Towards Legal Contract Formalization with
Controlled Natural Language Templates

Regan Meloche
School of EECS
University of Ottawa
Ottawa, Canada
0009-0004-2418-1990

Abstract—Automated formalization of legal texts in order
to remove ambiguities, conflicts and incompleteness has been
a challenge for Requirements Engineering (RE) research for
decades. This work seeks to make an incremental step towards
this objective for legal contracts by making use of contract
templates. Our proposed approach starts with a natural language
contract template, together with a manually formalized specifica-
tion of that template. A contract writer can make customizations
to the template, which trigger the automatic formalization of
the corresponding customized contract. Qur target specification
language is Symboleo, which is created specifically for contract
verification and monitoring. Starting with a manually formal-
ized template reduces the complexity associated with a fully
automated formalization. Typical contract templates use simple
fill-in-the-blank parameters, which serve as customizations to
formalize in our framing of the problem. Our approach pushes
the boundaries of these templates by allowing the contract
writer to enter complex natural language customizations, such
as prepositional phrases and conditional statements. This work
explores what types of natural language patterns can be used
in that context by analyzing relevant linguistics and real legal
contracts. It also introduces a tool, SymboleoNLP, that suggests
the feasibility of the formalization process.

Index Terms—contract template, formalization, legal require-
ments, natural language processing, Symboleo

I. INTRODUCTION
A. Motivation

Many daily affairs are mediated by legal contracts and their
terms and conditions. For example, a sales contract specifies
that a quantity of a product must be delivered to an address
before a due date. A lease agreement prohibits tenants from
making excessive noise after a certain time of day. Such
documents prescribe behaviour of how one party (supplier,
tenant) must act towards another party (buyer, property owner).
They are often legally binding, so they must be precise,
unambiguous, and understandable to the parties involved. A
lack of these qualities can lead to different interpretations, at
times resulting in costly legal disputes.

An emerging format of contract is the smart contract, a
digital artifact where certain prescriptions found in traditional
contracts are performed and monitored automatically. The

This work was partially funded by an NSERC Discovery Grant #610877
titled Engineering Requirements for Cyber-Physical Systems and by the ORF-
RE project CyPreSS: Software Techniques for the Engineering of Cyber-
Physical Systems.

Daniel Amyot
School of EECS
University of Ottawa
Ottawa, Canada
0000-0003-2414-1791

John Mylopoulos
School of EECS
University of Ottawa
Ottawa, Canada
0000-0002-8698-3292

growing attention paid to smart contracts is largely due to
technologies such as distributed ledgers and the Internet-of-
Things [1]]. Consider a meat sale contract where the meat
being delivered must be maintained below a certain tem-
perature throughout the delivery process. If the temperature
climbs above that threshold, then the meat quality may be
compromised, and the buyer may be entitled to a discount.
A temperature sensor inside a delivery vehicle connected to
the Internet can detect the drop in temperature and report this
to a smart contract, which can then automatically trigger (or
cancel) a specific payment transaction.

There are many challenges involved in the development of
smart contracts, one of which is the conversion of natural lan-
guage (NL) clauses to code that can be executed on a machine.
In almost any NL communication, a degree of common sense
is assumed, and this assumption is a fundamental problem for
NL processing (NLP). For a reliable smart contract, we must
translate a contract written in NL into a formal specification,
which is a structured and unambiguous representation that
retains the meaning of the original document. A formal specifi-
cation is written in a specification language, and the process of
converting a NL document to a formal specification is called
formalization. Automating this process is in the domain of
NLP, and there are a wide variety of techniques in this field
that may help us achieve the goal of partial automation.

