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Abstract

Timethreads are a new notation for visual description of path behavior. Also, a
design process based on timethreads, namey timethread-centered design process,
has been defined. In this report, we discuss the integration of the FDT LOTOS in
the timethread-centered design process. The objective of such an integration is to
provide formd support for timethread transformations with LOTOS. For this pur-
pose, we first define a LOTOS interpretation method for timethreads. The method
dlows the generation of LOTOS specifications from timethread diagrams. Then,
we show how the LOTOS i nterpretation method for timethreads appliesin practice
by conducting a case study. This case study a so serves to identify topics for future
research in relation with the definition of aformad framework to support the timeth-
read-centered ded gn process.

1. Introduction

1.1 Oveview

Timethreads have been defined in [Buh 93 & BuC 93] as anew visua notation for path descrip-
tion of distributed systems. Timethreads visualy illustrate causality sequences of activities
through systems. Also, in [BuC 93 & BCP 93], a desgn process based on timethreads, namey
timethread-centered design process, is defined. Although timethreads have only existed for afew
years, the notation has been taught by Prof. Buhr to many students at Carleton University and to
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hundreds of engineers in industries, in both Canada and USA, through a series of courses. The
concept of timethreads has been very wel accepted by both students and engineers manly
because it is based on avery natural way of thinking when des gning real -time and di stri buted sys-
tems. The notation is easy to understand and it faci litates both description and visualization of sys-
tem path behaviour.

The formd aspect of timethreads has been partidly discussed in relation with both Petri nets in
[FCB 93] and LOTOS in [Vig92] (timethreads were called “dices’ in [Vig92]). However, timeth-
reads do not have, at this point in time, a complete forma semantics. One direct consequence of
thisis that timethread manipul ations can only be conducted informdly. This means that a timeth-
read diagram D’, which has been obtained from a diagram D by succesd ve timethread manipul a
tions, can not be vaidated with respect to the former diagram D in aforma way. Thus, we can not
verify that D’ is correct with respect to D. Then, since timethread manipul ations play akey rolein
the timethread-centered design process, we need to define, in order to use a timethread-centered
design process in an industrial environment, aforma framework for timethreads that will enable
the support of timethread manipulations. Also, the definition of such a framework would consti-
tutes an important step towards the definition of a tool to support the timethread-centered design
process.

This report, together with [Bor 93] and [Amy 93], constitutes the starting point of a new project,
caled FIT (Forma Method | ntegration in the Timethread-Centered Design Process), which ams
at defining a formd framework to support the timethread-centered design process. In this report,
we discuss the integration of the FDT LOTOS in the timethread-centered design process. The
objective of such an integration is to provide formd support for timethread manipulations using
LOTOS. For this purpose, we think that if LOTOS specifications can be obtained from timeth-
reads diagrams, then CPTs (Correctness Preserving Transformations) defined for LOTOS may be
adapted to provide such support.

1.2 Objectives

In order to integrate LOTOS in the timethread-centered design process, the first step congstsin
defining an interpretation method that allows the generation of LOTOS specifications from time-
thread diagrams. In this way, the objectives of this report are:

1°) to define aLOTOS interpretation method for timethreads,

2°) to conduct a case study illustrating how the interpretation method appliesin practice.
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The LOTOS interpretation method for timethreads defined in this report is based on the work
described in [Bor 93] and [Amy 93]. The interpretation method is a generd one that alows the
generation of LOTOS specifications from timethread diagrams. For the purpose of the case study,
we use the traveer system described in [BuC 93]. We show how a LOTOS specification can be
derived from the timethread diagram of the traveer system using the LOTOS interpretation
method for timethreads defined in this report. The case study aso serves to identify topics for
future research in relation with the definition of a formal framework to support the timethread-
centered design process.

1.3 Organization

The report is organized as follows. In section 2, we define the LOTOS interpretation method for
timethreads. In this section, we show how the concept of generic LOTOS interpretation methods
defined in [Bor 93] may be adapted for the definition of a specific LOTOS interpretation method
for timethreads. We also show how the LOTOS semantics for timethreads, defined in [Amy 93],
applies in the definition of the LOTOS interpretation method for timethreads. In section 3, we
illustrate how this interpretation method may apply in practice to generate LOTOS specifications
from timethread diagrams. For this purpose the travd er system is used as a case study. This case
study will serveto identify future research topicsfor the FIT project. Section 4 presents afew exe-
cutions of the traved er specification, to get an idea of what information is contained in such a spec-
ification. Finally, in section 5, we di scuss the concl usions of this report and draw up alist of topics
for future research.

2. ALOTOSInterpretation Method for Timethreads

In [Bor 93], the concept of formd interpretation method is defined. A formal interpretation
method dlows the interpretation of a given desgn in terms of a given formal semantic modd. In
[Bor 93], the concept of formd interpretation method is defined in relation with component-cen-
tered type of des gns, which corresponds to the conventiond design process in which components
are decomposed into interacting subcomponents until every bottom level component is Smple
enough to be cons dered as a primitive component [Tur 93 & Buh 93a).

In this report, we apply the concept of interpretation method for the LOTOS interpretation of time-
thread diagrams. This LOTOS interpretation method for timethreads isillustrated in figure 1.

