
Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

require-
ifferent
es can
d visu-

n,
te
 Contest.

e

sirable
ication

in the
the so-
ing
s in the
an be
 fulfil
o avoid,
 one of

e proto-
arios
ss

l

stems
][22]
ms.

e also
-agent
n of
Use Case Maps for the Design
and the Validation of Interaction-Free

Telephony Features

Daniel Amyot
High Level Design and Prototyping of Agent Systems

Department of Systems and Computer Engineering, Carleton University
email: damyot@csi.uottawa.ca

Abstract. Functional scenarios describing system views, uses, or services are a common way of capturing
ments of telecommunication systems. However, integrating individual descriptions of telephony features in d
ways may result in different kinds of unexpected or undesirable interactions. Appropriate integration techniqu
hopefully lead to fewer such interactions. In this report, we first present how a collection of features integrate
ally through causal scenarios called Use Case Maps (UCMs) may help generating high-level LOTOS specifications.
Integrating UCMs together helps avoiding trivial and artificial interactions before any prototype is generated. The
we use the powerful testing concepts and tools of LOTOS to detect remaining undesirable interactions. To illustra
these concepts, we capture and validate a subset of the telephony features from the First Feature Interaction
We discuss the results of this experiment, as well as strengths and weaknesses of our methodology.

Key words. Causal scenario, feature interaction, integration, LOTOS, specification-level validation, testing, Use Cas
Maps.

1 INTRODUCTION

A feature is a collection of services packaged together that can be commercialized. Unde
interactions between features still represent nowadays a complex problem that telecommun
systems designers must face [18][31], and this situation is likely to remain challenging
future. By definition, features interact with each other and with the basic system services,
called Plain Old Telephone System (POTS). However, a feature might be prevented from work
properly according to its intent because of some unexpected interactions with other feature
system. This is at the heart of the feature interaction (FI) problem. Similar challenges c
found in the agent community where agent goals might be conflicting and impossible to
simultaneously [16][24]. For the last decade, many partial solutions have been suggested t
detect, analyze, and solve feature interactions at design time and run time. Our proposal is
avoidance at design time, and one of detection at design time with the help of an executabl
type. Avoidance of trivial interactions is achieved through the visual integration of scen
expressed with the Use Case Map (UCM) notation [10][17]. Detection is done by using a proce
algebra, the Language Of Temporal Ordering Specification (LOTOS) [26] in our case, and forma
V&V techniques.

LOTOS has been used for years for the specification and validation of telephony sy
([7][19][20][23]) and for the detection of interactions between telephony features ([21
[31][32][38][39][40][41]). Research is still ongoing as to its application to real-size proble
Use cases were utilized for the analysis of interactions in [33]. More recently, UCMs hav
been used to tackle the problems of feature interactions and resolution of conflicts in multi
systems ([11][12][13][14][15][16]). The UCM notation helps designers with the visualizatio
12 November, 1998 23:12 Introduction p. 1

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

where
er of

 of the

ature
pproach
raction
red and

 some
e use

 other

oice for
oaches

are free
ch dis-
portant
totyp-
sign.
Chisel
phase is
 the
 in the
problematic situations and their avoidance at a high level of abstraction. An approach
UCMs are transformed into LOTOS specifications and test cases has been applied to a numb
examples in the areas of distributed systems and telephony ([2][3][4][5][6]).

With such knowledge and experience available, a methodology that would make use
best features of UCMs (e.g., visual description and integration of features) and LOTOS (e.g., pow-
erful theory and tools for validation and verification) for the avoidance and detection of fe
interactions in telephony systems seems a natural evolution. Herein, we use such an a
(Section 2), and we illustrate it using some of the features described in the first feature inte
contest [25]. We present UCMs for selected features in Section 3. These UCMs were captu
integrated by Petriu in [35]. We discuss the synthesis and the validation of the LOTOS specification
in the following section (Section 4). When integrating UCM scenarios (features) together,
trivial interactions can be avoided. However, for the remaining undesirable interactions, w
traditional LOTOS techniques and tools (Section 5). We discuss this methodology with three
approaches in Section 6 and then provide general conclusions.

2 METHODOLOGY

2.1 Rigorous Approach Based on Scenarios

We believe that the usage of UCMs in a scenario-based approach represents a judicious ch
the description and the design of reactive and distributed systems. Scenarios fit well in appr
that intend to bridge the gap between (informal) requirements and the first system design.

Figure 1 Scenario-Based Approach Used in this Experiment

Figure 1 introduces a scenario-based approach for designing telephony systems that
of undesirable feature interactions. It is adapted from a more generic and rigorous approa
cussed in [4][6]. We observed several advantages to this rigorous approach, the most im
being related to the separation of the functionalities from the underlying structure, fast pro
ing, test cases generation, and documentation of the requirements and of the high-level de

In our case study, the start point is a collection of individual features described as
diagrams [1]. Each feature is then captured as a Use Case Map (1). In the literature, this
often referred to as scenario elicitation, although in our case the requirements were already in
form of operational scenarios. The responsibilities in the UCMs are bound to components

Original
LOTOS Spec.

Scenarios
(UCMs)

LOTOS Spec
with Probes

LOTOS Test
Cases for

Individual F.

LOT2PROBE (6)

Spec with
Test Cases

LTSs with
Internal
Events

Results and
Statictics

Testing (8)

Statistics (9)

Generation (4)

Synthesis (3)

Capture (1)
(LOLA)

Individual
Features
(Chisel)

Global
UCM

Integration (2)

LOTOS Test
Cases for
Pairs of F.

Derivation (5)

Addition (7)
12 November, 1998 23:12 Methodology p. 2

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

 then
rnative,
n and

ailable,
).

sel dia-
, when
for indi-
grated

 specifi-

ture of
as been
hich we

istics (9)

t work
sized
atter

 of the
 is a

ecifica-
e spec-
.

pecifica-
 was

nd/or
w fea-
underlying structure, which is common for all scenarios in this specific example. UCMs can
be integrated together to produce a global UCM that covers all cases (2). Sequential, alte
and parallel composition1 are used as integration operators, as well as more subtle abstractio
composition mechanisms that make use of stubs and plug-ins. Once the global UCM is av
it can be used to synthesize a LOTOS specification, which becomes the executable prototype (3

Concurrently with these steps, validation test cases can be generated from the Chi
grams (4) to ensure that the specification conforms to POTS and to each individual feature
only one is active at a time. We can create further test cases, built on top of the test cases
vidual features, in order to detect undesirable interactions between pairs of features inte
according to the global UCM (5). All test cases are described in the same language as the
cation, i.e., LOTOS.

Probes can be inserted in the specification in order to measure how much of the struc
the specification is covered by the test suite and to ensure that the whole specification h
exercised by at least one test case (6). The new specification then contains the probes, to w
add the test cases for individual features and those for pairs of features (7).

Once the specification has been tested against all the test cases (8), results and stat
can be obtained from the resulting trees (Labeled Transition Systems — LTSs). One of the follow-
ing verdicts will occur:

• At least one test case from the individual feature set has failed. Since it does no
properly on its own, the specification of this feature has been incorrectly synthe
from the global UCM, or this UCM does not conform to the Chisel diagram. In the l
case, the capture or the integration of this scenario might be the cause.

• At least one test case from the feature interaction set has failed. The specification
two features involved is incorrect w.r.t. their integration in the global UCM, or there
feature interaction, i.e., an unforeseen and undesirable result.

• At least one probe has not been visited by the entire test suite. Some part of the sp
tion is unreachable, or the test suite is incomplete and does not cover a case that th
ification considers, or the specification covers a case that should not be considered

• The test suite has passed successfully, and all probes have been covered. The s
tion conforms to the requirements (Chisel diagrams), and no feature interaction
detected. We then have a good level of confidence in the global UCM, in the LOTOS spec-
ification, and in the test suite.

Following the verdict, modifications may be required to the UCMs, to the test cases, a
to the specification. In fact, the approach of Figure 1 is iterative. It is also incremental as ne
tures may be integrated at a later time.

1. Composition is a much overloaded term. In this report, we use integration when we refer to the process of merging
several UCM scenarios, while we use composition to represent the different constructs used in such integration. Com-
position refers also to the way plugins are linked together in a stub, and to the way LOTOS concurrent processes inter-
act with each other.
12 November, 1998 23:12 Methodology p. 3

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

ibuted

ey can
d could
l of
 specific
e the

er

pdate
e

allo-
rk
tween

g the
nd/or to
merged

boxes
nd the
terfaces.

s A, B,
rations
es are
3 USE CASE MAPS FOR FEATURES

3.1 Use Case Maps in a Nutshell

UCMs are a visual notation we utilize for capturing the requirements of reactive and distr
systems. They describe scenarios in terms of causal relationships between responsibilities. UCMs
put emphasis on the most relevant, interesting, and critical functionalities of the system. Th
have internal activities as well as external ones. Usually, UCMs are abstract (generic), an
include multiple traces (called routes). With UCMs, scenarios are expressed above the leve
messages exchanged between components, hence they are not necessarily bound to a
underlying structure. They provide a path-centric view of system functionalities and improv
level of reusability of scenarios.

Figure 2 shows a simple UCM where a user (U1) tries to establish a connection with anoth
user (U2) through some network. U1 first sends a connection request (R) to the network. The latter
verifies (V) whether or not the called party is free. If she is, then there will be some status u
(F) and a ring signal (S) will be activated on U2’s side. Otherwise, the network status will b
updated differently (O) and a message stating that U2 is not available (M) will be sent back to U1.

Figure 2 Simple Connection UCM

A scenario starts with a triggering event or a precondition (filled circle labeled R) and ends
with one or more resulting events or postconditions (bars), in our case S and M. Intermediate
responsibilities (V, F, O) have been activated along the way. In this picture, the activities are
cated to abstract components (U1, U2, Network). The notation allows for alternative paths (the fo
in the figure), concurrent paths, and for explicit synchronous/asynchronous interactions be
paths. For a detailed description of the notation, refer to [17].

The construction of a UCM can be done in many ways. Usually, one starts by identifyin
activities that are to be performed by the system. They can then be allocated to scenarios a
components. Components can be discovered along the way. Eventually, the two views are
to form a bound UCM, like the one in Figure 2.

3.2 Overview of the FI Contest Content

In the FI contest description (see [25]), a network was modeled as a collection of black
communicating with each other via defined interfaces. Definitions for the POTS service a
twelve features were given as sequences of (synchronous) events taking place on these in
Interactions were to be detected between pairs of features.

Network Structure
The left half of Figure 3 shows that the network consists of end-user equipment (telephone
and C), a switch, a Service Control Point (SCP) that processes IN features [28], an Ope
System (OS) that does billing, and a global clock (not on the figure). The network interfac

U1 U2Network
VR

O

F
S

M

12 November, 1998 23:12 Use Case Maps for Features p. 4

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

g); the
rface to

hich
S were
ponents
as they
ctures.

mainly

ty’s
n idle

ut-
e.
hen
sis by

ar

 Line
rge
ll) and
ure as

ents for
rkshop

 these
s to a

y used
the interface between a user and the switch (on which the telephone is used for signalin
interface between the switch and the SCP (on which IN messages are used); and the inte
the billing system (for tracking the beginning and end of each call).

Figure 3 The Network and the UCM Structure

This network was transformed in an abstract structure (right half of Figure 3) on w
UCMs that capture the Chisel diagrams are to be drawn. The switch, the SCP, and the O
mapped onto abstract components. The phones were split into two sets of (replicated) com
based on the user’s role in a call, i.e., Originator or Terminator. The interfaces were left out
are usually part of a more refined level of abstraction than the one addressed by UCM stru

Features
On top of POTS, the first phase of the contest described ten features, but this report
focuses on four of them:

• Calling Number Delivery (CND): allows the called telephone to receive a calling par
Directory Number and the date and time. The number is delivered whenever a
called party receives the Ringing event.

• IN Freephone Billing (INFB): allows the subscriber to pay for incoming calls. Call ro
ing, although normally part of this feature, has been dissociated into another featur

• IN Teen Line (INTL): restricts outgoing calls based on the time of day (i.e., hours w
homework should be the primary activity). This can be overridden on a per-call ba
anyone with the proper identity code.

• Terminating Call Screening (TCS): restricts incoming calls. Calls from lines that appe
on a screening list are redirected to a vague but polite message.

The six remaining features were IN Freephone Routing (INFR), Call Forwarding Busy
(CFBL), Three-way Calling (3WC), IN Call Forwarding (INCF), Call Waiting (CW), and Cha
Call (CC). The second phase contained two additional features, namely Cellular pays (Ce
Return Call (RC). The UCMs developed in this phase considered a third additional feat
well, namely Automatic Call Back (ACB) [35].

3.3 UCM Capture from Chisel Diagrams

This section discusses the step (1) in Figure 1. Chisel diagrams are used to define requirem
communications services and service features. Since its design originated at a usability wo
involving practitioners, the language Chisel is intended to reflect current practice for writing
requirements [1]. The authors of this language claim that it is unambiguous, that it applie
variety of network technologies, and that it has a sound basis for translation to commonl

Switch

SCP OS

A

B

C Switch

SCP OS

Originator Terminator
12 November, 1998 23:12 Use Case Maps for Features p. 5

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

muni-
service

nts on
e has a

e multi-
ences to
 values
 will

 since
ios to be
re often

rk com-
nents.
ey will

 the sys-
re of
atus of
ounce-
formal software specification languages. The purpose of Chisel diagrams is to improve com
cation between the diverse people and organizations involved in the telecommunications
creation process.

The Chisel diagram for INTL is given in Figure 4. Sequences and alternatives of eve
the network interfaces are supplemented by variables and conditions. Each node in the tre
unique identifier, an events name, and a list of parameters. Nodes are also allowed to hav
ple events, separated by |||, that can occur in any order. Some leaves are followed by refer
a specific node in the POTS Chisel diagram, and variables in that diagram are assigned
from the INTL diagram. We will not dwell further in the explanation of Chisel diagrams, nor
discuss the meaning and the correctness of the INTL feature in Figure 4.

Usually, requirements do not come in such formal and operational form. In our case,
these Chisel diagrams are at a somewhat lower level of abstraction than UCMs, the scenar
captured will be more abstract. This is generally not the case because requirements a
described in prose form, i.e., in an informal and non-operational form.

Figure 4 Chisel Diagram for IN Teen Line (INTL)

The Chisel diagrams are based on events that are shared between entities (the netwo
ponents), whereas UCMs are described in terms of responsibilities performed by compo
This first issue has been resolved by assigning these events to the component in which th
most likely be observed. Hence, events that are unobservable by the user become local to
tem components (Switch, SCP, OS). Figure 5 shows a partial UCM for the INTL featu
Figure 4. Some events become responsibilities local to the switch (like setting the busy st
the originator), others become responsibilities that the user can observe (like getting an ann

13 On-hook A

4 Announce A AskForPIN

1 Off-hook A

3 Response SEND_TO_RESOURCE A AskForPIN

9 Announce A InvalidPIN ||| Resource A -

6 Resource A P

2 Trigger ORIGINATION_ATTEMPT A A - Time

12 On-hook A

5 Dial A P

TeenTime A Time1 Time2 && Time1 <= Time < Time2

P = TeenPIN A ~(P = TeenPIN A)

TeenTime A Time1 Time2 && ~(Time1 <= Time < Time2)

POTS A<-A B<-B 2

POTS A<-A B<-B 2

8 Response SEND_TO_RESOURCE A InvalidPIN

11 Response DISCONNECT A -

13 Response CONTINUE A A -

Node with

Reference to
another Chisel
diagram

Condition

one event

Node with
two concurrent
events
12 November, 1998 23:12 Use Case Maps for Features p. 6

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

onsi-
They are
ibilities
on (like

er and

ecause
ich we
ing the
t only one
ons in
grams,
similar
nents
iented

(itali-
otation,
ment “Ask for PIN”), and others remain events that the user can trigger (like off-hook). Resp
bilities are marked with a cross, and event names are associated to start and end points.
bound to their respective network components (see Figure 3). Obviously, some respons
will be refined as events or messages between components at a lower level of abstracti
Chisel diagrams, Message Sequence Charts (MSCs) [29], ObjecTime design, or LOTOS specifica-
tions), but UCMs delay this kind of decision to a next refinement stage, possibly with anoth
more appropriate notation.