B. Problem Statement

Automation of contract formalization is an active field of
study, yet it remains a hard problem [2]. A long-term goal
is to automatically formalize a raw NL contract into a target
specification language. As this is currently over-ambitious, we
focus on a simpler problem, namely on formalizing linguistic
sub-structures that regularly appear in contracts by taking
advantage of the reality that contracts are often created using
templates. For a given type of contract, an organization may
start with a standard template that can be customized to suit the
specific needs of a party. Rather than drafting a new contract
from scratch, they need only to make minor customizations
to the template. Accordingly, rather than formalizing raw NL
contracts, we can begin with a manually-created formalization
of the contract template. The NL template is then customized
by a user, and our task is now to automate the formalization

Copyright © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works by sending a request to pubs-permissions @ieee.org.

of the customized contract template. To do this, we need only
to focus on the changes that were made to the NL template.
Furthermore, if these customizations are controlled, through
a guided user interface and a restricted set of predictable
operations, then the problem becomes more manageable.

In summary, we are building a pro-
gram that allows a user to make con-
trolled customizations to a NL contract
template, which will result in predictable
changes to a formal specification of the
contract. Hence, given a contract tem-
plate T written in NL, a manually cre-
ated formal specification of this tem-
plate S(T), and a customization C of
the template, we want to automatically
generate the formal specification S(C) for the customization.
This problem structure is shown in Fig. [T}

We illustrate this process with a sample obligation that
might appear in a sales contract. The specification language
that we use is called Symboleo [3[], which will be discussed in
the next section. For now, we note that it is a formal language
that can be reliably interpreted by a machine.

Automatic

Feaumed_
| % |<-Au(omauc =|

Fig. 1. Problem struc-
ture

o Template T: The Seller shall deliver the goods to the Buyer
[REFINEMENT].

o Formalization S(T): Obligation (buyer, seller,
true, This formaliza-
tion is done manually by someone familiar with Sym-
boleo.

o Customization C: The Seller shall deliver the goods to the
Buyer within 2 weeks of payment. This step is done by the
user through a guided process.

o Formalization S(C): 0bligation (buyer,
true,
payment, 2, weeks))). This step is automated.

Happens (deliver_goods)).

seller,
HappensBefore (delivered, Date.add(

In this example, T is a single obligation, but in practice
it will represent a full NL contract template, consisting of
multiple obligations and powers. Our task is to use the
knowledge from S(T) to determine how to properly formalize
the customization within 2 weeks of payment, which involves
mapping the operator Happens to HappensBefore in the
Symboleo specification. We want to push the boundaries to
make user input as flexible as possible, while still having
reliable formal mappings. We will therefore need a well-
defined characterization of the types of NL customizations
that a user can make. This comes in the form of a series of
controlled NL (CNL) patterns. For each defined pattern, there
will be a predictable mapping to a Symboleo operation. The
goal of our research questions will be to determine what these
patterns are.

II. BACKGROUND

A. Symboleo

Symboleo [3] is a formal specification language, based on
a legal ontology and axiomatic semantics, used for verifying
and monitoring legal contracts. It provides constructs for

specifying many legal contract concepts such as obligations
and powers (norms), which are formatted as follows:

o Obligation: 0-id: O (debtor,
antecedent, consequent)
P (debtor,
consequent)

[trigger —]

creditor,
o Power: p-id:
antecedent,

[trigger —]
creditor,

In an obligation, the debtor is the party that must fulfill the
obligation, whereas the creditor benefits from the fulfillment
of the obligation. In a power, the debtor is the party that has
the right to exercise the power (e.g., to terminate or create
another obligation or power), whereas the creditor is liable
for the power. The antecedent is a legal situation that causes
an obligation or power to be in effect. For an obligation, the
consequent is a legal situation that the debtor needs to make
true, and when this is done, then the obligation is fulfilled.
For a power, the consequent is a legal situation which, upon
becoming true, the power is exerted. There is also an optional
trigger statement, which is used to instantiate a norm. Both
antecedent and trigger represent conditions imposed on the
norm, but the distinction is important at the formal semantic
level. We illustrate these concepts with two examples.