In the following subsections, we describe each part of the LOTOS interpretation method for time-
threads:. the timethread decomposition method (82.1), the LARG modd (82.2), the LAEG method
(82.3), and the composition of the compl ete specification method (82.4).
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Figure1: LOTOSinterpretation method for Timethreads

2.1 Timethread decomposition method

The timethread decomposition method is based on the work described in [Amy 93], where the
LOTOS semantics of both the different types of individua timethreads and the different type of
timethread interactionsis discussed. Asaresult, skeletons of LOTOS process correspondi ng to the
different types of timethreads and LOTOS structural expressons corresponding to the different
possible types of single interactions are given. Also, different issues in relation with the LOTOS
interpretation of timethreads have been rai sed.

The LOTOS interpretation method for timethreads cong sts of two steps:

» Mapping of the timethreads diagram onto aLARG.
» Mapping of the path behaviour of individual timethreads onto LOTOS behavioural expres-

gons.
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Figure 2 shows an example where asmad | diagram with two timethreads (P and Q), representing a
gystem “design”, is mapped onto a LARG with two processes. The timethreads interact on the
event GoQ, and this is reflected in the LARG by a 2-way rendez-vous. Usually, we obtain one
LOTOS process for each timethread. However, in some cases, like synchronized ssgments of
timethreads, we need to introduce additiond LOTOS processes. In figure 3, the LOTOS behav-
ioural expressions corresponding to timethreads P and Q is given..

Thefina specification would be a simple combination of the structural expression and the behav-
ioural expressions. The trave er example of section 3 will develop these issues more deeply.

GoQ
TrigP a b
R
Q =

(TrigPa,GoQ ) (GoQ,b,ResQ)
P —C= >— o

Figure2: Example of atimethread diagram and its corresponding LARG

behaviour process P [TrigP, a, GoQl] : noexit :=
TrigP; (a; GoQ; stop ||| P [TrigP, a, GoQl)
P [TrigP, a, GoQ] endproc
| [GoQ] |
Q [GoQ, b, ResO] process Q [GoQ, b, ResQ] : noexit :=
GoQ; (b; ResQ; stop ||| Q [GoQ, b, ResQl)
endproc

Figure 3: Structurepart and LOTOS processes corresponding to the LARG

2.2 TheLARG model

The LARG modd has been deved oped to serve as the intermedi ate structural model in the LOTOS
interpretation method. An example of aLARG, in which the different types of LARG components
are identified, is illustrated in figure 4. The LARG model possesses only one type of structural
component, called process, and one type of interaction which is rendez-vous interaction. Interac-
tions between processes are realized by means of synchronization on gates. The LARG modd
alows the representation of N-way interactions (for N > 1) and possesses a high level interaction
operator that corresponds to the LOTOS paralld operator. Also, because the generation of LOTOS
structural expressons must be dlowed from LARGs, the LARG mode has been deveoped in
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such away that the LARG artifacts, i.e. processes and gates, can directly be mapped to LOTOS
structura constructs, i.e. LOTOS processes and LOTOS gates. Findly, for the purpose of the
LAEG method, both a Grouping dgorithm and an UnGrouping dgorithm have been defined on
LARGs. The LARG modd, the Grouping algorithm and the UnGrouping algorithm are dl for-
maly definedin [Bor 93].

In the timethread interpretation method, each timethread of the timethread diagram is mapped
onto a LARG process and interactions between timethreads are mapped onto interaction gates.
Therefore, the term structure refers to timethread structure, i.e. the topology of interacting timeth-
reads.

Process idendifier

P~ (bcd )
Hidden gate set —» hide ain I ~
Label set
/
ab,c B (a, b, gj/
/ P1 ~ P2
Process box >
| 2-way interaction
| (a.c.d gre st
Gatesst — | / P3
Gate Lin/k 3-way interaction

gate set

Figure4: Exampleof aLARG

2.3 TheLAEG method

The LAEG method ams at generating LOTOS structural expressons from LARGs. It is con-
ducted in two distinct phases:

1°) LARG andyss, and
2°) generation of LOTOS structural express ons.

231 LARG Analysis

In the case of timethreads interpretation, the LARG andys s phase is reduce to non-determiniam
identification. Also, the only type of non-determinism alowed in timethreads is non-deterministic
interaction-choice.
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We say that a gate g is the source of non-deterministic interaction-choiceinaLARG P, iff:
1°) giscontained in more than one gate set (GS) in P, and

2°) every GS containing g is linked on one sde to a constant set of processes, called the
root process set of the non-deterministic interaction-choice, and on the other side to
distinct processes, i.e. processes which are linked to only one GS containing g, called
the choice process set of the non-deterministic interaction-choice.

Thus, every process which possesses gate g is e ther linked to every GS containing g or to one and
only one GS containing g. In this definition, g can be of any types of interactions, i.e. N-way inter-
actionfor any N > 1.

In figure 5, an example of a non-deterministic interaction-choice LARG is given. In this LARG,
gate a is the non-deterministic interaction-choice gate. We observe that P1 can interact with either
P2 or P3 on the 2-way interaction gate a. We also observe that P2 and P3 do not interact together.
Therefore, in order to have an interaction on gate a, we need to have P1 ready to interact on a and
ether P2 or P3 also ready to interact on a.

a ) a
P1 © P2
fa\

P3

Figure5: Non-deterministic inter action-choice LARG
2.3.2 Generation of LOTOS structural expressions

The second phase consists in generating LOTOS structural express ons from LARGs. This phase
is essentid since LOTOS only possesses binary operators. It involves success ve applications of
the grouping a gorithm. The dgorithm is applied until we obtain abinary grouped LARG which is
equivd ent to the former one.

