process.

*  When we know the limitations of the LOTOS approach w.r.t. vaidation, testing
and verification, other underlying models (e.g., Petri nets or event structures)
should be explored to compl ete the LOTOS approach.

» Define a performance andyss modd and metrics applied to timethreads
restructuring for performance purpose.

* A red-life case study form industry could be an excdlent way to test and
improve the design framework, once defined.

Much work remains to be done, but the result could worth the effort.
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