First, consider a payment obligation, which specifies that
the buyer must pay before the due date: O (buyer, seller,
true, HappensBefore(paid, paid.payDueDate)).
There is no trigger or antecedent for this obligation, so it is
in effect as soon as the contract is activated. The buyer plays
the debtor role, and therefore has an obligation to the seller,
who plays the creditor role. For the obligation to be fulfilled,
the paid event must take place before the payDueDate time
point. If this does not happen, then this obligation will be
considered violated.

Next consider the power: Happens (Violated (

— P (seller,
Suspended (obligations.delivery)).

obligations.payment)) buyer,
true,
This power is created in the case of a violation of the
payment obligation (i.e., the buyer has failed to pay by the
due date). If that obligation is fulfilled, then we need not
concern ourselves with this power. However, if payment does
not happen on time, then this power is triggered, and the
debtor (the seller) may now suspend the delivery obligation,
and the seller no longer needs to deliver the goods.

The formal syntax of Symboleo is specified as an Xtext
grammar to which we must adhere in order to produce valid
Symboleo contracts. The precise semantics of the language are
specified in a series of axioms exploiting event calculus [4].
One of the next main objectives for the development of Sym-
boleo is a tool to support the partially automated translation
from NL contracts to Symboleo specifications, with an aim to
facilitate the creation of smart contracts.

B. Related Work

The use of a CNL in the context of smart contract formaliza-
tion has precedents in existing research. Finnegan [5] discusses
the advantages of using a CNL specifically for specifying
contracts. It is motivated largely by standardization and the
need for simplicity in legal documents for human use, rather

than focusing specifically on the goal of formalization. Ideas
for a contract-specific CNL are proposed, such as eliminat-
ing synonyms, redundant and archaic words, and ambiguous
terms. The paper notes that a contract-writing application is a
logical next step. Pace and Rosner [6] propose using a CNL for
formally specifying contracts, but not specifically for targeting
smart contracts, emphasizing the idea that there are other
benefits that come with contract formalization, in addition to
smart contracts. The authors accurately identify the problems
associated with using unrestricted NL, motivating the use of a
CNL. Tateishi et al. [[7] do specifically apply the idea of a CNL
to smart contracts by proposing a technique to automatically
generate smart contracts from a NL contract using a template
and a CNL. While there is indeed overlap, our work focuses
specifically on the application of the monitoring of contract
events, hence our use of Symboleo.

Since much of the text found in contracts is normative,
there is considerable overlap with requirements engineering
(RE). Wyner and Peters [8]] created a framework for ex-
tracting formal specifications from NL regulations using a
rules-based approach, which involves parsing and reasoning
about the linguistic forms and relations in a text. Breaux and
Ant6n [9] introduce a method that involves first converting NL
requirements from privacy policies into a restricted NL and
then mapping to a machine-readable format. Sleimi et al. [10]
reconcile various approaches to formalization in RE literature
and provide a case study targeting traffic regulations. The rule-
based approach is sometimes considered in opposition to a
statistical approach based on machine learning (ML), which
relies on a model trained on a large dataset to extract useful
information, such as spans of text that contain an obligation.
This has been done in both the legal contract domain [|1 1], [|12]]
and also for RE [13]]. Rules-based approaches tend to be more
rigorous and precise, yet they are domain-specific and may
not scale as well to new data. ML approaches, on the other
hand, have achieved strong results, provided they have access
to an annotated dataset (a major obstacle in this domain), but
the results are often less formal. Buzhinsky [|14] highlights
this distinction and gives a survey of various techniques for
formalizing NL requirements into a temporal logic. Ioannou
and Michael [[15] explore the idea of formalizing NL for an
application where a user is giving feedback to a call assistant
with the goal of improving its functionality, and apply many
standard NLP techniques such as part-of-speech tagging and
named entity recognition. Navas-Loro et al. [[16] provided a
framework for translating text from a NL contract into a formal
specification called PROLEG. This translation is based on
frame semantics, an idea realized in FrameNet [17].

ITI. RESEARCH QUESTIONS (RQS) AND METHODOLOGY
A. RQI: Customization Operations in Symboleo

Ultimately, our task involves mapping one Symboleo speci-
fication S(T) to another Symboleo specification S(C), which is
achieved by performing a set of concrete operations to S(T).
These operations will correspond to NL patterns entered by
the user. We begin by asking:

RQ1: which Symboleo customization operations do we
want our CNL to support?