An illustration of LARG binary grouping is given in figure 6. FHgure 6(b) gives an equivdent
binary grouping LARG which has been obta ned by successive applications of the grouping algo-
rithm. The grouping sequence used in figure 6 has been arbitrarily chosen, and is only one of
many poss ble ones.
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Figure 6: Binary grouping of aLARG

The tree representation of the LARG of figure 6(b) and its associated LOTOS structurd expres-
gon aregiveninfigure 7. We see from these two figures that the generation of aLOTOS structural
expression from a binary grouped LARG is stra ghtforward.

I[c. €]l

I[b]| I[d]|

<

I[all P3

7N

P1 P2
((P1[a, €] [[al| P2[a, b]) |[b]| P3[b, c]) [[c, €]| (P4[c, d] |[d]| PS[d, €])
Figure7: Treerepresentation and LOTOS architectural expression of the linearized LARG
Non-deter ministic inter action-choice LARG

Groupings in non-deterministic LARGs is more problematic because, in such cases, some group-
ings violate the interaction semantics of the LARG. For example figure 8(a) and 8(b) represent
two different groupings of the LARG of figure 5. We observe that these two groupings lead to two
non-equivaent LARGS. In thefirst case ais a 2-way interaction whilein the second case aisa 3-
way interaction. The LARG of figure 8(a) corresponds to a correct interpretation of figure 5, while
figure 8(b) corresponds to an incorrect one.

To diminate non-determinism from non-deterministic interaction-choice LARGs, a technique
called non-deterministic interaction-choice grouping is defined in [Bor 93]. In non-deterministic

December 8, 1993 L OTOS Interpretation of Timethreads: A Method and a Case Study page 8 of 30



interaction-choice grouping, we group together dl choice processes, i.e., dl processes conta ned
in the choice process set (see [Bor 93] for more detalls on grouping techniques defined to dimi-
nate non-determinism in LARG). Figure 8(a) illustrates an exampl e of the application of the non-
deterministic interaction-choice grouping technique.

{ )

) — 5

P2 ;1 ® %
S

p1 —@®—
—
—a ) P3
P3
@ (b)

P1[a] [[al] (P2[&] [I| P3[a]) P3[a] [[a]| (P1[a] [[a]| P2[a])

Figure 8: 2-way non-deterministic parallel-inter actions choice grouping

24 The Composition of the Complete Specification Method

The composition of the complete specification method congsts in combining both the LOTOS
structural express on, which expresses the way timethreads interact in the timethread diagram, and
the different LOTOS behaviord expressons, each of which expresses the activity sequence in a
gngle timethread, in a globd LOTOS specification. The resulting globa LOTOS specification
reflects the path behaviour of the compl ete timethread diagram.

3. Case Study

The trave er system, shown in figure 10, is not a truly modern computer system in aliteral sense.
This example depicts a familiar dtuation from everyday life which is easy enough to illustrate
properties Smilar to common computer systems. We can think of the traveers, the taxis, the
planes, etc., as components and og to computer-based subsystems, processes, or objects. There-
fore, the trave er system will he p us thinking about distributed systemsin the large without com-
mitting to any architectural concerns.
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3.1 Informal description of the traveler system

Travders use atraveler system to get to a certan destination. The timethread diagram of figure 9
shows a*“use case” delimiting the system (black box) and its environment. To transform this black
box into a gray box showing how a traveler gets to its destination, we need a more complete
description.

New Traveler

Destination

Figure9: Usecaseof thetraveler system

Suppose that the traveler system is composed of a taxi company, where a dispatcher receives
requirements from the trave ers and then dispatches a taxi, and an arline. Different components
are defined: traveler, dispatcher, cab, and plane. They collaborate to get trave ers to ther destina-
tion without the intervention of amaster controller to direct ther individua activities and without
themselves necessarily having individual knowl edge of how they fit into the whole [BuC 93]. This
can be cons dered a di stri buted system.

Hereis the path description of each component, with corresponding activities (in fig. 10) between
parenthess. When a new traveler comes (Tnew), he/she phones the dispatcher for a cab
(TphoneD), goes to a rendez-vous point, gets in the cab (TgetinC), has a taxi ride (TCride), gets
out the cab (TgetoutC), and goes to the arport (Tairport). Then, he/she waits for a plane, gets on
the plane (TgetonP), has a flight to another arport (TPflight), gets off the plane (TgetoffP) and
finally getsto thefinal destination (Tdest).

The dispatcher comes to the office (Din), waitsfor arequest from atrave er (TphoneD), looks for
an avalable cab (DlookforC), asks for a cab (DaskC), fills internd statistics (Dfillstats), and
leaves the office (Din) or getsready for the next travel er (Dready).

A taxi driver gets in the cab (Cin), waits for a request from the dispatcher (DaskC), waits for the
traveler to getin at a rendez-vous point (TgetinC), gives aride to the traveler (TCride), | eaves the
trave er (and gets paid!) (TgetoutC), and gets ready for a new request (CgoD) or goesto the garage
(Cgarage) and gets out the taxi (Cout).

At the airport, when an arline plane is ready (Pready), it waits for a traveler to get on (TgetonP),
flies to the next airport (TPflight), leaves the trave er (TgetoffP) and goes to a hangar (Phangar).
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3.2 Timethread diagram

Following the complete description of the last section, the Smple use case presented in figure 9
can berefined, using a timethread-centered design process [BuC 93], into a detailed path descrip-

tion: the timethread diagram of figure 10.