Resources and responses (on the SCP-Switch interface) were not put on the UCM b
they are basically messages and they are hidden from the user’s point of view (from wh
describe the scenarios). However, their existence is somewhat implied by the path cross
SCP-Switch boundary on several occasions. Resource and response messages represen
way to implement the causal relationship shown in the UCM and the checking of the conditi
the SCP. This is in fact the refinement chosen by the producers of the original Chisel dia
which are more detailed (and hence less loose) than UCMs. UCMs provide a description
to a service specification in the OSI model, where we can specify abstract actions and compo
that are not always visible to the user, but without committing too soon to an implement-or
solution.

Note also that the conditions are simplified to the point where they become simple
cized) labels on the paths. The conditions themselves should be expressed with another n
more suitable for dealing with data.

Figure 5 Partial UCM for INTL

Switch

SCP OS

Orig Term

... continues with POTS

off-hook reject

dialdial PIN

DT
stop

busy
Orig

Unre
str

ict
re

dT
im

e

RestrictredTim
e

ValidPIN
InvalidPIN

ask for
PIN

invalid
PIN DT

- DT is Dial Tone
- PIN is Personnal Identification

Number
12 November, 1998 23:12 Use Case Maps for Features p. 7

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

xt of
ort as
S for
s. One

oints in
 discon-
t
p. Its

an also
t

nflicts
 between
hat are
 to inte-
n also
th seg-
which
o indi-

ilarly to

 enu-

M are
,
as an

cted at
ps that
This UCM is incomplete and focuses on the behaviour specific to INTL in the conte
POTS. It then continues just like the POTS UCM would (although it is not shown in this rep
an individual UCM). The INTL feature, as defined in the contest description, refers to POT
common behaviour. This also means that disconnections need to be managed by our UCM
of the assumptions in the contest was that a hang-up could occur only at some specific p
the scenarios. These occur where end points (bars) are inserted in the UCM. Therefore, a
nection could happen instead of dial PIN or dial , or after reject . Hence, a disconnection UCM, no
shown here, is implicitly composed with the INTL UCM at each of these locations on the ma
triggering would prevent the other events to occur and terminate the call connection(s).

3.4 Integration of UCM Scenarios

Individual scenarios are useful for understanding the behaviour of one feature, but they c
be integrated together to form a global UCM (step (2) in Figure 1). The assumption here is tha
performing the integration at this level of abstraction provides early insights in possible co
between features expressed as scenarios. Integration helps to ensure early consistency
individual maps. For instance, events and responsibilities that are not labeled correctly, t
omitted, or that are not at the same level of abstraction or in the same order become hard
grate. Hence, they indicate that some individual maps might need to be fixed. Integratio
helps to avoid ambiguous situations, the most common of which is non-determinism. A pa
ment that is a prefix to two different scenarios might imply the need for a way to decide
alternative to take in a global scenario. Merging several path segments together might als
cate that variables and data are required to distinguish between the different cases, sim
multiplexers in circuit design. Many such design decisions can be made at this level.

Root Map
The following root map and plugin maps result from the integration of the thirteen features
merated in Section 3.2. This integration was done with the UCM Navigator tool [34], a UCM edi-
tor developed in our research group, which outputs the next few figures. The root map (Figure 6)
represents the global context in which sub-maps are plugged in. The diamonds in this UC
called stubs and they serve as placeholders for plugin maps. The diamonds with filled lines (e.g.
post-dial) are static stubs and they contain only one plugin map. They are basically used
abstraction mechanism and for path refinement. The diamonds with dashed lines (e.g., pre-dial) are
dynamic stubs and they may contain several plugin maps from which one or more are sele
run-time depending on the satisfyability of their associated preconditions. Plugins are ma
can also contain their own stubs.
12 November, 1998 23:12 Use Case Maps for Features p. 8

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

 stubs.
he stub
n map.

ce, the

d much
Figure 6 Root Map for Global UCM

Binding of Plugins to Stubs
One constructs a complete scenario by recursively selecting appropriate plugins for the
Many figures in this section present plugins created for the FI contest. They are bound to t
by associating the entry and exit points of the stub to the start and end points of the plugi
The first stub in the root map, pre-dial , one entry point (IN1), and two exit points (OUT1, OUT2),
as shown in Figure 7.

Figure 7 Entry and Exit Points on a Stub (pre-dial)

Each stub has its set of entry and exit points that may be bound to plugins. For instan
default plugin for pre-dial is basically a straight path, whose start point is POTS and end point is
dial , and which does nothing but connect IN1 to OUT1. Hence, the binding is {(POTS, IN1), (dial ,
OUT1)}. OUT2 remains unbound, and therefore this path (leading to reject in the root map) will
never be followed when the default plugin is selected. This same stub has a second (an
more complex) plugin, illustrated in Figure 8.

Switch

Orig Term

SCP OS

off-hook
-

dial

rej.

pre-dial
post-dial

busyrej.

billed

orig-connected

billing

term-connected

DT

stop DT

BT
rej. message

busy Orig

IN1

OUT2

OUT1

pre-dial
12 November, 1998 23:12 Use Case Maps for Features p. 9

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

c-
n 3.3).

gin to
ctable.

hin the
gether.
 of the

ugin
re 5.

INTL,
 will
Figure 8 INTL Plugin for Pre-dial Stub in the Root Map1

Its binding is {(INTL, IN1), (dial , OUT1), (rejected , OUT2)}. With this plugin, it is possible to
reach the second exit point that leads to a reject end point (itself leading to an eventual disconne
tion due to the implicit composition at each end point in the root map, as discussed in Sectio

The INTL plugin of Figure 8 differs in other ways from the default plugin for pre-dial . Their
preconditions are mutually exclusive, i.e., the user must be subscribed to INTL for this plu
be selectable, and the user must not be subscribed to INTL for the default plugin to be sele
Hence, the two plugins can never be active simultaneously. This alternate composition wit
stub results from the nature of the individual features and from how they were integrated to
In essence, INTL is the only feature that deviates from all the others between the update
busy status (busyOrig) and the dial tone (DT).

When a user is subscribed to INTL only, the flattening of the root map with the INTL pl
in the pre-dial stub and default plugins in the other stubs results in the individual UCM of Figu

Other Relevant Plugins
To obtain a complete picture of the system with the four features that interest us (CND,
INFB, and TCS), we now give an overview of the remaining appropriate plugins. Bindings
not be discussed unless they are not obvious from the figure.

1. The empty circles on the paths are empty points and are used for path transformations in the UCM Navigator. They are
not part of the UCM notation as such.

Switch

Orig Term

SCP OS

INTL

-

RestrictedTime

dial PIN

dial

UnrestrictedTime

InvalidPIN

rejected

ValidPIN

ask for PIN
12 November, 1998 23:12 Use Case Maps for Features p. 10

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

h is
is
 Chisel
 of our
ance, an
ting the

ehav-

 is
The post-dial static stub in the root map contains by definition only one plugin, whic
shown in Figure 9 (where R means Ringing, and RR stands for the remote AudibleRinging). In th
UCM, several path segments are concurrent, as explicitly stated by the ||| operator in the
diagrams. Some slight differences were introduced at this point due to the distributed nature
system that cannot be so easily abstracted from with paths that cross components. For inst
RR could occur at the originator after the terminator has picked up the phone, thus represen
fact that the system might take time to consume the off-hook event before deciding to stop the R

and RR activities. This behaviour, which might reflect the real system better, contains the b
iour described in the Chisel diagrams, but also allows for other global scenarios.

Figure 9 Plugin for Post-dial Static Stub in the Root Map

The default plugin for the process-call stub of Figure 9 is illustrated in Figure 10 (a). This
the point where the system checks whether or not the terminator side is busy. If so, the busy path is
selected. Otherwise, the idle path is selected and the terminator status is set to busy (busyTerm).
The binding is {(POTS, IN1), (idle , OUT1), (busy , OUT3)}.

Figure 10 Default Plugin for Process-call Stub in Figure 9

Switch

Orig Term

call
orig-connected

process-call

rej.busy

-
off-hook

billing

term-connected

display

R

stop R

stop RR RR

set Last-Incoming

call_X

busycall_X

IN1

OUT2

OUT1

process-call

OUT3

OUT4

(a) Default Plugin (b) Stub Entry/Exit Points

Switch

POTS
idle

busy

busy Term
12 November, 1998 23:12 Use Case Maps for Features p. 11

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

imply
rty. The

ecks
t over-
is case

e fea-
oint to

termi-
one in
The INFB plugin (Figure 11) does not override the default one, but occurs before. It s
analyzes some IN information in the SCP and then sets the called party as the paying pa
binding is {(INFB, IN1), (callB , OUT4)}.

Figure 11 INFB Plugin for Process-call Stub in Figure 9

The TCS plugin of Figure 12 is similar in nature to the default one, except that it first ch
whether or not the originator party is on the screening list. If so, then the call is rejected. I
rides the default plugin when the terminator party has subscribed to TCS. The binding in th
is {(TCS, IN1), (idle , OUT1), (TCS-reject , OUT2), (busy , OUT3)}.

Figure 12 TCS Plugin for Process-call Stub in Figure 9

The busy stub in Figure 9 has one plugin that concerns us, the other being related to th
tures not discussed in this report. The default plugin in this case simply connects the entry p
the path leading to the busy event. The last stub in this figure, display , also has a straightforward
default plugin that does nothing but connecting the entry point to the exit point. When the
nator side has CND active, the plugin shown in Figure 13 is used instead of the default
order for the originator’s number/name to be displayed.

Figure 13 CND Plugin for Display Stub in Figure 9

Switch

SCP

INFB

IN analyze

call B

Switch

TCS

idle

on-TCS

TCS reject

not-on-TCS

busy

busy Term

Term

CND
continue

display last-incoming
12 November, 1998 23:12 Use Case Maps for Features p. 12

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

gins
 termi-
(

r arti-
INTL,
ination
of three

 some-
ne stub

 used
 fea-

to
 a lim-
hat they
cified
ler. The
s, and it
ver, the
quate

-

hould
n their
inator,
 be an
 tele-

ad to a
tion

ow the
nually
Finally, the billing stub in the root map (Figure 6) contains two mutually exclusive plu
selected according to whether or not the terminator has subscribed to INFB. If so, then the
nator party (also referred as B) is charged with the incoming call, otherwise the originator A)
pays.

Figure 14 Default and INFB Plugins for Billing Stub in Root Map

3.5 Avoiding Feature Interactions

We claim that an integration of scenarios at the level of UCMs helps to avoid some trivial o
ficial interactions between features. For instance, many potential interactions between
INFB (or TCS), and CND are avoided because the features in each possible pairwise comb
are allowed to proceed independently in the map. They are integrated using a sequence
different stubs that encapsulate the features from their environment.

Important design decisions still need to be made at integration and composition time,
thing that cannot be easily automated. For example, interactions between features in o
(e.g., INFB and TCS) are still possible, depending on the composition/decision mechanism
within the stub (process-call in our case). Maps with stubs show how localized the impact of a
ture can be. They can be represented by only one plugin (INTL in pre-dial), or by several plugins
along one or many paths (INFB in process-call and billing). This helps focusing on issues related
how a plugin (i.e., dynamic behaviour) is selected in one or more dynamic stubs. Since only
ited number of smaller UCMs have to be considered in a stub, it becomes easier to check t
have mutually exclusive but complete preconditions (to avoid non-determinism and unspe
behaviour), or that priorities need to be established. Hence, the design decisions are simp
integration becomes an interesting and useful step in a design process that includes UCM
cannot be as trivial as the composition of states suggested by the Chisel approach. Howe
composition of plugins in a stub should not be done at the UCM level, which is not an ade
notation for such details. A more appropriate notation, such as LOTOS or some agent meta-mod
els, should be used instead.

Chisel diagrams specify normal behaviour, but they do not distinguish between what s
be obliged and what should be permitted or even forbidden in a feature. For instance, i
respective Chisel diagrams, CND displays the incoming call and charges the call to the orig
while INFB does not display and charges the call to the terminator. Although this appears to
interaction, it is somewhat artificial since these two features are obviously compatible in
phony systems. That is because CND obliges the display and allows for the terminator to pay (it is
not forbidden), whereas INFB allows the display (it is not forbidden) and obliges the terminator to
pay. Stated like this, these requirements, which are acted upon only at integration time, le
global system without such interactions between CND and INFB. This kind of informa
(modalities on the alternatives) would help to determine what stubs are required and h
default behaviour (POTS) is overridden. In our example, we had to infer this knowledge ma

OS

POTS

billed

LogBegin A B A t

OS

INFB

billed

LogBegin A B B t

(a) Default Plugin (b) INFB Plugin
12 November, 1998 23:12 Use Case Maps for Features p. 13

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

n-
 [7].

tures in

ibuted

nstitute
y using

ls of

odel.
y-step
d exe-
velop-

15,
our of
ion-
 compo-
lf of

ring the
ust then

from our understanding of the intent of these features. A notation like the OPI model (Obligatio
Permission-Interdiction) would make this distinction explicit in the description of a feature
Supplemented with OPI concepts, UCMs could be used to better capture the intent of fea
terms of scenarios, and not in terms of properties as it is usually the case.

4 LOTOS SPECIFICATION

4.1 LOTOS and the Synthesis & Validation Approach in a Nutshell

Overview of LOTOS
For the last decade, we observed that formal methods, such as LOTOS, SDL, MSCs, and Estelle,
have proven their usefulness in capturing descriptions of complex, concurrent, and distr
systems. LOTOS is an algebraic specification language standardized by ISO [26]. Using LOTOS,
the specifier describes a system by defining the temporal relations along the actions that co
the system’s externally observable behavior. Data abstractions can also be described b
Abstract Data Types (ADTs).

LOTOS is powerful at describing and prototyping distributed systems at many leve
abstraction through the use of processes, hiding, parallel composition and multiway synchroniza-
tion. LOTOS is suitable for the integration of behavior and structure in a unique executable m
LOTOS models allow the use of many validation and verification techniques such as step-b
execution (simulation), random walks, testing, expansion, model checking, and goal-oriente
cution. Many tools can be utilized for the automation of these techniques, and several de
ment cycles based on stepwise refinement are available.

Synthesis of Specifications from UCMs
The synthesis of LOTOS specifications, illustrated by our example scenario in Figure

allows for the rapid generation of prototypes that implement UCM scenarios. The behavi
each component is translated into a LOTOS process that preserves the internal causality relat
ships between the responsibilities and events that are part of path segments crossing this
nent (right half of Figure 15). The architecture itself is converted to a structure (left ha
Figure 15) where the processes are composed together through shared communication channels1

(LOTOS gates). The causal relationships between the components are also considered du
construction of the processes. Decisions related to the nature of the message exchanges m
be made and documented.

1. We use the generic term channel to denote a communication link between two entities, not necessarily a SDL channel
(a FIFO queue).
12 November, 1998 23:12 Lotos Specification p. 14

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

ainst the
hes to
ing,

 of the
vents).

ilable.
ents,

t useful
r mod-

veness
nce, in

ph rep-
cifica-
ave to

 flexible
 prop-

es, use
ually in
asily be
idating
able than
Figure 15 Synthesis of a LOTOS Specification from a UCM

LOTOS Validation
Since the synthesis is not automated, it becomes necessary to validate the specification ag
UCMs, which correspond to the (informal) requirements. Four of the most common approac
the validation of a LOTOS specification are simulation, equivalence checking, model check
and functionality-based testing.

Simulation is the step-by-step execution of a specification. The designer takes the role
environment, provides events to the specification, and observes the results (the next e
Although useful for debugging, simulation is probably the weakest validation technique ava

Equivalence checking usually requires a formal representation of (part of) the requirem
seldom available in the early stages of the design process. However, this approach is mos
when checking the conformity of one specification against another, after some refinement o
ifications.

Model checking aims to validate a specification against safety, liveness, or responsi
properties derived from the requirements. These properties can be expressed, for insta
terms of temporal logic or µ-calculus formulas. In the LOTOS world, this technique usually
requires that the specification be expanded into a corresponding model, which is some gra
resentation (labeled transition system, finite state machine, or Kripke structure) of the spe
tion’s semantics. On-the-fly model checking techniques, where the whole model does not h
be generated a priori, exist as well. Often, the languages used to define properties are very
and powerful, yet they can be quite complex; it is a difficult problem to determine whether a
erty really reflects the intents of informal requirements.

Functionality-based testing is concerned with the existence (or the absence) of trac
cases, or scenarios in the specification. These scenarios reflect system functionalities, us
terms of operational or user-centered instances of intended system behaviour. They can e
transformed into black-box test cases that can be composed with the specification for val
the latter against requirements. Test cases are often more manageable and understand

U1 U2Network
VR

O

F S

M

Each component becomes
a process that implements
all the paths that cross it
(possibly from multiple
scenarios).