We answer RQ1 by considering all possible Symboleo oper-
ations, and then for each one, deciding if there is any grounds
for excluding it. We are working with contract templates, and
the key idea of using a template is that the customization of
a template serves to refine or restrict it to something more
specific. This notion of only allowing operations that restrict
the template is our main guiding principle. In our sample
obligation, we restricted the delivery timeframe from being
completely open to a period of within 2 weeks after payment
occurs. To clarify the notion of a restrictive operation, we
consider a sample of the predicates supported by Symboleo,
some of which were already introduced:

e Happens (event)
e HappensBefore (event, time)

e HappensWithin (event, timel, time2)

From a purely syntactic perspective, we can see how the
HappensBefore and HappensWithin predicates are refine-
ments of the Happens predicate, since they contain the
event parameter, in addition to other parameters. An example
of a desirable Symboleo operation is therefore refining the
Happens predicate to a HappensBefore predicate. We apply
similar logic to refine our list of Symboleo operations.

B. RQ2: General Semantic Correspondence

From the perspective of the contract authors using a cus-
tomization tool, they would interact only with NL, and need
not even know that Symboleo exists. They will see a NL
contract template T to which they make customizations (C)
using our CNL and, behind the scenes, a Symboleo contract
S(C) is automatically generated. Once we have defined our
desirable Symboleo customization operations in RQ1, we need
to match their semantics to corresponding NL patterns. In
our example, we had the phrase wirhin 2 weeks of payment
as the NL that corresponded to the Symboleo Happens —>
HappensBefore refinement operation. RQ1 considered only
the syntax of Symboleo, and now we must consider the
semantics.

RQ2: What are the NL structures that correspond to our
desired Symboleo customization operations?

We must first point out that, due to the inherent ambiguity
of NL, any correspondence between Symboleo operations and
NL patterns will be imprecise. Furthermore, the very act of
limiting the user input to a controlled set of NL patterns
will reduce the expressiveness inherent in NL, but on the
other hand will render our mappings to Symboleo operations
more reliable. This is an important trade-off, and serves as a
reminder that any correspondence we posit will not be precise.
This is a trait of many NLP applications, and largely the reason
that we aim only for partial automation.

In mapping our Symboleo operations to NL patterns, we
introduce an important guiding principle. We want our NL

patterns entered by the user to be optional. If the user
leaves the parameter blank, then the resulting Symboleo
contract will still be valid, albeit more vague. Consider our
example of wirhin 2 weeks of payment. If this phrase were
omitted, the NL clause would still be grammatically correct,
and it would map to valid Symboleo: O (seller, buyer,
true, Happens (delivered)). We are therefore looking
for linguistic constructs that deal with refinements and are
grammatically optional.

Our within 2 weeks of payment phrase is an example of a more
general linguistic concept called the adjunct, which aligns well
with our requirements. Adjuncts are linguistic constituents that
are structurally dispensable, i.e., they may be removed without
affecting the remainder of the sentence [18]]. They can serve
many functions but are typically classified based on semantic
meaning. Some examples of adjuncts (italicized) include:

« Temporal: The flowers must be delivered before Friday.
o Conditional: If there is an emergency, you must call 911.
o Locative: The keycard must be returned to the front desk.