Tnew

Dispatcher Cab Plane
Din y, Dout Pready
%4 .
- /,////”////Zm,,”,,,,,,””lll,l% Tairport
V4 it Y1, k
///’ ~""" Dreatly 1t Cout
7 % %,
7 % Cgarage
7 2 TgetonP
TphoneD /{// //’/
7
Dfilltats / TPflight
"",,///// DlookforC /
., 7
I"I//"”"o//”/”, orrreirt??” ”
TgetoffP
TgetinC TgetoutC Phanger

Tdest

Figure 10: Timethread diagram of the traveler system

The refinement processis not presented here. Thisdiagram is consdered as afirst “design” and a
LOTOS specification can therefore be derived. A few things have to be noted here:

The refined grey box description of the system under desgn (SUD) still has the same envi-
ronment as the black box description (fig 9). Every activitiesin the SUD will be “hidden”
from aLOTOS point of view.

A timethread is neither a component, an agent, nor an object, asthe diagram could suggest.

Timethreads span through components, and they are not necessarily related on a 1-to-1
basis with components. Therefore, the fact that we have four timethreads here and that we

assumed we have four componentsis a coinci dence.

Different patterns are used here to differentiate timethreads, to give them a different iden-
tity. The identity of a timethread's segment is not yet darified in the notation. Patterns,

colours, and identifiers can be used for this purpose.
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3.3 LARG representation

The first step for the obtention of a LOTOS specification from atimethread diagram is to map the
latter on aLARG (fig. 11).

Traveler_Example (" Tnew, Tdest )
hide TphoneD, TgetinC... in ‘

Pready, ... ) Din, ... )
TphoneD ) \
Plane Dispatcher

- ~
TgetonP, Tnew, ... TgetinC, Cin, ...
TgetoffP TgetoutC Cab
(TgetonP, , (TgetinC, ;
TravPlane TravCab

Figure 11: LARG representation of the traveler system

The hide part of process Traveler_Example hides labds that are in the SUD, i.e, every labds
except Tnew and Tdest, which are externd events. Interna processes also hide their interna activ-

ities, e.g., process Dispatcher hides Dlookfor C, Dfillstats and Dreadyl. The hiding of activities on
a timethread diagram is still an open issue. LOTOS provides much flexibility on this aspect, but
conventions for the mapping are still needed. In the traveler example, there are only two externd
events (Tnew and Tdest), and actions (internd activities) of a timethread are hidden by default
within the corresponding LOTOS process.

Figure 11 shows one LOTOS process for each timethread, plus two extra processes (TravPlane
and TravCab). These processes are needed for modul arity reasons. They can ease trangformations
like regrouping and splitting [Amy 93], and they express more dearly common actions between
synchronized timethreads.

The next step of the transformations concerns the binary grouping of internd processes, which
dlows a direct mapping onto a LOTOS structure of processes. The grouping is done using the

1. Thehide partsof internal processes are not shown in de LARG for space reason, but we assumethey are
there.
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LAEG method [Bor 93]. Many different groupings can result from this agorithm, and the fina
choice should not be arbitrary. Design decis ons such as performance and |ocation of components
and/or processes should tell us which grouping is the best. However, no such metrics have been
defined yet. Figure 12 shows one possible grouping.

Traveler_Example ( Tnew, Tdest >
hide TphoneD, TgetinC... in
Din, ... D
Dispatcher
TphoneD,
DaskC
Pready, ) Cin, ... D
Plane Cab
TgetonP, TgetonP, TNew, ... TgetinC, TgetinC,
TgetoffP TgetoffP TgetoutC TgetoutC
(TgetonP, ' (TgetinC, ,
TravPlane TravCab

Figure12: Binary grouping of thetraveler system

From this LARG, we can derive the structural section (unfortunatdy called behaviour section in
LOTOS) of the LOTOS specification (see [Bor 93] for more details):
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specification Traveler Example[Tnew (* New traveler wants to travel *),
Tdest (* Traveler arrives to destination *) ] : noexit

behaviour (* Architecture obtained from the LARG *)

hide (* hidden interactions *)

TphoneD, (* Traveler phones Dispatcher for a cab *)
TgetinC, (* Traveler gets in the cab *)
TgetoutC, (* Traveler gets out the cab *)
TgetonP, (* Traveler gets on the plane ¥*)
TgetoffP, (* Traveler gets off the plane *)
Din, (* Dispatcher is in the office *)
DaskC, (* Dispatcher asks for a cab *)

Dout, (* Dispatcher is not in the office ¥*)
Cin, (* Taxi driver in the cab *)

Cout, (* Taxi driver not in the cab *)
Pready, (* Plane is ready *)

Phangar (* Plane goes to the hangar *)

in

Dispatcher [Din, TphoneD, DaskC, Dout]
| [TphoneD, DaskC] |
(

(

Cab[Cin, DaskC, TgetinC, TgetoutC, Cout]
| [TgetinC, TgetoutC] |
TravCab [TgetinC, TgetoutC]
)
| [TgetinC, TgetoutC] |
Traveler [Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]
)
| [TgetonP, TgetoffP] |
(
Plane [Pready, TgetonP, TgetoffP, Phangar]
| [TgetonP, TgetoffP] |
TravPlane [TgetonP, TgetoffP]

3.4 Development of atimethread

Once the structure of the LOTOS specification is defined, every process has to be filled with its
behaviour (or path description). For instance, figure 11 focuses on the timethread Traveler and its
corresponding compl ete representation extracted from the LARG. Again, events are cond dered as
LOTOS gates and the activity Tairport is hidden (so it is an internd action). Note that actions
TCride and TPflight are not included in the labd set since they are considered asinternd activities
of processes TravCab and TravPlane, respectively.
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Tairport Tnew, TphoneD, TgetinC,

Tnew TgetoutC, TgetonP,
TgetoffP, Tdest
TphoneD T TgetonP hide Tairport in
e TgetoffP
|
1 “'I
TgetinC TgetoutC

Tdest
Figure 13: Timethread Traveler and its corresponding LARG process

The LOTOS interpretation of this timethread is obtaned using the semantics introduced in [Amy
93]. Different levels of abstraction could be used here. In this LOTOS process, the event TphoneD
represents an asynchronous interaction (in passng), interpreted as the interleaving sub-process
TphoneD; stop. Snce LOTOS dlows synchronous interactions only, we have to simul ate asyn-
chronousinteractionsin this way.