The structure is
mapped onto a set of
processes composed
through channels or
shared events.

specification Connection[R,V,F,S,O,M] : noexit
(* Abstract Data Types *)
behaviour
 hide Chan1, Chan2 in
 (U1[R,M,Chan1] ||| U2[S,Chan2]
 |[Chan1, Chan2]|
 Network[V,F,O,Chan1, Chan2]
where
 (* Component processes ... *)
endspec (* Connection *)

process Network[V,F,O,Chan1, Chan2] : noexit :=
 Chan1 !U1ToNetwork ! m1; V;
 (
 F; Chan2 !NetworkToU2 ! m2;
 Network[V,F,O,Chan1, Chan2]
 []
 O; Chan1 !NetworkToU1 ! m3;
 Network[V,F,O,Chan1, Chan2]
)
endproc (* Network *)
12 November, 1998 23:12 Lotos Specification p. 15

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

lly less
r exam-

ion of
 just too
ossible
equire-
 proper-
e state

ing,

 strat-
n

ric and
tive of

der
-
ach the

d

ccord-

termin-
, L

l

com-
the high
ssible.
. To do

te-box
l nature

 all com-
properties, and they relate more closely to informal requirements. However, they are usua
powerful and expressive than liveness or safety properties expressed in temporal logic. Fo
ple, a test suite that passes successfully does not prove the absence of errors in any way.

Among these four approaches, we favored functionality-based testing for the validat
the features and the detection of interactions. Simulation is not sufficient because there are
many global sequences of events possible in the system. Equivalence checking is not p
because we aim to produce a first high-level specification from the scenarios. Since these r
ments are expressed mostly operationally, UCMs and test cases are easier to extract than
ties, so model checking should not be used at first. It could be used later on, however th
explosion problem can hardly be avoided in our case.

LOTOS Testing from UCMs using LOLA
LOLA (LOtos LAboratory) is a state exploration tool with application in simulation, test

and transformation of LOTOS specifications [37]. It has the particularities of accepting Full LOTOS

and of being available on several platforms (including SunOS, Linux and DOS). Its testing
egy is consistent with the Testing Equivalence. The LOTOS testing theory has a test assumptio
stating that the implementation (the specification in our case) communicates in a symmet
synchronous way with external observers, the test processes. There is no notion of initia
actions, and no direction can be associated to a communication.

In the following, we assume that Success is a special gate, not part of the specification un
test, which is used in the test cases to indicate a successful execution. LOLA expands the composi
tion of the specification and a test process in order to analyze whether the executions re
success event or not. Three verdicts can occur after the execution of one test case:

• Must pass: all the possible executions (called test runs) were successful (they reache
the Success event).

• May pass: some executions were successful, some unsuccessful (or inconclusive a
ing to a depth limit).

• Reject: all executions failed to reach Success (they deadlocked or were inconclusive).
In the real world, test cases must be executed more than once when there is non-de

ism in either the test or the implementation (under some fairness assumption). HoweverOLA

avoids this problem because it determines the response of a specification to a test by a complete
state exploration of the following composition [36]:

SpecUnderTest [EventsSpec]
|[EventsSpec ∪ EventsTest]|
Test [EventsTest ∪ { Success }]

LOLA analyzes all the test terminations for all possible evolutions (test runs). The successfu
termination of a test run consists in reaching a state where the termination event (Success) is
offered. A test run does not terminate if a deadlock or internal livelock is reached.

Validation test cases are usually derived from the UCMs in order to detect errors, in
pleteness and inconsistencies. For most distributed systems, including telephony systems,
(if finite) number of global states makes the generation of an exhaustive test suite impo
Hence, it becomes essential to carefully select a small and finite set of validation test cases
so, we can base our strategy is based on the exploration of UCM paths, similarly to whi
approaches used for sequential programs. Depending on the targeted coverage, the critica
of paths, and the cost associated to their traversal, we can choose to explore some paths,
12 November, 1998 23:12 Lotos Specification p. 16

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

tc. For

 set of
an end

is exam-
tion was

es, we
iagrams.
erefore
when
e, vali-
transi-
ntest
ope to
ure

ced in

sis for
terac-

itions. We
bination of paths, some or all the temporal sequences resulting from concurrent paths, e
each selected abstract sequence of events/responsibilities (UCM routes), acceptance test cases
(whose expected verdict is Must pass) and rejection test cases (whose expected verdict is Reject)
can be generated.

Figure 16 Derivation of Validation Test Cases from UCMs

Our sample scenario is reused again in Figure 16, to demonstrate the derivation of a
test cases with the goal of covering all paths in the UCM. Each path linking a start point to
point then becomes an abstract sequence that will be translated into a LOTOS test process (while
considering the observable messages and data types defined during the synthesis). In th
ple, the rejection test cases were generated from the abstract sequence where a muta
applied on the last event (a fault model called off-by-one).

Although this general test derivation approach could be used for validating our featur
chose instead to use a more detailed model that was available to us, namely the Chisel d
These diagrams are described at a somewhat lower level of abstraction than UCMs, and th
they bring more precision to the definition of the tests for individual features. In general,
one starts from informal requirements, such detailed description is not yet available. Henc
dation test cases are usually derived from UCMs, not from the requirements (contrarily to
tion (4) in Figure 1). However, since the Chisel diagrams were given to us in the co
description, their use seemed appropriate (see Section 4.3). Moreover, we limited our sc
acceptance tests only (with a Must pass verdict expected). Rejection test cases are left for fut
work.

4.2 Synthesis

The current section relates to step (3) in Figure 1. Following the synthesis approach introdu
the previous section, we are now about to generate a LOTOS specification from the global UCM
(Figure 6) and its plugins. This specification, presented in Appendix A, will serve as the ba
the validation of individual features against their requirements and for the detection of in
tions.

This section provides general explanations about the synthesis of our LOTOS specification.
We first discuss the data types needed to support the parameters, databases, and precond
follow with the representation of the network (Figure 3) as a structure of LOTOS components.

U1 U2Network
VR

O

F S

M

process Test1A[R,V,F,S,O,M,success] : noexit :=
 R; V; F; S; success; stop (* Acceptance test *)
endproc (* Test1A *)

process Test1R[R,V,F,S,O,M,fail] : noexit :=
 R; V; F; M; fail; stop (* Rejection test *)
endproc (* Test1R *)

process Test2A[R,V,F,S,O,M,success] : noexit :=
 R; V; O; M; success; stop (* Acceptance test *)
endproc (* Test2A *)

process Test2R[R,V,F,S,O,M,fail] : noexit :=
 R; V; O; S; fail; stop (* Rejection test *)
endproc (* Test2R *)

Coverage: Pattern Alternative — All paths.

• Abstract sequence 1: <R, V, F, S>

• Abstract sequence 2: <R, V, O, M>

Generation of acceptance and rejection test cases
for each abstract sequence.

Strategy

Generation
12 November, 1998 23:12 Lotos Specification p. 17

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

’ inter-

cription

s 80
ific to

tion for
ich we

ponents
m-
ibility in
resent-

rtantly,

bserv-
e ones
he hid-

 to 870).
t
estabil-
ork
Finally, for some components of the network, we present the construction of the processes
nal behaviour from the UCM paths that have responsibilities bound to these components.

Data Types
The abstract data types are mostly derived from the tabular descriptions in the contest des
[25], except for the basic data types and operations (Boolean , NaturalNumber , FBoolean ,
Element , and Set), which are ADTs simpler than the ones in the International Standard (line
to 227). They were simplified in order to become more efficient in our tools. The ADTs spec
the features are as follow (lines 228 to 853):

• Time : discrete time, counted in tics.
• Address and AddressList : user’s address, and list thereof.
• Cadence : Ring or SpecialTone (not used by our restricted set of features).
• PIN : validPIN or invalidPIN , instead of a real personal identification number.
• Message : used for announcements.
• TriggerName and ResponseType : IN triggers and their responses.
• LogType , LogRecord , and Log : for the list of log records in the OS.
• Feature and FList : for lists of features.
• SInfo and SDB: for the database of subscriber information in the switch.
• SCPit , SCPinfo and SCPDB: for the database of feature parameters in the SCP.
• StatItem , Stat and Status : for the database of status items in the switch.
• StubPath and SPList : entry/exit points of each stub in the maps, and list thereof.
These abstract data types support the representation and the manipulation of informa

the thirteen features described as UCMs in [35], and not only for the four features on wh
focus in this report.

Structure
LOTOS gates were used to represent individual events shared between the network com
(Figure 3). These components are represented as LOTOS processes and are synchronized on co
mon gates. Each event in the Chisel diagrams of the contest description (i.e., each respons
the UCMs) is mapped onto a unique gate. Therefore, instead of using gate splitting for rep
ing the on-hook and off-hook events on the user/switch interface (as in user2switch!onHook
and user2switch!offHook), we have two individual gates (onHook and offHook). Having
individual gates permits more specific compositions between processes and, more impo
between the specification and the test processes.

Since we are designing the system from the user’s viewpoint, some events will be o
able while others will remain hidden within the system. Hence, the observable events are th
on the switch-to-user and user-to-switch interfaces, and are enumerated in lines 59 to 79. T
den events are those on the switch-to-SCP, SCP-to-switch, and to-OS interfaces (lines 860

We also created four additional events. The hidden event Time is used by the switch to ge
the current time from a global clock. We use three other observable events to improve the t
ity of our specification. Init allows the initialization of all the databases used by the netw
components with users’ values (likely to come from a test case). CreateUser is used to create
users (originators and terminators) and specify their initial state. Finally, Query ’s purpose is to
allow a test case to verify the log in the OS at the end of the test.
12 November, 1998 23:12 Lotos Specification p. 18

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

e way
titled

ses, and
ficial
eaning.
hronize.
hich

ithin
 illus-

reover,
tub pro-
The top-level process structure itself is derived from the network components and th
they interact with each other (lines 875 to 897). Figure 17 illustrates this structure with
boxes for components, local variables and databases (with their type) between parenthe
lines for the LOTOS synchronization operator (|[...]|). Because this is a binary operator, arti
groupings (boxes without titles) become necessary, and they may not have any logical m
Each of these lines represents the set of common gates on which the two sides may sync
The GlobalTime process stands for the global clock mentioned in the contest description, w
is queried by the switch on several occasions.

Figure 17 Top-Level Process Structure

The dashed boxes for User indicate that these processes are created dynamically w
UserFactory and that they interleave (|||) with each other. Figure 18 presents a MSC that
trates how we can create two users with their own identity and subscribed features.

Figure 18 How the UserFactory Process Works

Components to which stubs are bound have sub-processes, one for each stub. Mo
dynamic stubs may themselves have multiple sub-processes, one for each plugin. The s

GlobalTime

SCP

OSSwitch
(sdb:SDB, status:Status)

(t:time)

(scpbd:SCPDB)

(log:Log)User
(userId:Address,

uf:FList)

UserFactory

UserFactory

msc UserFactoryExample

CreateUser (A, Features_A)

CreateUser (B, Features_B)

process User

A
A, Features_A

B, Features_B

Features_A

process User

B

Features_B
12 November, 1998 23:12 Lotos Specification p. 19

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

rocesses
on

 they
, and for
ur, we
reover,
onsid-
 behav-
esis

inator
alterna-
th seg-

ified in
the
s to be
es,

comes
 the
ent
nizing
tes 4,

s two
n the
of the
ecks:

s

 in a
lid,

sel dia-
, we

s

cess is then used to specify the composition between the possible plugins. Each of these p
receives a list of entry/exit points (type SPList) as input and then outputs another such list up
termination.

Process Behaviour
As illustrated in Figure 15, UCM paths define the behaviour of the components over which
pass. Components are thus responsible for the events and responsibilities bound to them
the implementation of their causal relationships. For the construction of process behavio
only consider the four features that interest us, and the others are left to future work. Mo
for simplification purposes and for conformance to the Chisel diagrams, the specification c
ers only one call session, i.e., it is not possible to initiate a sequence of call sessions (the
iour of the switch is not totally tail-recursive). We cannot possibly explain all the synth
decisions that were made, but we illustrate the main concepts with three examples.

The User process has multiple path segments to take care of. The originator and term
roles are merged together to form this unique process. Their integration results in seven
tives between different multi-sequences (trees) of events. As an example, consider the pa
ment from INTL that crosses the originator in Figure 8. The abstract sequence <ask for PIN , dial

PIN> has to be implemented somehow in the process. The resulting multi-sequence is spec
lines 1003 to 1012. AskForPIN is an announcement received from the switch through
Announce gate. At this point, we need to note that the generation of this announcement ha
reflected symmetrically in the Switch process. This event is then followed by two alternativ
the first one corresponding to the event in the abstract sequence, i.e., Dial with PIN as a parame-
ter (to be provided by the test case, hence the ? instead of the !), followed by a recursive instanti-
ation of the User process. The second one, although not part of the abstract sequence,
from the fact that Dial is a point where a disconnection may occur (Section 3.3), hence
OnHook followed by a stop . The userId parameters are used to distinguish between differ
instances of the User process. Again, these events have to be generated from the synchro
process, which is switch in this case. Notice that this multi-sequence corresponds to the sta
5, and 13 in the Chisel diagram for INTL (Figure 4).

The second example, also from INTL, relates to the behaviour of the SCP. INTL ha
paths crossing this component: the first one “implicitly” checks whether or not we are i
restricted TeenTime period (known by the SCP database), and the other checks the validity
PIN (again from the SCP database). A call-return mechanism implements these “implicit” ch
they are caused by a Resource event and result in a Response event. Appropriate parameter
for Resource include user and time for the checking of TeenTime, and the Response contains
the boolean value resulting from the evaluation of the IsInTeenTime predicate (lines 1465 to
1468). For the PIN validation, user and pin are needed as input parameters, and this result
Response containing the CONTINUE message when the PIN is valid. When the PIN is inva
then a SEND_TO_RESOURCE message is sent back, followed by the reception of a Resource
request resulting in a DISCONNECT Response (lines 1474 to 1487). Note the following points:

• These multi-sequences correspond to the states 1, 6, 8, 9, 11, and 13 in the Chi
gram for INTL (Figure 4). Since there are two states numbered 13 in this diagram
have to specify that we are referring to the one in the lower-left corner.

• These Resource requests and Response must be mirrored in the Switch (see line
1200, 1201, and 1216 to 1226).
12 November, 1998 23:12 Lotos Specification p. 20

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

ed by
ld
ecify
e loca-

). The
ication
ossi-

is way

),
atives.
as the ter-

ints
rocess is
ther
 there
ed

 L

annels/

ursive

uld also

compo-

lobal

irrored

tion of

.

• The Switch is really the component that decides what to do with the result provid
the SCP for the checking of TeenTime. Therefore, the OR-fork (where paths split) shou
probably be located in the Switch. In general, UCMs do not claim or intend to sp
where decisions are made, but it is always better to have the OR-forks reflect thes
tions when they are known.

• State 9 in Figure 4 regroups two events that can occur concurrently (or in any order
Switch has to synchronize on these two events. Lines 1222 and 1223 of the specif
in Appendix A specify that the Switch prescribes one ordering. We used only one p
ble refinement in order to reduce the state space during validation. We refined in th
many Chisel states that contained the ||| operator.

For the last example, we look at the specification of a simple stub, namely display (Figure 9).
This stub has a process (DisplayStub) that is instantiated by process User at line 979, concur-
rently with the start of the ringing (StartR). Within this stub (described in lines 1029 to 1044
the two plugins (default and CND, see Figure 13) are specified as mutually exclusive altern
Since these are quite simple plugins, no other sub-processes seemed necessary. As soon
minator subscribes to CND, the CND plugin is selected. Note that this process has an inPaths
parameter of type SPList , which allows the calling process to indicate from which entry po
in the stub the events are coming. In our case, the stub has only one entry point and the p
instantiated with the value inDisp1 . Upon successful termination, the process exits with ano
SPList that contains the list of exit points in the stub that should be activated. Again, since
is only one exit point, both plugins exit with outDisp1 for this result. These values are then us
by the calling process to reason about what happened within the stub (lines 981 to 984).