In each of these examples, the adjunct gives more infor-
mation about the event. In other words, they refine. Adjuncts
can take many grammatical forms, such as adverbs, preposi-
tional phrases, or subordinating conjunctions. For each of our
Symboleo operations, we can define a broad set of adjuncts
that have a close semantic correspondence. As an example,
our operation of refining Happens to HappensBefore has a
semantic correspondence with a subset of temporal adjuncts,
particularly those that take the form of prepositional phrases.
Each of the following examples would result in such a
refinement to the sentence The Seller shall deliver the goods to
the Buyer [PARAMETER].

o within 2 weeks of payment
o before March 30, 2023
e prior to the contract termination

We also investigate the Symboleo refinement operation of
adding an antecedent to a norm, another result of RQI1. The
semantic equivalent would be a conditional adjunct (essen-
tially an if statement). Many contracts contain information
on how they can be terminated, for example through written
notice or violation of certain obligations. Suppose we had the
template text [CONDITION] the buyer may terminate the contract.
The Symboleo code would be: P (buyer, seller, true,
Terminated (self)). The CONDITION parameter can now
be filled by the user with a conditional adjunct, such as: If the
delivery is not completed on time. The refined Symboleo would
now be: Happens (Violated (obligations.delivery))
true, Terminated(self)).

-> P (buyer, seller,

C. RQ3: CNL based on real contracts

Although we have found NL correspondences with our
desired Symboleo operations in the form of adjuncts, these
are largely heuristics. We want to know the linguistic character
of refinements that appear in real contracts. To this end, we
analyze a set of real contracts, identify norm refinements as
well as their corresponding Symboleo operations, and use this

data as evidence to construct a CNL, which will be used by our
tool. For example, we want to know if refinements similar to
within 2 weeks of payment appear in real contracts, and if they
do really map to the operations predicted by our heuristics
from RQ2.

[RQ3: What refinement patterns exist in real contracts?]

We extract a set of refined NL norms from a subset of
the contracts in the CUAD dataset [19]. The dataset initially
contained 510 contracts, but we filtered this down to include
only shorter contracts, in order to facilitate manual analysis.
This resulted in 109 contracts, though future work may involve
analyzing the full dataset. After manually identifying adjunct
refinement patterns and corresponding Symboleo operations,
we were able to extract an evidence-based CNL based on the
most common pairings of patterns and operations. We offer
a sample of our current findings, and illustrate them with
selected examples (italicized) from the contract dataset.

o if EVENT: This corresponds to the addition of an
antecedent. If the Investment Adviser is required to re-
imburse the Fund...

o before EVENT/DATE: This corresponds to a refinement
of a Happens predicate to a HappensBefore predicate.
The Franchise Fee shall be paid to Grantor on or before
March 31, 2017.

o within TIMESPAN of EVENT: Also corresponds to a
refinement of a Happens predicate to a HappensBefore
predicate. ..VNUE shall reimburse Promoter within
Thirty (30) Days of receipt of such accounting.

The full CNL as well as research artifacts, code, and an
EBNF-like grammar specifying valid input can be found online
El The resulting CNL is evaluated by splitting off a separate
test set, and verifying that the patterns and operations from
this test set are covered by our constructed CNL.

IV. SYMBOLEONLP
A. Manual Preprocessing

We have established a hypothetical CNL consisting of a set
of NL patterns that will correspond to Symboleo operations.
We now discuss the design of SymboleoNLP, a tool that
partially automates this refinement. The tool requires as input a
properly formatted NL contract template and its corresponding
Symboleo specification. The creation of these inputs is a
manual process, which we will now illustrate with a toy
example. We start with a raw contract TO:

o The buyer must pay the seller on or before March 20, 2024.

o The seller must deliver the goods within 3 weeks of payment

o The buyer may terminate the contract upon providing 30 days
written notice

We manually convert this to Symboleo to get S(T0):

e O(buyer, seller, true,

HappensBefore (payment, ’2024/03/20"))

Uhttps://github.com/reganmeloche/symboleo-cnl

https://github.com/reganmeloche/symboleo-cnl

e O(seller, buyer, true,

HappensBefore (delivery, Date.add (payment,

3, weeks)))
e Happens (provides_notice_days (30)) —->
P (buyer, seller, true, Terminated(self))

This Symboleo specification S(T0) will now contain norms
that could be broadened. We broaden these overly refined
norms in Symboleo to get the simpler S(T):

e O(buyer, seller, true, Happens (payment))

e O(seller, buyer, true, Happens (delivery))

e P (buyer, seller, true, Terminated(self))