(* Timethread Traveler *)
process Traveler [Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest] : noexit :=
hide Tairport in (* hidden action ¥)
Tnew;
(
TphoneD; stop (* in passing interaction *)
[1]
(
TgetinC;
TgetoutC;
Tairport;
TgetonP;
Tgetoffp;
Tdest; stop
)
[]

(* recursive call ¥*)
Traveler [Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]
)

endproc (* Traveler *)

The other 5 processes are also mapped onto LOTOS to form the find specification of our system
(presented in the Appendix A).

4. Simulation and validation

Such specification will be hdpful, in later stages of the desgn, as aformal support to timethread
trangormations, which are still research issues. However, this does not mean that this type of
specification is not useful as it is, in the contrary. We can “execute” the specification, with com-
mon LOTOS tools, ether to get the feeling that our diagram correspondsin some way to the func-
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tiondity defined in the requirements, or to detect possible problems which will have to be solved
during later stages of the design. This smulation can effectively, at some leved, leads to some
questions that the designer will have to answer with some refinement.

Two similar tools were used for the step-by-step simulation of the Traveler Example specifica-
tion. The first one is XELUDO (Environnement LOTOS de I’ Université d’ Ottawa), on X-Win-
dows SUN workstations, and its TTY version (for VT-100 termina) ELUDO. The second tool
was the PC version of LOLA (LOtos LAboratoty) from the University of Madrid.

Different leve s of specification were used for the ssmulation. In thelevd 1 specification (without
recursion), all recursive cals were removed. Therefore, only one instance of each process was
dlowed. For instance, the process Traveler becomes:

(* Timethread Traveler *)
process Traveler [Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest] : noexit :=
hide Tairport in (* hidden action ¥)
Tnew;
(
TphoneD; stop (* in passing *)
[11
(
TgetinC;
TgetoutC;
Tairport;
TgetonP;
Tgetoffp;
Tdest; stop
)
) (* No more recursion! ¥*)
endproc (* Traveler ¥*)

The smulation of this specification was strai ghtforward. No unexpected problem was detected.
The Appendix B shows an instance of atrace obtaned with ELUDO (1) and another trace obta ned
with the help of LOLA (I1). Leve 1 specifications are useful only in the early stages of the design
process, when afast S mulation is needed to check afew simple properties or to get the feding our
timethread diagram is right.

A leved 3 specification (like the one in Appendix A) is more useful for thinking about the design.
Appendix B (lll) presents a trace (obtained with LOLA) where the resulting event Tdest is
reached. However, dthough knowing that the purpose of our system can befulfilled is essential, it
is very interesting to look for possible problems. Thisisin fact the god of testing. Step-by-step
gmulation can help us test our specification with different scenarios, in order to observe the sys-
tem’s reactions.

Part IV of Appendix B presents a case where the di spatcher, after rece ving two requests from two
traveers, finally finds a taxi. The designer could wonder what was hisinitid intention there: how
many requests can the di spatcher accumul ate before he tdl s the travel ers he cannot take any more
requests? | s there any mean for the dispatcher to tel the next travelers that they would haveto cal
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back | ater, when the system permitsit? In thefirst loop of timethread Dispatcher, isit normd that
the dispatcher fills his statistics without having any news from the first taxi? Also, following the
semantics we gave to the timethreads, a taxi can only take one travder. Is that what we really
intended? Shoul d we specify amaximum number of travel ers (say 3) that ataxi can take in? Does
the same thing happens with trave ers and planes? All these questions could be raised only by exe-
cuting a simple sequence from a timethread diagram. These issues would have to be solved in
someway during the later stages of the design process.

Part V presents a problem about the number of instances. It appears that a unbounded number of
trave ers can request ataxi. Again, how many requests can the dispatcher can ded with?If thedis
patcher is not in the office, is there a way to signd the traveers that the system may not work
properly? Also, when many requests come to the dispatcher, should he deal with them in some
order, e.g., firstin first out?

Appendix B (VI) also shows a short simulation usng ELUDO and a mixed-leve specification.
There are a maximum of three travelers (level 2 process, with a bounded number of instances),
only one dispatcher (leved 1), amaximum of 2 cabs (leve 2) and an unbounded number of planes
(levd 3). Mixed-level specifications allow more control on the number of instances of timeth-
reads, resulting in more realistic smulations [Amy 93]. In this exampl e, we can see that two trav-
ders (we can call them T1 and T2) got into two different taxis (C1 and C2). After ther rides, they
have to get out ther respective cabs. However, they simulation shows at this point four possble
actions. Thisis an interaction problem where T1 can get out of C1 or C2, and T2 can d so get out
ether of T1 or T2, explaining the four different choices! The desgner knows that his system will
have to resolve some concurrency problem (like this interaction) later on.