These examples have illustrated some of the basic concepts used to synthesize theOTOS

specification:
• Components are implemented as processes synchronized on their common ch

gates.
• Because of their reactive nature, most components are specified with implicit rec

behaviour.
• Hidden gates are used for what is not observable by the user.
• Path segments in one component are integrated together, often as alternatives (co

be integrated as concurrent multi-sequences, depending on the UCM context).
• UCM activities are implemented as gates or as messages exchanged between

nents.
• Composition with the disconnection phase is applied to specific points in the g

UCM.
• ADTs are used to represent databases and operations, and to evaluate conditions.
• Symmetry is enforced in synchronized actions (actions in one process must be m

in the other synchronized processes, unless locally hidden).
• Chisel states with the ||| operator are refined into simpler sequences, for the reduc

the state space.
Several additional rules for define for the specification of the stubs:
• Components with stubs have sub-processes, one for each stub.
• Dynamic stubs may have multiple sub-processes, one for each plugin.
• The stub process is used to specify the type of composition between the possible plugins
12 November, 1998 23:12 Lotos Specification p. 21

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

nother

lthough

st their

n [9].
ever,

reus-
gy. We

processes
tems

on
common
ses for
become
the con-

ey are

minism
 by the
e

• Each stub process receives a list of entry/exit points as input and then outputs a
such list upon termination.

These concepts have been used throughout the construction of the specification, a
we deviated from them on several occasions while debugging the integration.

4.3 Testing

We are now about to derive test cases for validating POTS and the individual features again
requirements, the Chisel diagrams (step (4) in Figure 1).

Structure of the Test Suite
In LOTOS, the testing is done through the composition of test processes with the specificatio
Often, LOTOS test processes are sequential, monolithic, and deterministic in nature. How
through process instantiation, LOTOS test processes can be built on top of each other, hence
ing part of previous test processes in new ones. We make use of this capability in our strate
will define shared processes that represent sub-sequences of test cases. We call these
common behaviours. In the conformance testing framework used in telecommunication sys
[27], these common behaviours correspond in a way to test steps, which may be instantiated from
multiple test cases and other test steps.

Figure 19(b) shows the bottom level of LOTOS test processes, composed solely of comm
behaviour processes for POTS. They are reused by the POTS test cases, and also by
behaviour processes for individual features. On top of the latter, we construct test proces
individual features, and also for each pair of features. Common behaviour processes then
reusable by many test cases, which simplifies the generation of test suites and increases
sistency among test cases.

Figure 19 Construction of the Test Suite

Figure 19(c) presents the typical code structure in common behaviour processes. Th
mainly composed of simple expressions that terminate with an exit code (exit(n)). With LOLA, test
cases do not need to be sequential or deterministic, so alternatives and explicit non-deter
are allowed in common behaviour processes. Note that many alternatives are preceded
internal action i . This non-determinism ensures, under LOLA, that all branches in the test cas
will by selected and covered at testing time.

POTS

Common Behaviour

Individual Features

Common Behaviour

POTS

Test Cases

Individual Features

Test Cases

Pairs of Features

Test Cases

Init ! databases ...;
CreateUser ! userA ! FListA ;
CreateUser ! userB ! FListB ;
CommonBehaviour...
(* Check the Log. *)
>> accept exitCode:Nat in
(
 [(exitCode eq 0)] ->

 Query ! LogValue ...;
Success; stop

 []
 [(exitCode eq succ(0))] ->

 Query ! OtherLogValue ...;
Success; stop

)

Event1 !userA;
(
 i ; Event2 !userA;

 exit (0)
 []
 i ; Event3 !userB;
 POTS_5...
)

(a) Typical Code Structure
in Test Cases

(b) Test Cases on Top of
Common Behaviour Processes

(c) Typical Code Structure
in Common Behaviour
12 November, 1998 23:12 Lotos Specification p. 22

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

ystem
 (by

es them-
aptured

icates
adlock in
ered in

 param-
test pro-
he Chisel
n be so

tion
ms in
ssence,
e cover-
e 20(a)

d user
s an

s has to
 system

real
meters.
ur pro-
 cases do
ble).
In Figure 19(a), the typical code structure illustrates that a test case provides the s
configuration and verifies the exit codes. More specifically, the system is first initialized
Init), users are created according to the mechanism shown in Figure 18, and the test cas
selves are performed by instantiating common behaviour processes. The exit code is then c
and used to validate the log against its predicted value.

During the testing, a deadlock in a test case for POTS or for an individual feature ind
that there is a bug that needs to be fixed. When all these test cases pass successfully, a de
a test case for a pair of features indicates an unexpected interaction. Interactions will be cov
Section 5.

POTS Common Behaviour
We constructed a tester for POTS using six processes (lines 1534 to 1647). They have two
eters, representing the originator and terminator users, whose values are provided by the
cesses. POTS states 1, 2, 4, 5, 13, and 15 were defined because they were referred to by t
diagrams of other features. This is one of the main reasons why such common behaviour ca
easily reused.

A LOTOS canonical tester is a process that tests all of the behaviour of an implementa
for conformance to a specification [9]. Inspired from this theory, we used the Chisel diagra
order to obtain a reduced set of test cases, while maintaining a good validation power. In e
a canonical tester has the same traces as the specification it aims to check, but it forces th
age of all alternatives when the environment has a decision to make. For instance, Figur
shows a simplified Chisel diagram for POTS, for which a LOTOS interpretation is provided in (b).
In its test process (c), the addition of an internal action i before Dial and OnHook (corresponding
to the dark area) forces the composition to check both alternatives, which are both vali
inputs from the system’s point of view (Figure 20(b)). In a similar way, if the system make
internal decision, by using guarded behaviour or with hidden events, then the test proces
accept all possible outputs accordingly. The light shaded area presents a case where the
offers either Ring or BusyTone depending on its internal information about users’ status. A
LOTOS canonical tester would also take care of all possible values associated to the para
We chose not to follow this strict rule because we wanted to generate common behavio
cesses where the parameters are set during the initialization phase in a test case. Our test
not check all possible configurations, while a canonical tester would (which is seldom feasi

Figure 20 Example of a Canonical Tester for a Chisel Diagram

OffHook

DialTone

Dial OnHook

Ring BusyTone

OffHook;
DialTone;
(
 i ; Dial;
 (
 Ring; exit (0)
 []
 BusyTone; exit (succ(0))
)
 []
 i ; OnHook; exit (succ(succ(0)))
)

idle busy

OffHook;
DialTone;
(
 Dial;
 (
 [Idle] -> Ring; stop
 []
 [Busy] -> BusyTone; stop
)
 []
 OnHook; stop
)

(c) Test Process(b) System(a) Chisel Diagram
12 November, 1998 23:12 Lotos Specification p. 23

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

iagram.
heck the

theory,
e 9 in
e
-

 end of
n, and

will

l states
e
1648 to

pro-

1715 to
e of any

d TCS,
onfig-
) and
ecifica-

e satis-

 traces
me non-
s been
equiv-
ot

n
Note that we assigned an exit code to the leaf at the end of each branch in a Chisel d
This allows test processes to determine what branch has been selected, in order later to c
validity of the log collected by the OS.

Interleaved events in a Chisel diagram should, according to the canonical tester
require that all possible combinations of events be covered explicitly. For instance, stat
Figure 4 has Announce ||| Resource . Let’s rename this A ||| R and assume these ar
events provided by the user to the system. Following the LOTOS expansion theorem, this expres
sion is equivalent to A;R [] R;A , hence the canonical tester would need to be i ;A;R [] i ;R;A .
However, we will leave A ||| R as is in the tester for two reasons:

• On several occasions, we implemented only one alternative in the system (see the
the previous section). By this refinement, the system has already made the decisio
thus the user needs to accept it.

• Leaving the ||| operator leads to simpler expressions.
Processes POTS_1 to POTS_15 represent the lowest layer of common behaviour, and

now be used, directly or indirectly, by almost all of the other test processes.

POTS Test Cases
Often, more than one test case will be required to cover a Chisel diagram, because initia
and conditions are necessary. POTS has only one precondition: whether or not the terminator sid
is busy. Hence, two test processes can cover all the states in the Chisel diagram (lines
1714). Process tPOTS1 tests the cases where the terminator side is not busy, whereas tPOTS2
takes care of the cases where the terminator is busy. They both use POTS_1 as their start point.
Note that the names of all test processes start with a lowercase t, while common behaviour pro-
cesses start with a lowercase c (except for the POTS common behaviour processes). Test
cesses for pairs of features are prefixed with fi.

Test Cases for Individual Features
These tests check that each feature acts properly when being the only one active (lines
2123). The previous test suite (for POTS) still needs to be checked because, in the absenc
active feature, what remains must be the regular POTS behaviour.

Table 1 presents the 10 test processes used for the coverage of INTL, CND, INFB an
according to their respective Chisel diagram. Each test was created by providing an initial c
uration (according to the conditions shown in the Chisel diagrams and the individual UCMs
by calling the appropriate common behaviour process. These tests were applied to the sp
tion, and results were collected (steps (7), (8), and (9) in Figure 1).

For each test, we included its purpose (according to the preconditions that need to b
fied by the initial configuration), the common behaviour process it uses1, and how many unique
global sequences were generated by its composition with the specification. Each of these
could be represented as unique message sequence charts from the user’s point of view. So
determinism inside the system (which would create many more global sequences) ha
abstracted from in this experiment; on-the-fly reduction techniques, which preserve testing
alence, have been used while testing with LOLA. All of them were successful, therefore we do n

1. A common behaviour processes can call other such processes. For instance, POTS_1 calls POTS_2, which in tur
calls POTS4 and POTS_15. POTS 4 calls POTS_5 and POTS_13.
12 November, 1998 23:12 Lotos Specification p. 24

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

idation
 of fea-

type of
e stub
then we
ractice

ssary.
fficient
tween

scribed
. Their
our pro-

e code
e of the

have any indication that POTS and the individual features are faulty in our system. The val
of the system then continues with the detection of unexpected interactions between pairs
tures.

5 DETECTING FEATURE INTERACTIONS

5.1 Test Cases for Detecting FI

The tests generated in this section come from step (5) in Figure 1. In theory, if the same
integration used for merging the individual UCMs and if the same composition used in th
processes are used again during the generation of the test cases for pairs of features,
should not find any inconsistencies, and perhaps not a single unexpected interaction. In p
however, integrating two features in a test sequence is much easier than integrating n features in a
system (where n > 2). This is one of the main reasons why tests for pairs of features are nece
Although they cannot cover everything there is to check, they represent a pragmatic and e
way of attacking the problems of conformance to the requirements and interoperability be
features.

Having a set of four features, we have to check n*(n-1)/2 = 4*(4-1)/2 = 6 different pairs of
features1. We developed a test suite composed of six test processes (lines 2124 to 2864), de
in Table 2. Each process contains many test cases that have different initial configurations
number can be found in the same table, as well as an enumeration of the common behavi
cesses used, and the number of global sequences generated by LOLA using the TestExpand com-
mand.

We do not intend to explain the purpose of each of the 25 test cases. Comments in th
of the tests provide that information. As an example, we nevertheless present the purpos
three test cases that validate the pair INTL-CND.

1. In this study, the assumption is that a feature cannot interact with itself. This is however an incorrect assumption in
general. Hence, we would also need to cover the pairs INTL-INTL, INFB-INFB, CND-CND, and TCS-TCS. The
numbers of pairs would become n*(n+1)/2 = 4*(4+1)/2 = 10.

Feature Test
Process

Purpose According to Preconditions Used Common
Behaviour

Number of Global
Sequences

INTL tINTL1 TeenTime not restricted: allow call. POTS_1 29

tINTL2 TeenTime restricted, valid PIN: allow call. cINTL1 30

tINTL3 TeenTime restricted, invalid PIN: do not allow call. cINTL2 2

CND tCND1 Terminator idle: display. cCND1 84

tCND2 Terminator busy: do not display. POTS_1 2

INFB tINFB5 Terminator idle: affect billing. POTS_1 29

tINFB2 Terminator busy: do not affect billing. POTS_1 2

TCS tTCS1 Terminator idle, A not on Screened B: allow call. cTCS1 29

tTCS2 Terminator busy, A not on Screened B: busy tone. cTCS2 2

tTCS3 A on Screened B: announce screened message. cTCS3 2

Table 1 Description of Test Processes for Individual Features
12 November, 1998 23:12 Detecting Feature Interactions p. 25

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

heck
nvalid
e ones
 where
 POTS
ply

nditions
atures
dingly:

 acts

viour
d

 acts

ould
ecified
hat what
hat if the

ead-

list. In
Among the four combinations of its two preconditions, INTL has only 3 cases to c
(TeenTime not restricted, TeenTime restricted and valid PIN, TeenTime restricted and i
PIN), whereas CND has two other cases (terminator busy, terminator idle), unrelated to th
of INTL. A Cartesian product would give us a total of 6 global cases. However, the 3 cases
the terminator is busy are not interesting to us. For these cases, CND acts exactly like
would. Hence the pair INTL-CND would act like the pair INTL-POTS, or in other words sim
INTL, already covered by tINTL1 , tINTL2 , and tINTL3 . With this purified domain partitioning,
the three remaining cases provide new constraints on the values to be used in the preco
attached to the global UCM (Figure 6). In essence, this UCM specifies the way these two fe
are integrated together, and the test cases have to reflect their end-to-end behaviour accor

• Terminator idle, TeenTime not restricted (case 1): the end-to-end UCM acts like cCND1
from the user’s point of view.

• Terminator idle, TeenTime restricted and valid PIN (case 2): the end-to-end UCM
first like cINTL1 (part about the request for the PIN) and then like cCND1 (display of the
number) from the user’s point of view. Unfortunately, because our common beha
processes specify all events until the end of a scenario, cINTL1 cannot be used as is an
must be partly duplicated in fiINTL_CND , and then cCND1 can be used.

• Terminator idle, TeenTime restricted and invalid PIN (case 3): the end-to-end UCM
like cINTL2 from the user’s point of view.

If we had explicitly tested all the events that are currently hidden in the system, it w
have been much more difficult to define reusable common behaviour. Having the system sp
as a black box increases the reusability of these processes, although they do not ensure t
happens inside the system corresponds to what would be expected. We can only assume t
end result is fine, then the system behaved properly.

5.2 Unexpected Interactions

With our first specification, all our test cases passed successfully, except for fiINFB_TCS (steps
(7), (8), and (9) in Figure 1). LOLA returned three different traces that led to unexpected d
locks. The first trace, presented below, is related to the first test case in fiINFB_TCS : the idle ter-
minator (B) has subscribed to INFB and TCS, and the originator is not on the screening
this scenario, the originator (A) on-hooks first, but it is also billed instead of the terminator.

FI Test
Process

Number of
Test Cases

Used Common Behaviour Number of Global
Sequences

fiINTL_CND 3 cCND1, cINTL2 170

fiINTL_INFB 3 POTS_1, cINTL1, cINTL2 61

fiCND_INFB 2 cCND1, POTS_1 86

fiINTL_TCS 9 cTCS1, cTCS2, cTCS3, cINTL1, cINTL2 74

fiCND_TCS 4 cCND1, cTCS2, cTCS3 90

fiINFB_TCS 4 cTCS1, cTCS2, cTCS3 35

Table 2 Description of Test Processes for Pairs of Features
12 November, 1998 23:12 Detecting Feature Interactions p. 26

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

nt such
arios.

S and
 but not
init ! insert(sub(usera,noflist,undefined,undefined,noaddlist,validpin),
 insert(sub(userb,insert(tcs,insert(infb,noflist)),undefined,undefined,
 insert(userc,noaddlist),validpin),nosdb))
 ! nostatus ! noscpdb ! inittime;
offhook ! usera;
dialtone ! usera;
dial ! usera ! userb;
startar ! usera ! userb;
startr ! userb ! usera;
offhook ! userb;
stopar ! usera ! userb;
stopr ! userb ! usera;
i ; (* time ! inittime *)
i ; (* logbegin ! usera ! userb ! usera ! inittime *)
onhook ! usera;
disconnect ! userb ! usera;
i ; (* time ! tic(inittime) *)
i ; (* logend ! usera ! userb ! tic(inittime) *)
onhook ! userb;
i ; (* exit (0) *)
stop

Since we know on which network interfaces these events occurred, we can represe
LOTOS traces as synchronous MSCs, a form more appropriate for illustration of linear scen
The MSC for this trace is shown in Figure 21.