The final step is to broaden the corresponding NL on TO to
give us T by replacing the adjuncts with parameters:

o The buyer must pay the seller REFINEMENTI
o The seller must deliver the goods REFINEMENT?2
o The buyer may terminate the contract CONDITION

We now have the required inputs, T and S(T), for Sym-
boleoNLP. These are toy examples, but we have completed
this process on 5 real contracts in varying domains. Given T
and S(T), the contract author can enter refinements to T that
are based on the CNL. SymboleoNLP will then automatically
convert these refinements to their corresponding Symboleo op-
erations. The result is a more specific Symboleo specification
that can be used to generate a smart contract [3[]. Our main
requirement for the tool is therefore the mapping from a CNL
refinement into the required Symboleo operation.

B. Design of SymboleoNLP

SymboleoNLP is written in Python, since it has support for
many popular and powerful NLP libraries, such as nltk and
SpaCy. It is also an easy-to-learn language, which lowers the
bar for other developers who work on this project. Among
the early decisions we make for our tool is how important
entities are represented in Python, including the Symboleo
specification language, the representation of complex NL
concepts such as events, and also the user input.

Since the user input must adhere to the CNL, we take
a structured approach where we represent the input as a
series of input tokens, where each token corresponds to one
or more words from the CNL. For example, consider the
within TIMESPAN of EVENT pattern. We need a token
representing ‘within’, a token representing a TIMESPAN, a
token representing ‘of’, and a token representing an EVENT.
Some of these tokens are dynamic in the text that they
represent. For example, the ‘within’ token simply corresponds
to the NL word “within”, but the TIMESPAN token can
correspond to phrases like “2 days”, “3 weeks”, etc. The
specific text for the TIMESPAN is entered by the user. Each
pattern will have a set of slots that must be filled with values
from the user. Our example pattern requires a TIMESPAN
and an EVENT. In this way, our pattern-based approach is
reminiscent of frame semantics [17]. The EVENT concept
is especially complex since there are many ways to specify
events in NL. Our tool can only represent simplified forms of
events, which we acknowledge as a limitation.

With all of our patterns defined as lists of these tokens,
the next goal is to provide a means for the user to enter
only these valid sets of tokens. We want to specify a data
structure that facilitates predictable and controlled selection
of these tokens. Since the tokens are sequentially linked to
each other in our defined patterns, we use a directed graph.
We represent our tokens as nodes, which are connected based
on the pattern sequences; a node will have as its children any
tokens that follow it in any of our patterns. The user will
traverse the graph, selecting from nodes that are the children of
the previously selected node. Once they reach a leaf, they will
have generated a valid CNL pattern, which will correspond to
a formal operation on our Symboleo contract. Since the user
will always begin with empty input, this is a rooted graph, a
subset of which is shown in Fig. 2|

C. Example Walkthrough

We now provide an illustrative example. The user is pre-
sented with the sentence: The seller shall deliver the goods
to the buyer [P1]. The user refines this obligation by filling
out the P/ parameter. SymboleoNLP guides the user through
the process of selecting a valid NL pattern by traversing
the graph. Beginning from the ROOT, the user can choose
any of the children of the ROOT node as the first token
(IF, WITHIN, BEFORE, BETWEEN). The user chooses the
WITHIN token, which corresponds to the text ‘within’. As
the only child of this node is the TIMESPAN node, it is
automatically selected for the user. This node requires input
from the user, who is prompted for a valid timespan. The user
enters ‘2 weeks’, which is verified as valid. The TIMESPAN
token corresponds to the text entered by the user plus the
‘of” keyword. Our text at this point is ‘within 2 weeks
of’. The children of the TIMESPAN node include EVENT
and DATE. The user selects the EVENT node. The user is
prompted to refine the specific event by further traversing the
graph. The result is the following set of nodes, with their
corresponding text values in parentheses: ROOT, WITHIN
(within), TIMESPAN (2 weeks of), EVENT, OBLIGA-
TION_EVENT, OBLIGATION_EVENT_NAME (payment),
OBLIGATION_EVENT_ACTION (being completed). The
processing takes care of rendering the text in a grammatically
correct format: ‘within 2 weeks of payment being completed’.