Verification could be done using, for example, temporal logic over the symbolic extensgon of a
LOTOS specification [Ghr 92]. This extenson dlows the verification of al possible tracesin the
trangtion system corresponding to the specification. SELA, atool integrated in XELUDO, gives
the full expangon of aLOTOS processin the form of atree, or more precisdy atrandtion system.
Appendix B (V1) gives, as a short example, the extension of process Traveler inaleve 1 specifi-
cation of the traveer system. LOLA aso possesses such an extenson function, but it uses a very
different format.

Other testing tools using god -oriented execution, trace theory and temporal-logic could be inte-
grated into atimethreads-L OTOS s mul ati on/testing environment.
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5. Conclusions

In this report, we defined a LOTOS interpretation method for timethreads. The definition of this
method is based on the work described in [Bor 93] and [Amy 93]. This method allows the genera-
tion of LOTOS specifications from timethread diagrams. The definition of such a method consti-
tutes the first phase of the FIT project which ams at defining a framework for the integration of
forma methods in the timethread-centered design process. Also, we showed through the case
study that the interpretation method can be applied in practice, and that the specification we obtain
can be executed as afast-prototypein the early stages of the design process.

The use of the method with more complex examples requires the definition of a more rigorous
timethread interpretation method which would enable the generation of LOTOS behaviora
expressions, or LOTOS processes, from any arbitrarily timethreads. For this purpose, we need to
define a more general LOTOS semantics for timethreads that would dlow the interpretation of
individual timethreads as the composition of timethreads constructors. This is part of ongoing
research.

In order to dlow the use of the LOTOS interpretation method, defined in this report, in a globa
framework for the integration of LOTOS in the timethread-centered des gn process, the compl ete
formdization of the method is now required. The complete formdization of the LOTOS interpre-
tation method will first require the definition of aforma representation of timethreads notations,
possibly in a BNF. This will then enable the forma definition of the timethread interpretation
method, which is responsble for both the generation of behaviora expressons for individua
timethreads and the generation of a LARG from a timethread diagram.

5.1 Future Research

» Definein acomplete forma way the LOTOS interpretation method for timethreads, in par-
ticular the timethreads interpretation method defined in [Amy93] need to be completdy
formaized,

» Devdop other case studies using more complex examples, e.g. the e evator system and the
MTU system [Buh 93a],

» Define correctness preserving transformations (CPTs) for timethreads based on LOTOS
CPTs,

» Define a correspondence, based on LOTOS, between a timethread diagram and a skel eton
architecture,

» Define dmilar interpretation methods for other forma semantic mode, e.g. Petri nets and
event structures
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Appendix A: Final LOTOS specification

(* Traveler example; Daniel Amyot, December 1993 *)
(* Level 3 specification *)

specification Traveler Example[Tnew (* New traveler wants to travel *),

Tdest (* Traveler arrives to destination *) ] : noexit

behaviour (* Architecture obtained from the LARG *)

hide (* hidden interactions *)

TphoneD, (* Traveler phones Dispatcher for a cab *)
TgetinC, (* Traveler gets in the cab *)
TgetoutC, (* Traveler gets out the cab *)
TgetonP, (* Traveler gets on the plane ¥*)
TgetoffP, (* Traveler gets off the plane ¥*)
Din, (* Dispatcher is in the office *)
DaskC, (* Dispatcher asks for a cab *)
Dout, (* Dispatcher is not in the office ¥)
Cin, (* Taxi driver in the cab *)
Cout, (* Taxi driver not in the cab *)
Pready, (* Plane is ready ¥*)
Phangar (* Plane goes to the hangar *)
in
Dispatcher [Din, TphoneD, DaskC, Dout]
| [TphoneD, DaskC] |
(
(
(
Cab[Cin, DaskC, TgetinC, TgetoutC, Cout]
| [TgetinC, TgetoutC] |
TravCab [TgetinC, TgetoutC]
)
| [TgetinC, TgetoutC] |
Traveler [Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]
)
| [TgetonP, TgetoffP] |
(
Plane [Pready, TgetonP, TgetoffP, Phangar]
| [TgetonP, TgetoffP] |
TravPlane [TgetonP, TgetoffP]
)
)
where
(* _______________________________________________________ *)

(* Timethread Traveler *)
process Traveler [Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]
hide Tairport in (* hidden action *)
Tnew;
(
TphoneD; stop (* in passing ¥)

noexit :=
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TgetinC;
TgetoutC;
Tairport;
TgetonP;
TgetoffPp;
Tdest; stop

)

[]

(* recursive call ¥)

Traveler [Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]

)

endproc (* Traveler *)

(* Timethread Dispatcher *)

process Dispatcher [Din, TphoneD, DaskC, Dout] : noexit :=
hide Sync in (* Constrained start *)
Disl[Din, Sync] |I[Sync]l| Dis2[Sync, TphoneD, DaskC, Dout]
where
process Disl[Din, Sync] : noexit :=
Din; (Sync; stop ||| Disl[Din, Syncl)

endproc (* Disl *)

process Dis2[Sync, TphoneD, DaskC, Dout] : noexit :=
(* hidden actions *)

hide
DlookforcC, (* Dispatcher looks for a cab *)
Dfillstats, (* Dispatcher fills statistics ¥*)
Dready (* Dispatcher is ready for next traveler *)
in

Sync; DisLoop [Sync, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
where

(* Loop part of the timethread Dispatcher *)
process DisLoop [Sync, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
noexit :=
TphoneD;
DlookforC;
(
DaskC; stop (* in passing *)
[]
Dfillstats;
(
Dready; DisLoop[Sync, TphoneD, DlookforC, DaskC, Dfillstats,
Dready, Dout]
[1
Dout; Dis2[Sync, TphoneD, DaskC, Dout]