Figure 21 First FI, Originator Billed Instead of the Terminator

The error in the billing was detected when the test case queried the log from the O
could not synchronize on the expected value. The problem here is that TCS was selected,
INFB. Hence, the person to be billed was the default one, i.e., the originator.

msc fiINFB_TCS_case1a

Off-hook (A)

process User Switch

TCS selected

A B
process User OS

DialTone (A)

Dial (A, B)

Start AudibleRinging (A, B)

Start Ringing (B, A)

Off-hook (B)

Stop AudibleRinging (A, B)

Stop Ringing (B, A)

LogBegin (A, B, A, t0)

LogEnd (A, B, t1)

A and B talking

On-hook (A)

Disconnect (B, A)

On-hook (B)

Error in billing
12 November, 1998 23:12 Detecting Feature Interactions p. 27

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

s first

re 23).
ot TCS.

essage)
The second interaction trace is similar in nature, but this time the terminator on-hook
(Figure 22).

Figure 22 Second FI, Originator Billed Instead of the Terminator (Who On-hooks First)

The last interaction trace is related to the fourth test case in fiINFB_TCS : the idle termina-
tor (B) has subscribed to INFB and TCS, and the originator is on the screening list (Figu
The call should be blocked by TCS, but it goes through because INFB was selected and n
The deadlock occurs when the test case expects a specific announcement (ScreenedM
while the switch attempts to send something else (StartAudibleRinging or StartRinging).

Figure 23 Third FI, Call Should Be Blocked but Is Not

msc fiINFB_TCS_case1b

Off-hook (A)

process User Switch

TCS selected

A B
process User OS

DialTone (A)

Dial (A, B)

Start AudibleRinging (A, B)

Start Ringing (B, A)

Off-hook (B)

Stop AudibleRinging (A, B)

Stop Ringing (B, A)

LogBegin (A, B, A, t0)

LogEnd (A, B, t1)

A and B talking

On-hook (B)

Disconnect (A, B)

On-hook (A)

Error in billing

msc fiINFB_TCS_case4

Off-hook (A)

process User Switch

INFB selected

A
SCP

DialTone (A)

Dial (A, B)

Trigger (INFO_ANALYZED, B, A, B, t0)

Response (ANALYZE_ROUTE,B, A, B, B)

Error
12 November, 1998 23:12 Detecting Feature Interactions p. 28

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

tween
-

other
 from a
 some-
orous

NFB
ix A
airs of
e global

sarily
ng

 would

o go
rs in a
tions

atory).
 called

at
y of the

r to
 anal-
Appendix B presents the erroneous part of our original specification. The choice be
the TCS plugin and the INFB plugin in the process-call stub, which both override the default plu
gin, was left open (i.e., non-deterministic). When integrating the UCMs, we did not know if
types of constraints were necessary for these two features to work properly together. Even
UCM perspective, a mutual exclusion would cause problems, but this is a detail that was
what buried down in the composition within the stub. This is why a more precise and rig
detection technique appears necessary once the integration is completed.

A sensible solution to this problem would be to give a sequential priority to TCS over I
in the stub, i.e., INFB would be selected only if TCS allows it. The specification in Append
implements this solution. In the end, all of our test cases (POTS, individual features, and p
features) passed successfully, and hence no expected interactions seemed to remain in th
specification.

Fixing the UCM
Giving TCS priority over INFB (and over the other features in the process-call stub) can be
reflected back at the UCM level in different ways. One simple way, which does not neces
reflect the stub structure in the current LOTOS specification, would be to move the TCS checki
at a higher level that what it used to be in process-call . Therefore, we move the first condition from
Figure 12 to Figure 9 and we remove the TCS plugin. As a result, the paths around this stub
be as prescribed by Figure 24:

Figure 24 New Surroundings of Process-call Stub in Figure 9

In this figure, it is important for the feedback loop (used by call-forwarding features) t
back before the TCS screening list is checked. This is to ensure that intermediate originato
forwarded call will be screened as well. Fixing a UCM could result in new types of interac
that were not present previously. For instance, the checking of the condition on-TCS is meaningful
only if the terminator has subscribed to the TCS feature (otherwise, TCS becomes mand
This is why the test suite needs to be reapplied to the new resulting specification (this is
regression testing).

5.3 Ensuring Coverage with Probes

The generation of test cases from scenarios is an a priori approach to validation. We assume th
the functional coverage is achieved when all tests execute as planned. However, the qualit
specification and of the test suite may be enhanced by using a syntactic approach called structural
coverage. If some required coverage is not reached, new tests can be added a posteriori.

Probe insertion is a well-known white-box technique for monitoring software in orde
identify portions of code that have been exercised, or to collect information for performance

process-call

towards
term-towards

busytowards
reject

connected

not-on-TCS

on-TCS
12 November, 1998 23:12 Detecting Feature Interactions p. 29

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

t any
d the

that the

ial
 trans-
es
refore

 result-
nces of
e of the

chable

behav-
 whole

overage
ses are

res and

t suite.

lready
ave to
ction

ore a
ations
 better

.

al
ysis. A program is instrumented with probes (generally counters initially set to 0) withou
modification of its external functionality. Test cases “visit” these probes along the way, an
counters are incremented accordingly. Probes that have not been visited might indicate
test suite is incomplete or that part the code is not reachable.

We have adapted this approach for LOTOS specifications (steps (6) in Figure 1). Spec
(*_PROBE_*) comments are added at specific places in the specification, and then they are
lated automatically into hidden Probe gates with unique identifiers. Careful insertion of prob
leads to a new specification that is observationally equivalent to the original one, and the
they do not affect the verdicts of the tests. During testing, labeled transition systems (LTSs)
ing from the composition of each test with the specification can be generated, and occurre
probes counted. If a probe is not visited by any of the test cases, then the structural coverag
specification is incomplete. More specifically, this indicates that some code could be unrea
in the specification, or that the test suite is incomplete.

We inserted 55 probes in the specification of the system only (no need to cover the
iour of the test as this is done through plain testing). Out of these, 5 were not covered by the
test suite, but for good reasons (see Table 3). Therefore we conclude that the structural c
of the specification by the validation test suite is adequate, and that no further test ca
required.

Note that we also measured the coverage of the test suites for POTS/individual featu
for pairs of features. Both test suites covered all probes except the five already mentioned.

6 DISCUSSION

6.1 Adding New Features

Adding new features has a direct impact on the global UCM, the specification, and the tes
Here are come comments on the scalability of this approach.

Impact on the UCMs
In our experience, the integration of three new features to the first 10 ones, which were a
integrated together, did not have a major impact on the global UCM. The root map did not h
change, but a busy stub (with a new output path) had to be added in Figure 9. The disconne
UCM was slightly adjusted, and new plugins were created for the process-call and billing stubs.

The impact is probably proportional to how coupled the features are in a map. The m
map is decoupled and modular (for instance, by using stubs), the less likely major modific
will be necessary. More experiments on this aspect still need to be done in order to have
conclusions.

Probe Number Line Number Reason For Not Being Covered

P_35 1339 Case not specified yet. OutBusy2 is used by one of the remaining unspecified features

P_37 1353 Case not specified yet. OutPC4 is used by one of the remaining unspecified features.

P_52 1509 Case not specified yet. The air interface is to be used by the Cellular feature.

P_53 1513 Case not specified yet. The air interface is to be used by the Cellular feature.

P_54 1518 Bug in LOLA’s TestExpand. The OS is not reinstantiated as the occurrence of the intern
probe is not forced by a test case.

Table 3 Probes Not Covered by the Test Suite
12 November, 1998 23:12 Discussion p. 30

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

 for the
e) and

revious
t really

guish
re has a
r one
 number
tially
f these
 relevant

 com-
l gain at
our

t cases

interac-
i-
r

omain
ered in
Impact on the Specification
Since the specification reflects the global UCM, the conclusions are basically the same as
impact on the UCMs. In our experiment, we added a few new gates (for the new air interfac
added appropriate ADTs, with their operations, to support new data structures. Some p
types were also expanded to cover the new features. The impact on the structure is no
known because we have not fully implemented these three features yet.

Impact on the Test Suite
The addition of a feature has a profound impact on the test suite. Like before, we will distin
between test suites for individual features and test suites for pairs of features. Each featu
set of c preconditions (enumerated in Table 1), the conditions that may affect the result fo
same stimulus. In theory, since each of these is either true or false, the upper bound on the
of combinations is u = 2c. That is, the number of test cases for each feature grows exponen
with the number of preconditions, which is no surprise. We need one test case for each o
combinations, unless some of these are unnecessary. UCMs can help determine which are
and which are not by following the paths and associated conditions. For instance, when TeenTime
is not restricted in INTL, whether the PIN is valid or not has no impact, and one of these two
binations can be dropped. Therefore, due to this test selection approach, there is a potentia
this level. We define this gain as g = u-t, where t is the number of test cases actually present in
test suite (Table 4).

For pairs of features, UCMs can help again reducing the number of necessary tes
w.r.t. the upper bound. The number of conditions for a pair (c) is the cardinality of the union of the
two sets of preconditions (as some conditions may be shared, which is a major cause of
tion), and the theoretical upper bound is again u = 2c. However, we already know from the prev
ous table which cases have to be looked at. Hence, we define p as the product of the two numbe
of actual test cases (t1 * t2). This leads us to a better upper bound (b) defined as the minimum of u
and p. As explained at the end of Section 5.1, we can get a better partitioning of the input d
by removing the cases that are equivalent, from a path point of view, to cases already cov
the test suite for individual features. Another gain can be achieved here (g = b-t), illustrated in
Table 5.

Feature Number of
Conditions (c)

Theoretical Upper

Bound (u = 2c)

Actual Number of
Test Cases (t)

Gain
(g = u - t)

INTL 2 4 3 1

CND 1 2 2 0

INFB 1 2 2 0

TCS 2 4 3 1

Table 4 Number of Test Cases for Individual Features
12 November, 1998 23:12 Discussion p. 31

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

ents a

st
ion of
 input

of
cifica-
x P150,

ental
 regres-

med
ng time
he-fly
s), and

large to
m
The set
e best

t test-

g
he pos-
rience
Note that a negative gain implies a non-optimal selection of test cases. This repres
simple way to measure the efficiency of this selection.

In conclusion, the number of pairs of features is n*(n-1)/2, and for each the number of te
cases grows exponentially with the number of distinct conditions. The impact of the integrat
a new feature will be higher if new types of conditions have to be accounted for in the
domain.

6.2 Performance

From a tool perspective, testing with LOLA seems a very efficient solution for the validation
prototypes and the detection of feature interactions. The compilation of this 2864-line spe
tion and the execution of all the test cases take about 30 seconds on a low-end PC (Cyri
Win95, 48MB RAM). This means that this technique can be used in an iterative and increm
process where numerous modifications, additions, debugging sessions, and executions of
sion test suites need to be supported.

The verification of the structural coverage (with probes), which is usually perfor
towards the end of a macro-iteration in the design cycle, takes about 7 minutes of processi
on the same platform. For this part, internal actions must not be simplified through on-t
equivalence reductions (otherwise, we could not “observe” the probes in the resulting LTS
thus more time and resources are required.

Once probes are inserted, some specifications may result in a number of states too
be handled by LOLA and similar tools. We see at least three practical solutions to this proble

• Use half the probes for a first measure, then use the other half for a second one.
of probes visited is the union of the probes visited in each experiment. This is th
solution.

• Simplify the test processes by splitting them into many sub-tests (with an equivalen
ing power).

• Use heuristics in the execution of the tests. LOLA allows to test a specification accordin
to upper bounds in memory usage, or according to an estimate of the coverage of t
sible branches. Although the functional coverage is not complete anymore, expe
shows that a complete structural coverage might be achieved anyway.

Pair of
Features

Number of
Distinct

Conditions (c)

Theoretical
Upper Bound

(u = 2c)

Product of
Number

of Cases (p)

Better
Upper Bound
b = MIN(u, p)

Actual Number
of Test Cases (t)

Gain
(g = b - t)

INTL-CND 3 8 3*2 = 6 6 3 3

INTL-INFB 3 8 3*2 = 6 6 3 3

CND-INFB 1 2 2*2 = 4 2 2 0

INTL-TCS 4 16 3*3 = 9 9 9 0

CND-TCS 2 4 2*3 = 6 4 4 0

INFB-TCS 2 4 2*3 = 6 4 4 0

Table 5 Number of Test Cases for Pairs of Features
12 November, 1998 23:12 Discussion p. 32

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

 fea-
e call

such as
sions
 the cur-

d
ccord-

 sim-
e

ecify
t intro-
, this
el, and

rios:
amic
 visu-
 a bet-

nding

t hav-
n of
iffer-
blem
r nota-

eat the
6.3 Improved Call Structure

The abstract underlying structure in our UCMs is insufficient for the specification of all the
tures. The current behaviour of our switch is tightly coupled to the progression of one uniqu
session. For call sessions involving more than two parties (e.g., for the support of features
INBL, INFR, 3WC, INCF and CW), the current call structure needs to be improved. Call ses
need to be instantiated upon request, and the status database needs to be decoupled from
rent Switch process (Figure 25(a)) in order to be accessible to these sessions. A new StatusData-
base process (where appropriate values from sdb and status would be stored), with new query an
update messages, would solve this problem (Figure 25(b)). ADTs need to be partitioned a
ingly, and all of the specification must then reflect this modification. This kind of structure is
ilar to those used in many LOTOS specifications for telephony systems [20][22][23]. IN-lik
architectures, and especially the Basic Call Model, could also be considered.

Figure 25 Current and Improved Switch Structures

The UCM structure, derived from the given network structure (Figure 3), did not sp
anything about the internals of the switch. To keep our synthesis straightforward, we did no
duce any new structural entities. However, for the sake of extensibility of the specification
improvement can hardly be avoided. New components are needed at the specification lev
they probably need to be mirrored at the UCM level. However, this is left for future work.

6.4 Limitations of Plugins, Bindings, and Composition

We have observed the following limitations of the UCM notation while integrating the scena
• Although the stub/plugin mechanism is useful for abstraction, modularity, and dyn

behaviour, its use in a global map makes the end-to-end scenarios more difficult to
alize at a first glance. Often, the reader has to mentally flatten the global map to get
ter understanding of these scenarios.

• The binding of a plugin to a stub is done through an external mechanism (the bi
relation), which is not visual.

• The composition of plugins in a stub is described at a lower level of abstraction. No
ing this information (whether it is visual or not) at the UCM level makes the selectio
plugins very ambiguous. On the other end, it allows for the designer to play with d
ent alternatives and to decide which composition should be used. But the pro
remains that once this composition has been decided, it is documented with anothe
tion (LOTOS in our case).

Designers must use the stub/plugin mechanism with care. Otherwise, they might def
intent of UCMs which is to provide a good bird’s eye view of the system.

Switch
(sdb:SDB, status:Status)

Switch

Status

(sharedStatus:?)
Database

Call

(localStatus:?)
Session

(a) Current Switch (b) Improved Switch
12 November, 1998 23:12 Discussion p. 33

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

o detec-

ample
t the
 avoid-
 still
d hoc.
time (not
L
future

us
e-
he
as
h, with-
te the

ation.
c.)
sons,
 L
arios at

narios
ge of
s had
then
 be of

ios and
pts of
es

at
, when
) instead
6.5 Comparison with Other Techniques

We include here a short discussion on three related approaches to design with UCM and t
tion of FI.

Agent Systems
A path that goes from UCMs to agent prototypes was illustrated by a feature interaction ex
in [15][16]. This approach also aims to avoid interactions at design time (with UCMs), bu
main property of these agents (implemented in CLIPS and Java) remains the opportunistic
ance of interactions at run time. However, the mapping between UCMs and these agents is
fairly immature, and detection/validation techniques on this agent environment are still a
For these reasons, and also because the FI contest was mainly about detection at design
avoidance), we took a somewhat different direction that led to the current exercise. How OTOS

would fit in a design process that involves UCMs and such agents is still the topic of
research.

GCS and GPRS
Design and validation of LOTOS specifications from UCMs have been performed for two previo
projects: a Group Communication Server (GCS) in [4][6], and the packet-switched mobile tel
phony standard General Packet Radio Services (GPRS) in [5]. In both cases, the integration of t
UCM scenarios was done directly at the LOTOS level. There was no global UCM, and no stub w
used. Test cases were generated solely from the UCMs (requirements were in plain Englis
out anything similar to Chisel diagrams) and applied to the specification in order to valida
integration.

Since the burden of the integration is pushed down to the level of LOTOS, designers not too
familiar with this language may have a hard time coping with the construction of the specific
Moreover, other people not involved in the LOTOS part (clients, marketing, management, et
would not know anything about how the individual UCMs fit together. For these two rea
although the GCS and GPRS experiments were successful in the sense that moving toOTOS

directly also resulted in correct specifications and validated test suites, integrating the scen
the UCM level seems a better alternative.