The structured CNL must then be mapped to the proper
Symboleo operation. This is done by first determining
the pattern expressed by the CNL (in this case, the
within TIMESPAN of EVENT pattern). This pattern is then
hooked up to a special handler function, which will
process the TIMESPAN and EVENT arguments on the
pattern into the refined Symboleo: O (seller, buyer,
t, HappensBefore(delivery, Date.add(2, weeks,
payment))). This mapping process is straightforward, but
there is potential to incorporate various NLP tools as it grows
to handle more complex event specifications. The tool is
evaluated using a full suite of unit tests as well as integration
tests which validate its operation on a set of real contracts.

)

IWITHINI

<Event>

[BEFORE] |BETWEEN|

o]

<Other Event>
<Contract event>|

v
|<Ob/Pow event>I

payment

v

Termination Suspension

Activation disclosure Violated

Suspension termination Fulfilled

Fig. 2. Diagram showing the rooted graph structure

We have shown a straightforward example of SymboleoNLP
to illustrate the customization process. In the bigger picture,
contracts are complex and varied, presenting many challenges
to this approach. Much of the legalese contained in contracts
takes the form of long sentences, which are generally harder to
formalize. Ambiguities in NL are also challenging and can be
present in the form of attachment ambiguities or coreferences.
The CNL patterns defined here for the application are based on
patterns found in the CUAD contract dataset [[19]]. While this
dataset covers a wide variety of contracts in many domains,
any bias in that dataset could be carried over to our work. For
example, the application may have trouble scaling to a specific
domain that was not represented in the dataset. The code for
the tool can be found online [

V. CONCLUSION

In this paper, we have presented preliminary answers to
our research questions, which aim to find valid CNL patterns
to use as parameters in a template-based contract customiza-
tion tool. For RQ1, we defined broad and refined concepts
with respect to Symboleo to decide which operations serve
to refine a contract. RQ2 focused on finding semantic NL
alignment with these Symboleo operations, and we found that
the linguistic adjunct aligns well with our needs, although it
is an open-ended category. RQ3 builds on RQ2 by analyzing
real contracts to determine the most relevant patterns that will
make up our CNL. We validate the CNL patterns by manually
constructing Symboleo specifications from real contracts and
applying the various refinement operations. SymboleoNLP is
a tool that allows a contract author to refine a broad NL
contract template using the CNL, and automatically generates
a corresponding refined Symboleo specification, which can be
used to generate a smart contract for different applications.

Zhttps://github.com/reganmeloche/symboleo-nlp

The tool is currently a proof of concept, and future work will
involve validating the utility of the tool in real world contract
authoring scenarios and exploring use cases beyond Symboleo.
Currently our CNL only covers contract refinements, but
there is potential to expand it to incorporate broader contract
elements (for example, entire obligations) and work towards
fully automated formalization. This may involve integration
with other NLP techniques and libraries.

REFERENCES

[1] V. Dwivedi, V. Pattanaik, V. Deval, A. Dixit, A. Norta, and D. Draheim,
“Legally enforceable smart-contract languages: A systematic literature
review,” ACM Comput. Surv., vol. 54, no. 5, jun 2021.

[2] M. Soavi, N. Zeni, J. Mylopoulos, and L. Mich, “From legal contracts to
formal specifications: A systematic literature review,” SN Comput. Sci.,
vol. 3, no. 5, p. 345, 2022.

[3] A. Parvizimosaed, S. Sharifi, D. Amyot, L. Logrippo, M. Roveri,
A. Rasti, A. Roudak, and J. Mylopoulos, “Specification and analysis
of legal contracts with Symboleo,” Softw. Syst. Model., vol. 21, no. 6,
pp. 2395-2427, 2022.