)
endproc (* DisLoop ¥*)

endproc (* Dis2 *)
endproc (* Dispatcher *)
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(* Timethread Cab *)

process Cab[Cin, DaskC, TgetinC, TgetoutC, Cout]
hide Sync in (* Constrained start *)
Cabl[Cin, Sync]
where

noexit :=

| [Sync]l | cab2[Sync, DaskC, TgetinC, TgetoutC, Cout]

process Cabl[Cin, Sync] : noexit :=

Cin; (Sync; stop ||| Cabl[Cin, Sync])
endproc (* Cabl *)

process Cab2[Sync, DaskC, TgetinC, TgetoutC, Cout] : noexit :=

(* hidden actions *)

hide

CgoD, (* Cab goes to wait the dispatcher ¥*)

Cgarage (* Cab goes to the garage *)
in

Sync; CabLoop [Sync, DaskC, TgetinC, TgetoutC, CgoD, Cgarage, Cout]
where

(* Loop part of the timethread Cab *)

process CabLoop [Sync, DaskC, TgetinC, TgetoutC, CgoD, Cgarage, Cout]
DaskC;

TgetinC;
TgetoutC;
(

: noexit :=

CgoD; CabLoop [Sync,
[1
Cgarage;

DaskC, TgetinC, TgetoutC, CgoD, Cgarage, Cout]

Cout; Cab2[Sync, DaskC, TgetinC, TgetoutC, Cout]
)
endproc (* CabLoop *)

endproc (* Cab2 *)
endproc (* Cab *)

(* Timethread Plane *)

process Plane[Pready, TgetonP, TgetoffP, Phangar] : noexit :=
(* no hidden action in the timethread *)
Pready;
(
TgetonP;
TgetoffP;

Phangar; stop
[1]

(* recursive call *)

Plane [Pready, TgetonP, TgetoffP, Phangar]
)

endproc (* Plane *)

(* Timethread Intermediate (Traveler and Cab) *)
process TravCab [TgetinC, TgetoutC]
(* hidden action *)
hide

noexit :=

TCride (* Traveler takes a taxi ride ¥*)
in
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TgetinC;
(
TCride;
TgetoutC; stop
[
(* recursive call ¥*)

TravCab [TgetinC, TgetoutC]
)

endproc (* TravCab *)

(* Timethread Intermediate (Traveler and Plane) *)

process TravPlane [TgetonP, TgetoffP] : noexit :=

(* hidden action *)
hide

TPflight (* Flight of the traveler on the plane *)
in

TgetonP;
(
TPflight;
TgetoffP; stop
[11
(* recursive call ¥*)

TravPlane [TgetonP, TgetoffP]
)

endproc (* TravPlane *)

endspec (* Traveler Example *)
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Appendix B: Simulation using Eludo and LOLA

I) Completetrace of alevel 1 specification obtained with ELUDO:

DEADLOCK
No more action
possble

Traveler_ Example [Tnew, Tdest] ()
+-hidden Din;
+-hidden Sync;
+-hidden Cin;

+-hidden Sync; \

+otnew; < Execution tree
+-hidden Pready;
+-hidden TphoneD;
+-hidden DlookforcC;
+-hidden Dfillstat
+-hidden Dout;
+-hidden DaskC;
+-hidden TgetinC;
+-hidden TCride;
+-hidden TgetoutC;
+-hidden Cgarage;

+-hidden Cout;

+-hidden Tairport; The traveler has arrived to the

+-hidden TgetonP; destination.

+-hidden TPflight;
+-hidden TgetoffP;
+-hidden Phangar;
+-Tdest;

No more action possible

+-DEADLOCK
ACTIONS : <RET>execute, <v>iew, <hs>istory, <ss>ela, <g>oal, <g>uit, <osptions
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I1) Completetrace of alevel 3 specification obtained with LOLA:

[ 11 1i; (* phangar *)
<n>,Undo,Menu, Refused, Sync, Print, Trace, Exit,?> 1
==> 1; (* phangar *)

No more action

DEADLOCK -y possi ble

<n>,Undo,Menu, Refused, Sync, Print, Trace, Exit, ?> t

1] - i; (* din *)

1] - i; (* sync ¥)

1] - i; (* cin *)

1] - i; (* sync *) \

1] - tnew; .

1] - i; (* tphoned *) - Execution tree

1] - i; (* dlookforc *)
1] - i; (* daskc *)

1] - i; (* dfillstats ¥*)
1] - i; (* dready ¥*)

1] - i; (* tgetinc *)

1] - i; (* tcride ¥*)

1] - i; (* tgetoutc ¥)
1] - i; (* cgod ¥*)

1] - i; (* tairport *)

The traveler has arrived to the
destination.

1] - i; (* pready ¥*)
1] - i; (* tgetonp *)
1] - i; (* tpflight *)
1] - i; (* tgetoffp *)
1] - tdest;
1] - i; (* phangar *)

No more action possible

<n>,Undo,Menu, Refused, Sync, Print, Trace, Exit, ?> e

Step-by-step simulation finished.

lola> g
quit
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I11) Partial trace of alevel 3 specification obtained with LOLA:

1] - i; (*
1] - i; (*

2] - i; (*
2] - i; (*
3] - tnew;
2] - i; (*
3] - i; (*

2] - i; (*
2] - i; (*
2] - i; (*

3] - i; (*
3] - i; (*
3] - i; (*

3] - i; (*
71 - i; (*
4] - i; (*
3] - i; (*
4] - i; (*

4] - i; (*
6] - i; (*
4] - i; (*
6] - i; (*

4] - tdest;

<n>,Undo,Menu, Refused, Sync, Print, Trace, Exit, ?> e

Step-by-step simulation finished.

lola> quit

din *)
sync *)
cin *)
sync *)

tphoned *)
cin *)
dlookforc *)
daskc *)
dfillstats *)
dout *)
tgetinc *)
tcride ¥*)
tgetoutc *)
pready *)
cgarage *)
cout *)
tairport ¥)
tgetonp *)
tpflight *)
tgetoffp *)
phangar *)

The traveler has arrived to the

destination.