In the GCS case study, we derived rejection test cases for each of the individual sce
(as illustrated in Figure 16). In the current example, doing so will require a better knowled
what could go wrong in the system (which can be anything right now). If Chisel diagram
included branches labeled “reject”, “interdicted” or “forbidden”, directly in the requirements,
generating rejection test cases would have been easy. Again, an OPI-like notation would
great help in this context.

Faci’s Approach
In [22], Faci presents a detection technique also based on the integration of scenar

the use of the LOTOS testing theory. This approach makes a distinction between the conce
composition and integration. Composition, noted f1|[]|f2, expresses the synchronization of featur
on their common actions with POTS and their interleaving on their independent actions. Integra-
tion, noted f1* f2, expresses the extension of POTS with n features (two in the examples), such th
each feature is able to execute all of its actions which are allowed in the context of POTS
the other features are disabled. Features are captured as labeled transition systems (LTSs
12 November, 1998 23:12 Discussion p. 34

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

cases
roniza-
that an

 simi-
ience”)
ation.
ction is
far less
mples

plexity
nd they

 trivial
n (|[]|)
almost

atures
tative of
ards the

t design
nd plu-
ire-

gration

on. We
inistic

he fea-
s one or
izing the
l. The
uced sets
eatures
ng tests.
 again
 features
ere we
li-

sertion.
rage
 an
of as UCMs. Integration relates very well to our own UCM integration (validated by the test
for individual features), whereas the composition simply represents the generalized synch
tion operator and does not relate to anything in our methodology. The approach states
interaction exists between n features if their integration does not conform to their composition.

Conformance is checked through validation test cases, from the user’s point of view,
larly to what we are doing. Test cases are derived manually (using “knowledge and exper
from the composition specification, and then they are applied to the integration specific
When a deadlock occurs between a test case and the integration specification, an intera
said to be detected. This last specification is generated manually at the LTS level, which is
scalable and modular than generating specifications from global UCMs. Indeed, all the exa
provided in this thesis contained only pairs of features integrated together, for obvious com
reasons. UCMs are a means to integrate scenarios while avoiding some interactions, a
allow for multiple complex features to be considered (13 in [35]).

Faci’s approach leads to multiple feature interactions that we already referred to as
and artificial. Indeed, any integration operator (*) other than the generalized synchronizatio
is very likely to cause deadlock situations. The test suite, although it could be generated
automatically from the composition, is of low quality as it does not consider the way the fe
were integrated together. The test suites generated from UCMs are much more represen
the intended system behaviour, and they are more likely to be reusable down the road tow
implementation.

7 CONCLUSIONS

This report presented an approach for the avoidance and detection of feature interactions a
time. Features are captured as UCM scenarios, integrated in one global map with stubs a
gins, and then transformed into a LOTOS specification. Test cases are generated from the requ
ments (Chisel diagrams in our case) and from the UCMs. We use them to validate the inte
and to detect unexpected interactions.

UCMs describe features (and systems in general) at an interesting level of abstracti
showed how, during their integration, some interactions can be avoided by insuring determ
and complete preconditions and by composing plugins in stubs according to the intent of t
tures. Many features can be considered in a global UCM, and they can be represented a
more plugins in one or more stubs. Further design decisions are necessary when synthes
specification, although the burden of the integration is mostly taken care of at the UCM leve
canonical tester theory and test selection techniques based on UCMs help us generate red
of test cases for individual features. Test suites for detecting interactions between pairs of f
are constructed on top of existing test cases, hence promoting reuse and consistency amo
The generation of these tests is guided by the integration done at the UCM level, which
reduces the number of necessary cases to cover. Several interactions between a pair of
were detected. They were caused by the composition of plugins in a stub, and this is wh
fixed the problem at the LOTOS and UCM levels. The quality of the specification and of the va
dation test suite is finally assured by measuring the structural coverage through probe in
Good tool support for the UCM integration (UCM Navigator) and for the validation and cove
measurement of the LOTOS specification (LOLA) suggests that this approach can be used in
iterative and incremental design process.
12 November, 1998 23:12 Conclusions p. 35

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

 were

lving

rving
tion, it

er to

s, by
 and
l and
s.

etter
 to be
n test

ocess

tudy.
ul to
any

ents

i-

es: a
h-

ants :
Future Work
The following list enumerates several research issues and work items, some of which
already raised in this document:

• Improvement of the call process within the Switch for the support of features invo
more than two users.

• Completion of the specification by integrating the remaining nine features. By obse
the impact on the specification and on the number of test cases required for valida
might be possible to learn new lessons.

• Derivation of rejection test cases from UCMs and/or the Chisel diagrams in ord
detect more interactions.

• Comparison with other LOTOS-based techniques applied to the same set of feature
detecting interactions in our specification with their approaches (if the tools allow it)
by applying our test cases to their specifications. We could also observe how “trivia
artificial” interactions detected with their techniques have been avoided by our UCM

• Linkage of the OPI model to the UCM notation. The intent of a feature would be b
described by indicating which events or paths are obliged, permitted, or forbidden
in the implementation. This would also allow for an easy way of generating rejectio
cases.

• Further study of the visualization of bindings and compositions of plugins.
• Finally, we could look at the best way of integrating this approach in a design pr

that generates agent prototypes from Use Case Maps.

Acknowledgements
This work has been supported by Communications and Information Technology Ontario (CITO). I
would like to thank Dorin Petriu for providing me with the global UCM used in this case s
Andrew Miga and Chris Witham supported us with the UCM Navigator tool. I am gratef
Luigi Logrippo for useful and constructive comments on a first draft of this report. Finally, m
thanks to the agent group at Carleton U. and Mitel, and to the LOTOS group at U. of Ottawa for
useful discussions.

8 REFERENCES
[1] Aho, A., Gallagher, S., Griffeth, N., Scheel, C., and Swayne, D. (1998) “Sculptor with Chisel: Requirem

Engineering for Communications Services”. In: K. Kimbler and W. Bouma (eds.), Fifth International Work-
shop on Feature Interactions in Telecommunications Software Systems, IOS Press, 45-63.
http://www-db.research.bell-labs.com/user/nancyg/sculptor.ps

[2] Amyot, D. (1994) Formalization of Timethreads Using LOTOS. M.Sc. thesis, Dept. of Computer Science, Un
versity of Ottawa, Ottawa, Canada. http://www.csi.uottawa.ca/~damyot/phd/msctheses.pdf

[3] Amyot, D., Bordeleau, F., Buhr, R. J. A., and Logrippo, L. (1995) “Formal support for design techniqu
Timethreads-LOTOS approach”. In FORTE VIII, 8th International Conference on Formal Description Tec
niques, Montréal, October 1995. Chapman & Hall, 57-72.
http://lotos.csi.uottawa.ca/~damyot/phd/forte95/forte95.pdf

[4] Amyot, D., Logrippo, L., and Buhr, R.J.A. (1997) “Spécification et conception de systèmes communic
une approche rigoureuse basée sur des scénarios d’usage”. In: CFIP 97, Ingénierie des protocoles, Liège, Bel-
gique, September 1997. http://www.csi.uottawa.ca/~damyot/cfip97/cfip97.pdf
12 November, 1998 23:12 References p. 36

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

 Sce-
l-
8.pdf

ns”.
t

g the

der-

gent
98)

ulti-
d D. T.
nts

ction

pdf

ature
[5] Amyot, D., Hart, N., Logrippo, L., and Forhan, P. (1998) “Formal Specification and Validation using a
nario-Based Approach: The GPRS Group-Call Example”. In: ObjecTime Workshop on Research in OO Rea
Time Modeling, Ottawa, Canada, January 1998. http://www.csi.uottawa.ca/~damyot/wrroom98/wrroom9

[6] Amyot, D. (1998) Group Communication Server: A Scenario-Based Design Exercise. Telecommunication
Research Institute of Ontario, report #1388, Ottawa, Canada, June 1998.
http://www.csi.uottawa.ca/~damyot/gcs/

[7] Barbuceanu, M., Gray, T., and Mankovski, T. (1998) “How To Make Your Agents Fulfil Their Obligatio
In: H.S. Nwana and D.T. Ndumu (Eds), PAAM’98, Third Conference on Practical Application of Intelligen
Agents and Multi-Agents, London, UK, March 1998, 255-276.

[8] Boumezbeur, R. and Logrippo, L. (1993) “Specifying telephone systems in LOTOS”. IEEE Communications
Magazine, 31 no. 8 (August), 38-45. http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Papers/svtsl.ps.Z

[9] Brinksma, E. (1988) “A theory for the derivation of tests”. In: S. Aggarwal and K. Sabnani (Eds), Protocol
Specification, Testing and Verification VIII, North-Holland, 63-74, June 1988.

[10] Buhr, R.J.A. and Casselman, R.S. (1995) Use Case Maps for Object-Oriented Systems, Prentice-Hall, USA.

[11] Buhr, R.J.A. (1997) High Level Design and Prototyping of Agent Systems, research project description.
http://www.sce.carleton.ca/rads/agents/

[12] Buhr, R.J.A., Elammari, M., Gray, T., Mankovski, S., and Pinard, D. (1997) “Understanding and Definin
Behaviour of Systems of Agents, with Use Case Maps”. Poster session, PAAM’97, Second Conference on
Practical Application of Intelligent Agents and Multi-Agents, London, UK, April 1997.
http://www.sce.carleton.ca/ftp/pub/UseCaseMaps/4paam97.pdf

[13] Buhr, R.J.A., Elammari, M., Gray, T., and Mankovski, S. (1998) “A High Level Visual Notation for Un
standing and Designing Collaborative, Adaptive Behaviour in Multi-agent Systems”, Hawaii International
Conference on System Sciences (HICSS’98), Hawaii, January 1998.
http://www.sce.carleton.ca/ftp/pub/UseCaseMaps/agents-ucms.pdf

[14] Buhr, R.J.A., Elammari, M., Gray, T., and Mankovski, S. (1998) “Applying Use Case Maps to Multi-a
Systems: A Feature Interaction Example”, Hawaii International Conference on System Sciences (HICSS’,
Hawaii, January 1998. http://www.sce.carleton.ca/ftp/pub/UseCaseMaps/hiccs98.pdf

[15] Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S. (1998) “High Level, M
agent Prototypes from a Scenario-Path Notation: A Feature-Interaction Example”. In: H. S. Nwana an
Ndumu (eds.), PAAM’98, Third Conference on Practical Application of Intelligent Agents and Multi-Age,
London, UK, March 1998. http://www.sce.carleton.ca/ftp/pub/UseCaseMaps/4paam98.pdf

[16] Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S. (1998) “Feature-Intera
Visualization and Resolution in an Agent Environment”. In: K. Kimbler and W. Bouma (eds.), Fifth Interna-
tional Workshop on Feature Interactions in Telecommunications Software Systems, IOS Press, 135-149.
http://www.sce.carleton.ca/ftp/pub/UseCaseMaps/fiw98.pdf

[17] Buhr, R.J.A. (1998) “Use Case Maps as Architectural Entities for Complex Systems”. To appear in: Transac-
tions on Software Engineering, IEEE, 1998. http://www.sce.carleton.ca/ftp/pub/UseCaseMaps/tse98final.

[18] Cameron, E.J., Griffeth, N., Linand, Y.-J., Nilson, Y.-J., Schnure, W.K. and Velthuijsen, H. (1994) “A Fe
Interaction Benchmark for IN and Beyond”. In: L. G. Bouma and H. Velthuijsen (eds), Feature Interactions in
Telecommunications Systems, Amsterdam, The Netherlands, May 1994. IOS Press, 1-23.
http://www-db.research.bell-labs.com/user/nancyg/benchmark.ps

[19] Faci, M., Logrippo, L. and Stépien, B. (1989) “Formal Specification of telephone systems in LOTOS”, Protocol
Specification, Verification and Testing, IX, North-Holland.

[20] Faci, M., Logrippo, L., and Stépien, B. (1991) “Formal Specification of Telephone Systems in LOTOS: The
Constraint-Oriented Approach”. Computer Networks and ISDN Systems, 21 (1991) 53-67.
http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Papers/telephone.CNIS9007.ps.Z
12 November, 1998 23:12 References p. 37

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

 in

.gz

erac-
r-

ection
e-

odol-

twork
e-

nd H.
y

th Use
[21] Faci, M. and Logrippo, L. (1994) “Specifying Features and Analysing their Interactions in a LOTOS Environ-
ment”. In: L. G. Bouma and H. Velthuijsen (eds), Second International Workshop on Feature Interactions
Telecommunications Software Systems, IOS Press, 136-151.
http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Papers/Fits94.CameraReady.ps.gz

[22] Faci, M. (1995) Detecting Feature Interaction in Telecommunications Systems Designs. Ph.D. thesis, Depart-
ment of Computer Science, University of Ottawa, November 1995.
http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Theses/mf_phd.ps.gz

[23] Faci, M., Logrippo, L., and Stépien, B (1997) “Structural Models for Telephone Specifications”. In: Computer
Network & ISDN Systems, 29 (1997) 501-528. http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Papers/isdn95.ps

[24] Griffeth, N.D. and Velthuijsen, N.D. (1994) “The Negotiating Agents Approach to Runtime Feature Int
tion Resolution”. In: L. G. Bouma and H. Velthuijsen (eds), Second International Workshop on Feature Inte
actions in Telecommunications Software Systems, IOS press, 217-235.
http://www-db.research.bell-labs.com/user/nancyg/fiw94.ps

[25] Griffeth, N.D., Tadashi, O., Grégoire, J.-C. and Blumenthal, R. (1998) “First Feature Interaction Det
Contest”. In: K. Kimbler and W. Bouma (eds.), Fifth International Workshop on Feature Interactions in Tel
communications Software Systems, IOS Press, 327-359. http://www.tts.lth.se:80/FIW98/contest.html

[26] ISO (1989), Information Processing Systems, Open Systems Interconnection, “LOTOS — A Formal Descrip-
tion Technique Based on the Temporal Ordering of Observational Behaviour”, IS 8807.

[27] ISO/EIC (1991), Information Technology, Open Systems Interconnection, “Conformance Testing Meth
ogy and Framework (CTMF)”, IS 9646, ISO, Geneve. Also: CCITT X.290-X.294.

[28] ITU (1995), Q.1200 (General) Recommendation Series. Geneva.

[29] ITU (1996), “Recommendation Z. 120: Message Sequence Chart (MSC)”. ITU, Geneva.

[30] Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1993) Object-Oriented Software Engineering, A
Use Case Driven Approach. Addison-Wesley, ACM Press.

[31] Kamoun, J. (1996) Formal Specification and Feature Interaction Detection in the Intelligent Network. M.Sc.
thesis, Dept. of Computer Science, University of Ottawa, Ottawa, Canada.
http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Theses/jk_msc.ps.gz

[32] Kamoun, J. and Logrippo, L. (1998) “Goal-Oriented Feature Interaction Detection in the Intelligent Ne
Model”. In: K. Kimbler and W. Bouma (eds.), Fifth International Workshop on Feature Interactions in Tel
communications Software Systems, IOS Press.

[33] Kimbler, K. and Søbirk, D. (1994) “Use case driven analysis of feature interactions”. In: L. G. Bouma a
Velthuijsen (eds), Feature Interactions in Telecommunications Systems, Amsterdam, The Netherlands, Ma
1994. IOS Press, 167-177.

[34] Miga, A. (1998) Application of Use Case Maps to System Design with Tool Support. M.Eng. thesis, Dept. of
Systems and Computer Engineering, Carleton University, Ottawa, Canada.
http://www.sce.carleton.ca/ftp/pub/UseCaseMaps/am_thesis.pdf

[35] Petriu, D. (1998) Feature Interaction Detection and Avoidance — Smart Design of Telephony System wi
Case Maps. CITO report, Ottawa, Canada. To appear.

[36] Pavón, S., Larrabeiti, D., and Rabay, G. (1995) LOLA—User Manual, version 3.6. DIT, Universidad Politécnica
de Madrid, Spain, LOLA/N5/V10 (February).

[37] Quemada, J., Pavón, S. and Fernández, A. (1988) “Transforming LOTOS Specifications with LOLA: The
Parametrized Expansion”. In: K. J. Turner (Ed), Formal Description Techniques, I, IFIP/North-Holland, 45-54.