[4] M. Shanahan, The Event Calculus Explained. Springer, 1999, pp. 409—
430.

[5] M. Finnegan, “From a natural language to a controlled contract lan-
guage,” Jusletter IT May, vol. 24, 2018.

[6] G.J. Pace and M. Rosner, “A controlled language for the specification of
contracts,” in Controlled Natural Language, N. E. Fuchs, Ed. Springer,
2010, pp. 226-245.

[7]1 T. Tateishi, S. Yoshihama, N. Sato, and S. Saito, “Automatic smart
contract generation using controlled natural language and template,” IBM
J. Res. Dev, vol. 63, no. 2/3, pp. 6:1-6:12, 2019.

[8] A. Wyner and W. Peters, “On rule extraction from regulations,” in Legal
knowledge and information systems. 10S Press, 2011, pp. 113-122.

[9] T. Breaux and A. Anton, “Analyzing goal semantics for rights, per-
missions, and obligations,” in 13th IEEE International Conference on
Requirements Engineering (RE’05), 2005, pp. 177-186.

[10] A. Sleimi, N. Sannier, M. Sabetzadeh, L. Briand, and J. Dann, “Au-
tomated extraction of semantic legal metadata using natural language
processing,” in 2018 IEEE 26th International Requirements Engineering
Conference (RE), 2018, pp. 124-135.

[11] R. Funaki, Y. Nagata, K. Suenaga, and S. Mori, “A contract corpus
for recognizing rights and obligations,” in Proceedings of the Twelfth
Language Resources and Evaluation Conference, May 2020, pp. 2045—
2053. [Online]. Available: https://aclanthology.org/2020.lrec-1.251

[12] 1. Chalkidis, I. Androutsopoulos, and A. Michos, “Obligation and
prohibition extraction using hierarchical RNNs,” in 56th Annual Meeting
of the Association for Computational Linguistics, vol. 2, Jul. 2018, pp.
254-259. [Online]. Available: https://aclanthology.org/P18-2041

[13] A. Sainani, P. R. Anish, V. Joshi, and S. Ghaisas, “Extracting and
classifying requirements from software engineering contracts,” in 2020
IEEE 28th International Requirements Engineering Conference (RE),
2020, pp. 147-157.

[14] 1. Buzhinsky, “Formalization of natural language requirements into
temporal logics: a survey,” in 2019 IEEE 17th International Conference
on Industrial Informatics (INDIN), vol. 1, 2019, pp. 400-406.

[15] C.loannou and L. Michael, “Knowledge-based translation of natural lan-
guage into symbolic form,” in 7th Linguistic and Cognitive Approaches
To Dialog Agents Workshop-LaCATODA, 2021, pp. 24-32.

[16] M. Navas-Loro, K. Satoh, and V. Rodriguez-Doncel, “Contractframes:
Bridging the gap between natural language and logics in contract law,”
in New Frontiers in Artificial Intelligence. Springer, 2019, pp. 101-114.

[17] C. J. Fillmore and C. Baker, “313 A Frames Approach to Semantic
Analysis,” in The Oxford Handbook of Linguistic Analysis. ~ Oxford
University Press, 12 2009.

[18] J. Lyons, Introduction to theoretical linguistics.
Press, 1968, vol. 510.

[19] D. Hendrycks, C. Burns, A. Chen, and S. Ball, “CUAD: an
expert-annotated NLP dataset for legal contract review,” CoRR, vol.
abs/2103.06268, 2021.

Cambridge University

https://github.com/reganmeloche/symboleo-nlp
https://aclanthology.org/2020.lrec-1.251
https://aclanthology.org/P18-2041

	Introduction
	Motivation
	Problem Statement

	Background
	Symboleo
	Related Work

	Research Questions (RQs) and Methodology
	RQ1: Customization Operations in Symboleo
	RQ2: General Semantic Correspondence
	RQ3: CNL based on real contracts

	SymboleoNLP
	Manual Preprocessing
	Design of SymboleoNLP
	Example Walkthrough

	Conclusion
	References