Other actions still possible ance
we can have multipl e instances.
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V) Taxi ambiguities detected using ELUDO

——————————————————————————————————— No4 1510}
hidden Din; at line(s) 76
hidden Dfillstats; at line(s) 96
hidden Cin; at line(s) 116
hidden TCride; at line(s) 170
hidden Tairport; at line(s) 57
Tnew; at line(s) 50
——————————————————————————————————— HISTORY - ---=-=—-mmmmmmmmmmmmmmmmmmmo oo
Traveler_ Example [Tnew, Tdest] ()
+-hidden Din;
+-hidden Sync;
+‘T“:‘Y;den EphoneD <@ / Di spatcher answers two requests
+- 1 r . . .
+_hiddenpmookforc,. beforeit getsthefirst taxi...?

+-hidden Dfillstats;

+-hidden Dready;

+-Tnew;

+-hidden TphoneD;
+-hidden DlookforC;

+-hidden Cin;

+-hidden Sync;
+-hidden DaskC;

A taxi cannot take two passagers
at thesame time...?

+-hidden TgetinC;
+-hidden TCride;
+-hidden TgetoutC;
+-hidden CgoD;
+-hidden DaskC;
+-hidden TgetinC;
ACTIONS : <RET>execute, <v>iew, <hsistory, <ssela, <g>oal, <g>uit,

Two instances
of travder

<o>ptions
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V) Number of instances problem detected using ELUDO

——————————————————————————————————— ACTIONS = -= - - == mmmmmmmmmmmm oo e e
hidden Pready; at line(s) 149
hidden TphoneD; at line(s) 91,52
hidden TphoneD; at line(s) 91,52 Can the dispatcher really receive messages from
hidden TphoneD; at line(s) 91,52 thefive trave ersin any order he wants...?
hidden TphoneD; at line(s) 91,52
hidden TphoneD; at line(s) 91,52
——————————————————————————————————— HISTORY --------------——--mmmmmm oo oo m———— - -
Traveler_ Example [Tnew, Tdest] ()
+-Tnew;
+-Tnew; . .
+ Tnew: Five instances of trave er are present. Does the system
! - .
+-Tnew; check for a bounded number of instances...?
+-Tnew;
+-hidden Din;
+-hidden Sync;

ACTIONS : <RET>execute, <v>iew, <hs>istory, <ss>ela, <g>oal, <gs>uit, <osptions

V1) Interaction problem detected using ELUDO on a level 2 specification

hidden Dfillstats; at line(s) 113

hidden TCride; at line(s) 188

hidden TgetoutC; at line(s) 152,189,733

hidden TgetoutC; at line(s) 152,189,73

hidden TgetoutC; at line(s) 152,189,733
)

hidden TgetoutC; at line(s) 152,189,73
----------------------------------- HISTORY
Traveler Mixed[Tnew, Tdest] ()
+-Tnew;
+-Tnew; These four similar choices indicate that the first
+-hidden Pready; .
+ - Tnew; trave er can get out thefirst cab or the second cab,
+-hidden Cin; and the samething applies to the second trave er.

+-hidden Sync; s there an interaction problem...?

+-hidden Cin;

+-hidden Sync;
+-hidden Din;
+-hidden Sync;
+-hidden TphoneD;
+-hidden DlookforC;
+-hidden DaskC;
+-hidden TgetinC;
+-hidden Dfillstats;
+-hidden Dready;
+-hidden TphoneD;
+-hidden DlookforcC;
+-hidden DaskC;
+-hidden TgetinC;
+-hidden TCride;
ACTIONS : <RET>execute, <vs>iew, <hsistory, <ss>ela, <g>oal, <g>uit, <o>ptions

Two travelers got on two
different cab. One of them
had aride.
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VI11) Symbolic extension of process Traveler in atransition system for mat

bho *
bhl *
bh2 *
bh3 *
bh4 *
bhs *
bhe *
bh7 *

bho *

bhio*

*

bhil1l*

*

bhil2*

*

bh13*

*

bhl4*

S

Tnew [50]

1
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
|

TphoneD [52]

1 TgetinC [55]

| 1 TgetoutC [56]

| | 1 1 (hiding: Tairport) [57]
| | | 1 TgetonP [58]

| | | | L TgetoffP [59]

| | | | | 1 Tdest [60] DEADLOCK
TgetinC [55]

2 Tdest [60]
| 1 TphoneD [52] DEADLOCK

1 TphoneD [52] ==> again bh3

2 TgetoutC [56]

| 1 TphoneD [52] ==> again bh4

| 2 1 (hiding: Tairport) [57]

| | 1 TphoneD [52] ==> again bh5

| | 2 TgetonP [58]

| | | 1 TphoneD [52] ==> again bhé
| | | 2 TgetoffP [59]

| | | | 1 TphoneD [52] ==> again bh7
Ll

Ll
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