[38] Stépien, B. and Logrippo, L. (1995) “Feature Interaction Detection using Backward Reasoning with LOTOS”.
In: S. Vuong (ed.), Protocol Specification, Testing and Verification XIV, Vancouver, 71-86.
http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Papers/pstv.94.book.ps.Z
12 November, 1998 23:12 References p. 38

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

using
-

tems
[39] Stépien, B. and Logrippo, L. (1995) “Representing and Verifying Intentions in Telephony Features
Absract Data Types”. In: K. E. Cheng and T. Ohta (eds.), Third International Workshop on Feature Interac
tions in Telecommunications Software Systems, IOS Press, 141-155.
http://lotos.csi.uottawa.ca/~bernard/intention.ps.Z

[40] Tuok, R. (1996) Modeling and Derivation of Scenarios for a Mobile Telephony System in LOTOS. M.Sc. thesis,
Dept. of Computer Science, University of Ottawa, Ottawa, Canada.
http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Theses/rt_msc.ps.gz

[41] Turner, K.J. (1998) “Validating Architectural Feature Descriptions using LOTOS”. In: K. Kimbler and W.
Bouma (eds.), Fifth International Workshop on Feature Interactions in Telecommunications Software Sys,
IOS Press.
12 November, 1998 23:12 References p. 39

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 40

A LOTOS SPECIFICATION

Here is the fully commented LOTOS specification derived from our Use Case Maps. It contains the following ele-
ments:

• Modification history: lines 1 to 58.
• Definition of observable gates/events: lines 59 to 79.
• Basic data structures and operations (ADTs simpler than the International Standard’s): lines 80 to 227.
• Data structures and operations for features: lines 228 to 853.
• Processes representing the components, the stubs and the plugins: lines 854 to 1533.
• POTS common behaviour: lines 1534 to 1647.
• POTS test cases: lines 1648 to 1714.
• Test cases for individual features: lines 1715 to 2123.
• Test cases for detecting interactions between pairs of features: lines 2124 to 2864.

1 (**)
2 (* Feature Interactions from UCM *)
3 (* Version: 0.14c *)
4 (* Date : September 8, 1998 *)
5 (* Authors: Daniel Amyot (damyot@csi.uottawa.ca) *)
6 (* Dorin Petriu (dorin@sce.carleton.ca) *)
7 (* SCE Department, Carleton University, Ottawa, Canada *)
8 (* History: *)
9 (* Sep. 8, 1998 : Added Probes for structural coverage. *)
10 (* Aug. 19, 1998: Fixed part of INFB-TCS interaction in billing. *)
11 (* Solved the INFB-TCS FI in ProcessCallStub. *)
12 (* Aug. 13, 1998: Recomposed TCS as an alternative to INFB. *)
13 (* No FI between TCS and CND, as expected. *)
14 (* FI found between TCS and INFB in this way! *)
15 (* Aug. 12, 1998: TCS implemented and tested. No FI with INTL. *)
16 (* Aug. 11, 1998: New stub for Busy in Post-Dial. Conforms to the *)
17 (* new map with 13 features. *)
18 (* Added support for AirBegin and AirEnd (Cell). *)
19 (* Started implementing TCS (priority over others) *)
20 (* July 12, 1998: Added INFB and 2 tests. The feature works. *)
21 (* Added Query gate to OS. *)
22 (* All test cases now check the final billing Log. *)
23 (* Checking interactions between INTL and INFB. *)
24 (* None found, as expected. *)
25 (* Checking interactions between CND and INFB. *)
26 (* None found, as expected? *)
27 (* July 10, 1998: Added a FList to users. CND now works. *)
28 (* Restructured the test suite *)
29 (* Checks for interactions between CND and INTL. *)
30 (* None found, as expected. *)
31 (* July 9, 1998 : Sets AudibleRinging and Ringing. *)
32 (* Updated SCP. Now INTL works. *)
33 (* Updated the switch. CND almost works. *)
34 (* July 8, 1998 : Specified part of PostDialStub and *)
35 (* ProcessCallStub to make POTS work. It does now. *)
36 (* July 7, 1998 : Added lt and ge to type Time *)
37 (* Reimplemented SCPDB and query operations *)
38 (* Reimplemented Status and query operations *)
39 (* Created six generic POTS state processes *)
40 (* Created two test processes for POTS and three *)
41 (* for INTL from the Chisel diagrams. *)
42 (* Defined the mechanism for composing feature *)
43 (* plugins in stubs. *)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 41

44 (* July 6, 1998 : Added types SPList, Status and SCPDB *)
45 (* Added processes DisplayStub, PreDialStub *)
46 (* Created process PostDialStub *)
47 (* Created Default & INTL plugins for PreDialStub *)
48 (* Worked on User and Switch for POTS/INTL *)
49 (* Added two complex test processes for POTS. *)
50 (* July 5, 1998 : Added process GlobalClock *)
51 (* Added types Cadence, PIN, Message, TriggerName *)
52 (* ResponseType, Log, LogRecord, Feature, FList *)
53 (* SInfo, SDB, AddList *)
54 (* July 4, 1998 : Added Boolean, adapted Address, and simplified *)
55 (* NaturalNumbers. *)
56 (* July 2, 1998 : Created structure and process skeletons. *)
57 (* June 16, 1998: Modified IS8807 ADT. *)
58 (**)
59
60 specification FI_UCM[OffHook, (* User2Switch *)
61 OnHook, (* User2Switch *)
62 Dial, (* User2Switch *)
63 Flash, (* User2Switch *)
64 DialTone, (* Switch2User *)
65 StartAR, (* Switch2User: Start AudibleRinging *)
66 StartR, (* Switch2User: Start Ringing *)
67 StartCWT, (* Switch2User: Start CallWaitingTone *)
68 StopAR, (* Switch2User: Stop AudibleRinging *)
69 StopR, (* Switch2User: Stop Ringing *)
70 StopCWT, (* Switch2User: Stop CallWaitingTone *)
71 LineBusyTone, (* Switch2User *)
72 Announce, (* Switch2User *)
73 Disconnect, (* Switch2User *)
74 Display, (* Switch2User *)
75 CreateUser, (* NEW: For creating user instances. *)
76 Init, (* NEW: Initialize switch for testing. *)
77 Query (* NEW: Allows to query OS’ Log. *)
78]: noexit
79
80 (*==*)
81 (* Modified IS8807 ADT definitions *)
82 (*==*)
83
84 (* Types FBoolean, Element, and Set contain corrections *)
85 (* to the library from the International Standard 8870. *)
86 (* Type Boolean remains the same, but NaturalNumber was *)
87 (* simplified by removing unnecessary arithmetic and *)
88 (* comparison operators *)
89
90 type Boolean is
91 sorts
92 Bool
93 opns
94 true, false: -> Bool
95 not: Bool -> Bool
96 _ and _, _ or _, _ xor _,
97 _ implies _, _ iff _, _ eq _, _ ne _: Bool, Bool -> Bool
98 eqns
99 forall x, y: Bool
100 ofsort Bool
101 not (true) = false ;
102 not (false) = true ;
103 x and true = x ;
104 x and false = false ;
105 x or true = true ;
106 x or fals e = x ;
107 x xor y = x and not (y) or (y and not (x)) ;
108 x implie s y = y or not (x) ;

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 42

109 x iff y = x i mplies y and (y implies x) ;
110 x eq y = x iff y ;
111 x ne y = x xor y ;
112 endtype (* Boolean *)
113
114 (***)
115
116 type NaturalNumber is Boolean
117 sorts
118 Nat
119 opns
120 0: -> Nat
121 Succ: Nat -> Nat
122 _ + _: Nat, Nat -> Nat
123 _ eq _, _ ne _: Nat, Nat -> Bool
124 eqns
125 forall m, n: Nat
126 ofsort Nat
127 m + 0 = m ;
128 m + Succ (n) = Succ (m) + n ;
129 ofsort Bool
130 0 eq 0 = true ;
131 0 eq Succ (m) = false ;
132 Succ (m) eq 0 = false ;
133 Succ (m) eq Succ (n) = m eq n ;
134 m ne n = not (m eq n) ;
135 endtype (* NaturalNumber *)
136
137 (***)
138
139 type FBoolean is
140 formalsorts FBool
141 formalopns true : -> FBool
142 not : FBool -> FBool
143 formaleqns
144 forall x : FBool
145 ofsort FBool
146 not(not(x)) = x;
147 endtype (* FBoolean *)
148
149 (***)
150
151 type Element is FBoolean
152 formalsorts Element
153 formalopns _ eq _, _ ne _ : Element, Element -> FBool
154 formaleqns
155 forall x, y, z : Element
156 ofsort Element
157 x eq y = true =>
158 x = y ;
159
160 ofsort FBool
161 x = y =>
162 x eq y = true ;
163 x eq y =tru e , y eq z = true =>
164 x eq z = true ;
165
166 x ne y = not(x eq y) ;
167 endtype (* Element *)
168
169 (***)
170
171 type Set is Element, Boolean, NaturalNumber
172 sorts Set
173 opns {} : -> Set

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 43

174 Insert, Remove : Element, Set -> Set
175 _IsIn_, _NotIn_ : Element, Set -> Bool
176 _Union_, _Ints_, _Minus_ : Set, Set -> Set
177 _eq_, _ne_, _Includes_, _IsSubsetOf_ : Set, Set -> Bool
178 Card : Set -> Nat
179
180 eqns forall x, y : Element,
181 s, t : Set
182 ofsort Set
183
184 x IsIn Insert(y,s) =>
185 Insert(x, Insert(y,s)) = Insert(y,s) ;
186 Remove(x, {}) = {} ;
187 Remove(x, Insert(x,s)) = s ;
188 x ne y = true of FBool =>
189 Remove(x, Insert(y,s)) = Insert(y, Remove(x,s));
190
191 {} Union s = s ;
192 Insert(x,s) Union t = Insert(x,s Union t) ;
193
194 {} Ints s = {} ;
195 x IsIn t =>
196 Insert(x,s) Ints t = Insert(x,s Ints t) ;
197 x NotIn t =>
198 Insert(x,s) Ints t = s Ints t ;
199
200 s Minus {} = s ;
201 s Minus Insert(x, t) = Remove(x,s) Minus t ;
202
203 ofsort Bool
204
205 x IsIn {} = false ;
206 x eq y = true of FBool =>
207 x IsIn Insert(y,s) = true ;
208 x ne y = true of FBool =>
209 x IsIn Insert(y,s) = x IsIn s ;
210 x NotIn s = not(x IsIn s) ;
211
212 s Includes {} = true ;
213 s Includes Insert(x,t) = (x IsIn s) and (s Includes t) ;
214
215 s IsSubsetOf t = t Includes s ;
216
217 s eq t = (s Includes t) and (t Includes s);
218
219 s ne t = not(s eq t) ;
220
221 ofsort Nat
222
223 Card({}) = 0 ;
224 x NotIn s =>
225 Card(Insert(x,s)) = Succ(Card(s)) ;
226 endtype (* Set *)
227
228 (*===*)
229 (* FI_UCM ADT definitions *)
230 (*===*)
231
232 (* The Time type is mapped onto natural numbers. *)
233 type Time1 is NaturalNumber renamedby
234 sortnames
235 Time for Nat
236 opnnames
237 tic for succ
238 initTime for 0

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 44

239 endtype (* Time1 *)
240
241 (* Additional comparison operators for time range. *)
242 type Time is Time1
243 opns
244 _ lt _, _ ge _ : Time, Time -> Bool
245 eqns
246 forall t1, t2 : Time
247 ofsort Bool
248 t1 lt initTime = false ;
249 initTime lt tic(t1) = true ;
250 tic(t1) lt tic(t2) = t1 lt t2 ;
251 t1 ge t2 = not (t1 lt t2);
252 endtype (* Time *)
253
254 (***)
255
256 (* The Address type contains the Address sort, *)
257 (* which is an enumeration of user identifiers *)
258 (* or numbers that can be dialled. *)
259 type Address is NaturalNumber
260 sorts Address
261 opns
262 userA, userB, userC, anonymous, undefined, star69 : -> Address
263 zeroPlus : Address -> Address
264 map : Address -> Nat
265 dest : Address -> Address
266 _ eq _, _ ne _ : Address, Address -> Bool
267 eqns
268 forall user1, user2 : Address
269 ofsort Nat
270 map(userA) = 0;
271 map(userB) = succ(0);
272 map(userC) = succ(succ(0));
273 map(anonymous) = succ(succ(succ(0)));
274 map(undefined) = succ(succ(succ(succ(0)))); (* for CND *)
275 map(star69) = succ(succ(succ(succ(succ(0))))); (* for RC *)
276 map(zeroPlus(user1)) = succ(succ(succ(succ(succ(succ(0)))))); (* for CC *)
277 ofsort Address
278 dest(zeroPlus(user1)) = user1; (* for CC *)
279 ofsort Bool
280 user1 eq user2 = map(user1) eq map(user2);
281 user1 ne user2 = not(user1 eq user2);
282 endtype (* Address *)
283
284 (* List of addresses, implemented as a set. *)
285 (* We avoid the problem with ISLA’s renaming in actualization *)
286 type AddList0 is Set
287 actualizedby Address using
288 sortnames
289 Address for Element
290 Bool for FBool
291 endtype (* AddList0 *)
292
293 type AddList is AddList0 renamedby
294 sortnames
295 AddList for Set
296 opnnames
297 NoAddList for {} (* Empty list of addresses *)
298 endtype (* AddList *)
299
300 (***)
301
302 (* The Cadence is either Ring or SpecialTone. *)
303 type Cadence is Boolean

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 45

304 sorts Cadence
305 opns
306 specialRing, tone : -> Cadence
307 _ eq _, _ ne _ : Cadence, Cadence -> Bool
308 eqns
309 forall c1, c2 : Cadence
310 ofsort Bool
311 specialRing eq specialRing = true;
312 specialRing eq tone = false;
313 tone eq specialRing = false;
314 tone eq tone = true;
315 c1 ne c2 = not(c1 eq c2);
316 endtype (* Cadence *)
317
318 (***)
319
320 (* The PIN is either validPIN or invalidPIN *)
321 type PIN is Cadence renamedby
322 sortnames PIN for Cadence
323 opnnames
324 validPIN for tone
325 invalidPIN for specialRing
326 endtype (* PIN *)
327
328 (***)
329
330 (* The Message type is mainly for announcements *)
331 type Message is NaturalNumber
332 sorts Message
333 opns
334 AskForPIN, displayMessage,
335 collectedDigits, ScreenedMessage : -> Message
336 map : Message -> Nat
337 _ eq _, _ ne _ : Message, Message -> Bool
338 eqns
339 forall m1, m2 : Message
340 ofsort Nat
341 map(AskForPIN) = 0;
342 map(displayMessage) = succ(0);
343 map(collectedDigits) = succ(succ(0));
344 map(ScreenedMessage) = succ(succ(succ(0)));
345 (* Add new messages when necessary *)
346 ofsort Bool
347 m1 eq m2 = map(m1) eq map(m2);
348 m1 ne m2 = not(m1 eq m2);
349 endtype (* Message *)
350
351 (***)
352
353 (* The TriggerName sort is an enumeration of *)
354 (* the names of IN triggers. *)
355 type TriggerName is NaturalNumber
356 sorts TriggerName
357 opns
358 ORIGINATION_ATTEMPT, INFO_COLLECTED, INFO_ANALYZED,
359 NETWORK_BUSY : -> TriggerName
360 map : TriggerName -> Nat
361 _ eq _, _ ne _ : TriggerName, TriggerName -> Bool
362 eqns
363 forall m1, m2 : TriggerName
364 ofsort Nat
365 map(ORIGINATION_ATTEMPT) = 0;
366 map(INFO_COLLECTED) = succ(0);
367 map(INFO_ANALYZED) = succ(succ(0));
368 map(NETWORK_BUSY) = succ(succ(succ(0)));

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 46

369 ofsort Bool
370 m1 eq m2 = map(m1) eq map(m2);
371 m1 ne m2 = not(m1 eq m2);
372 endtype (* TriggerName *)
373
374 (***)
375
376 (* The ResponseType sort is an enumeration of*)
377 (* the SCP responses to trigger messages. *)
378 type ResponseType is NaturalNumber
379 sorts ResponseType
380 opns
381 ANALYZE_ROUTE, CONTINUE, FORWARD_CALL, SEND_TO_RESOURCE,
382 DISCONNECT : -> ResponseType
383 map : ResponseType -> Nat
384 _ eq _, _ ne _ : ResponseType, ResponseType -> Bool
385 eqns
386 forall m1, m2 : ResponseType
387 ofsort Nat
388 map(ANALYZE_ROUTE) = 0;
389 map(CONTINUE) = succ(0);
390 map(FORWARD_CALL) = succ(succ(0));
391 map(SEND_TO_RESOURCE) = succ(succ(succ(0)));
392 map(DISCONNECT) = succ(succ(succ(succ(0))));
393 ofsort Bool
394 m1 eq m2 = map(m1) eq map(m2);
395 m1 ne m2 = not(m1 eq m2);
396 endtype (* ResponseType *)
397
398 (***)
399
400 (* The type of log in the OS is Begin, End, AirBegin, or AirEnd *)
401 type LogType is NaturalNumber
402 sorts LogType
403 opns
404 Begin, End, AirBegin, AirEnd : -> LogType
405 map : LogType -> Nat
406 _ eq _, _ ne _ : LogType, LogType -> Bool
407 eqns
408 forall m1, m2 : LogType
409 ofsort Nat
410 map(Begin) = 0;
411 map(End) = succ(0);
412 map(AirBegin) = succ(succ(0));
413 map(AirEnd) = succ(succ(succ(0)));
414 ofsort Bool
415 m1 eq m2 = map(m1) eq map(m2);
416 m1 ne m2 = not(m1 eq m2);
417 endtype (* LogType *)
418
419 (* A record for the Log. *)
420 (* Can be l(Begin,X,Y,P,T) or l(End,X,Y,undefined, T) for regular logs *)
421 (* and l(AirBegin,X,undefined,undefined,T) or *)
422 (* l(AirEnd,X,undefined,undefined, T) for cellular logs. *)
423 type LogRecord is Address, Time, LogType
424 sorts LogRecord
425 opns
426 l : LogType, Address, Address, Address, Time -> LogRecord
427 _ eq _, _ ne _ : LogRecord, LogRecord -> Bool
428 eqns
429 forall X1, X2, Y1, Y2, P1, P2 : Address,
430 T1, T2 : Time,
431 LT1, LT2 : LogType
432 ofsort Bool
433 (LT1 eq LT2) and (X1 eq X2) and (Y1 eq Y2) and (P1 eq P2) and (T1 eq T2) =>

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 47

434 l(LT1,X1,Y1,P1,T1) eq l(LT2,X2,Y2,P2,T2) = true;
435 not((LT1 eq LT2) and (X1 eq X2) and (Y1 eq Y2) and (P1 eq P2) and (T1 eq T2)) =>
436 l(LT1,X1,Y1,P1,T1) eq l(LT2,X2,Y2,P2,T2) = false;
437 l(LT1,X1,Y1,P1,T1) ne l(LT2,X2,Y2,P2,T2) = not(l(LT1,X1,Y1,P1,T1) eq l(LT2,X2,Y2,P2,T2));
438 endtype (* LogRecord *)
439
440 (* List of log records (logs), implemented as a set. *)
441 (* We avoid the problem with ISLA’s renaming in actualization *)
442 type Log0 is Set
443 actualizedby LogRecord using
444 sortnames
445 LogRecord for Element
446 Bool for FBool
447 endtype (* Logs0 *)
448
449 type Log is Log0 renamedby
450 sortnames
451 Log for Set
452 opnnames
453 NoLog for {} (* Empty list of log records *)
454 endtype (* Log *)
455
456 (***)
457
458 (* The Feature sort is an enumeration of the *)
459 (* features to which users can subscribe, *)
460 (* including POTS. *)
461 type Feature is NaturalNumber
462 sorts Feature
463 opns
464 POTS, (* Plain Old Telephone System *)
465 CFBL, (* Call Forward Busy Line *)
466 CND, (* Call Name Delivery *)
467 INFB, (* IN Freephone Billing *)
468 INFR, (* IN Freephone Routing *)
469 INTL, (* IN Teen Line *)
470 TCS, (* Terminating Call Screening *)
471 3WC, (* Three-way Calling *)
472 INCF, (* IN Call Forwarding *)
473 CW, (* Call Waiting *)
474 CC, (* Charge Call *)
475 (* Phase II features, plus one more. *)
476 Cell, (* Cellular *)
477 RC, (* Return Call *)
478 ACB (* Automatic Call Back (Dorin’s) *) : -> Feature
479
480 map : Feature -> Nat
481 _ eq _, _ ne _ : Feature, Feature -> Bool
482 eqns
483 forall m1, m2 : Feature
484 ofsort Nat
485 map(POTS) = 0;
486 map(CFBL) = succ(0);
487 map(CND) = succ(succ(0));
488 map(INFR) = succ(succ(succ(0)));
489 map(INFB) = succ(succ(succ(succ(0))));
490 map(INTL) = succ(succ(succ(succ(succ(0)))));
491 map(TCS) = succ(succ(succ(succ(succ(succ(0))))));
492 map(3WC) = succ(succ(succ(succ(succ(succ(succ(0)))))));
493 map(INCF) = succ(succ(succ(succ(succ(succ(succ(succ(0))))))));
494 map(CW) = succ(succ(succ(succ(succ(succ(succ(succ(succ(0)))))))));
495 map(CC) = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))));
496 map(Cell) = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0)))))))))));
497 map(RC) = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))))));
498 map(ACB) = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0)))))))))))));

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 48

499 ofsort Bool
500 m1 eq m2 = map(m1) eq map(m2);
501 m1 ne m2 = not(m1 eq m2);
502 endtype (* Feature *)
503
504 (* List of features, implemented as a set. *)
505 (* We avoid the problem with ISLA’s renaming in actualization *)
506 type Flist0 is Set
507 actualizedby Feature using
508 sortnames
509 Feature for Element
510 Bool for FBool
511 endtype (* Logs0 *)
512
513 type Flist is Flist0 renamedby
514 sortnames
515 Flist for Set
516 opnnames
517 NoFList for {} (* Empty list of features *)
518 endtype (* Flist *)
519
520 (***)
521
522 (* A record for the subscriber information. *)
523 (* Format: sub(userID, Features, BLForward, LastIncoming, *)
524 (* Screened, ChargePin) *)
525 type SInfo is AddList, FList, PIN
526 sorts SInfo
527 opns
528 sub : Address, (* User identifier *)
529 FList, (* List of subscribed features *)
530 Address, (* BLForward, for CFBL *)
531 Address, (* LastIncoming, for CND *)
532 AddList, (* Screened list, for TCS *)
533 PIN (* Charge PIN, for CC *) -> SInfo
534 _ eq _, _ ne _ : SInfo, SInfo -> Bool
535 eqns
536 forall s1, s2, bl1, bl2, li1, li2: Address,
537 fl1, fl2: Flist,
538 sl1, sl2: AddList,
539 p1, p2: PIN
540 ofsort Bool
541 (s1 eq s2) and (fl1 eq fl2) and (bl1 eq bl2) and (li1 eq li2)
542 and (sl1 eq sl2) and (p1 eq p2) =>
543 sub(s1, fl1, bl1, li1, sl1, p1) eq sub(s2, fl2, bl2, li2, sl2, p2) = true;
544 not((s1 eq s2) and (fl1 eq fl2) and (bl1 eq bl2) and (li1 eq li2)
545 and (sl1 eq sl2) and (p1 eq p2)) =>
546 sub(s1, fl1, bl1, li1, sl1, p1) eq sub(s2, fl2, bl2, li2, sl2, p2) = false;
547 sub(s1, fl1, bl1, li1, sl1, p1) ne sub(s2, fl2, bl2, li2, sl2, p2) =
548 not(sub(s1, fl1, bl1, li1, sl1, p1) eq sub(s2, fl2, bl2, li2, sl2, p2));
549 endtype (* SInfo *)
550
551 (* Database of subscriber records (SInfo), implemented as a set. *)
552 (* We avoid the problem with ISLA’s renaming in actualization. *)
553 type SDB0 is Set
554 actualizedby SInfo using
555 sortnames
556 SInfo for Element
557 Bool for FBool
558 endtype (* SDB0 *)
559
560 type SDB1 is SDB0 renamedby
561 sortnames
562 SDB for Set
563 opnnames

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 49

564 NoSDB for {} (* Empty list of subscribers *)
565 endtype (* SDB1 *)
566
567 (* Query operators *)
568 type SDB is SDB1
569 opns
570 (* Tells whether a subscriber has subscribed a particular feature *)
571 has : Address, Feature, SDB -> Bool
572 (* Sets/Gets the$LastIncoming caller *)
573 setLastIncoming : Address, Address, SDB -> SDB
574 getLastIncoming : Address, SDB -> Address
575 (* Check whether the caller party is on the callee’s TCS *)
576 isOnTCS : Address, Address, SDB -> Bool (* Caller, Callee *)
577
578 eqns
579 forall s1, s2, s3, bl1, li1, li2: Address,
580 sl1: AddList,
581 p1: PIN,
582 f1, f2: Feature,
583 fl : FList,
584 sdb : SDB
585 ofsort Bool
586 has(s1, f1, NoSDB) = false;
587 s1 eq s2 =>
588 has(s1, f1, Insert(sub(s2,fl,bl1,li1,sl1,p1), sdb)) = f1 IsIn fl;
589 s1 ne s2 =>
590 has(s1, f1, Insert(sub(s2,fl,bl1,li1,sl1,p1), sdb)) = has(s1, f1, sdb);
591
592 isOnTCS(s1, s2, NoSDB) = false;
593 s3 eq s2 =>
594 isOnTCS(s1, s2, Insert(sub(s3,fl,bl1,li1,sl1,p1), sdb)) = s1 IsIn sl1;
595 s3 ne s2 =>
596 isOnTCS(s1, s2, Insert(sub(s3,fl,bl1,li1,sl1,p1), sdb)) = isOnTCS(s1, s2, sdb);
597
598 ofsort SDB
599 setLastIncoming(s1, li1, NoSDB) = NoSDB;
600 s1 eq s2 =>
601 setLastIncoming(s1, li1, Insert(sub(s2,fl,bl1,li2,sl1,p1), sdb)) =

Insert(sub(s2,fl,bl1,li1,sl1,p1), sdb);
602 s1 ne s2 =>
603 setLastIncoming(s1, li1, Insert(sub(s2,fl,bl1,li2,sl1,p1), sdb)) =
604 Insert(sub(s2,fl,bl1,li2,sl1,p1), setLastIncoming(s1, li1,sdb));
605 ofsort Address
606 getLastIncoming(s1, NoSDB) = undefined;
607 s1 eq s2 =>
608 getLastIncoming(s1, Insert(sub(s2,fl,bl1,li1,sl1,p1), sdb)) = li1;
609 s1 ne s2 =>
610 getLastIncoming(s1, Insert(sub(s2,fl,bl1,li1,sl1,p1), sdb)) = getLastIncoming(s1, sdb);
611 endtype (* SDB *)
612
613 (***)
614
615 (* The SCPit sort is an enumeration of the *)
616 (* SCP types of information in the database. *)
617 type SCPit is NaturalNumber
618 sorts SCPit
619 opns
620 Redirect, TeenPIN, TeenTime, ForwardedTo : -> SCPit
621 map : SCPit -> Nat
622 _ eq _, _ ne _ : SCPit, SCPit -> Bool
623 eqns
624 forall s1, s2 : SCPit
625 ofsort Nat
626 map(Redirect) = 0;
627 map(TeenPIN) = succ(0);

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 50

628 map(TeenTime) = succ(succ(0));
629 map(ForwardedTo) = succ(succ(succ(0)));
630 ofsort Bool
631 s1 eq s2 = map(s1) eq map(s2);
632 s1 ne s2 = not(s1 eq s2);
633 endtype (* SCPit *)
634
635 (* Information records about the feature parameters in the SCP *)
636 (* These heterogeneous records share the same format to simplify *)
637 (* the equations. *)
638 type SCPinfo is SCPit, Address, Time, PIN
639 sorts SCPinfo
640 opns
641 (* INFR: Redirec t A B T1 T2 C *)
642 (* -> scp(Redirect, A, B, T1, T2, C, validPIN) *)
643 (* INTL: TeenPIN A PIN *)
644 (* -> scp(TeenPIN, A, undefined, initTime, initTime, undefined, PIN) *)
645 (* INTL: TeenTime A T1 T2 *)
646 (* -> scp(TeenTime, A, undefined, T1, T2, undefined, validPIN) *)
647 (* INCF: ForwardedTo B C *)
648 (* -> scp(ForwardedTo, undefined, B, initTime, initTime, C, validPIN) *)
649 scp : SCPit, Address, Address, Time, Time, Address, PIN -> SCPinfo
650 _ eq _, _ ne _ : SCPinfo, SCPinfo -> Bool
651 eqns
652 forall s1, s2 : SCPit,
653 a1, a2, b1, b2, c1, c2: Address,
654 t11, t12, t21, t22 : Time,
655 pin1, pin2 : PIN
656 ofsort bool
657 (s1 eq s2) and (a1 eq a2) and (b1 eq b2) and (c1 eq c2) and (t11 eq t12) and (t21 eq t22) and

(pin1 eq pin2) =>
658 scp(s1, a1, b1, t11, t21, c1, pin1) eq scp(s2, a2, b2, t12, t22, c2, pin2) = true;
659 not((s1 eq s2) and (a1 eq a2) and (b1 eq b2) and (c1 eq c2) and (t11 eq t12) and (t21 eq t22)

and (pin1 eq pin2)) =>
660 scp(s1, a1, b1, t11, t21, c1, pin1) eq scp(s2, a2, b2, t12, t22, c2, pin2) = false;
661 scp(s1, a1, b1, t11, t21, c1, pin1) ne scp(s2, a2, b2, t12, t22, c2, pin2) =
662 not(scp(s1, a1, b1, t11, t21, c1, pin1) eq scp(s2, a2, b2, t12, t22, c2, pin2))
663 endtype (* SCPinfo *)
664
665 (* Database of feature parameters (SCPinfo) in the SCP, implemented as a set. *)
666 (* We avoid the problem with ISLA’s renaming in actualization. *)
667 type SCPDB0 is Set
668 actualizedby SCPinfo using
669 sortnames
670 SCPinfo for Element
671 Bool for FBool
672 endtype (* SCPDB0 *)
673
674 type SCPDB1 is SCPDB0 renamedby
675 sortnames
676 SCPDB for Set
677 opnnames
678 NoSCPDB for {} (* Empty list of feature parameters. *)
679 endtype (* SCPDB1 *)
680
681 (* Query operators *)
682 type SCPDB is SCPDB1
683 opns
684 (* Tells whether this is an INTL restricted time or not *)
685 IsInTeenTime : Address, Time, SCPDB -> Bool
686 IsValidTeenPIN : Address, PIN, SCPDB -> Bool
687 eqns
688 forall scpit : SCPit,
689 a1, a2, b, c : Address,
690 t, t1, t2 : Time,

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 51

691 p, p1, p2 : PIN,
692 scpdb : SCPDB
693 ofsort Bool
694 (* IsInTeenTime *)
695 IsInTeenTime(a1, t, NoSCPDB) = false;
696 (scpit eq TeenTime) and (a1 eq a2) and (t ge t1) and (t lt t2) =>
697 IsInTeenTime(a1, t, Insert(scp(scpit, a2, b, t1, t2, c, p), scpdb)) = true;
698 not((scpit eq TeenTime) and (a1 eq a2) and (t ge t1) and (t lt t2)) =>
699 IsInTeenTime(a1, t, Insert(scp(scpit, a2, b, t1, t2, c, p), scpdb)) =
700 IsInTeenTime(a1, t, scpdb);
701
702 (* IsValidTeenPIN *)
703 IsValidTeenPIN(a1, p1, NoSCPDB) = false;
704 (scpit eq TeenPIN) and (a1 eq a2) and (p1 eq p2) =>
705 IsValidTeenPIN(a1, p1, Insert(scp(scpit, a2, b, t1, t2, c, p2), scpdb)) = true;
706 not((scpit eq TeenPIN) and (a1 eq a2) and (p1 eq p2)) =>
707 IsValidTeenPIN(a1, p1, Insert(scp(scpit, a2, b, t1, t2, c, p2), scpdb)) =
708 IsValidTeenPIN(a1, p1, scpdb);
709 endtype (* SCPDB *)
710
711 (***)
712
713 (* The StatItem sort is an enumeration of the *)
714 (* status items in the switch in the database. *)
715 type StatItem is NaturalNumber
716 sorts StatItem
717 opns
718 Busy, Ringing, AudibleRinging, ThreeWay, CallWaiting : -> StatItem
719 map : StatItem -> Nat
720 _ eq _, _ ne _ : StatItem, StatItem -> Bool
721 eqns
722 forall s1, s2 : StatItem
723 ofsort Nat
724 map(Busy) = 0;
725 map(Ringing) = succ(0);
726 map(AudibleRinging) = succ(succ(0));
727 map(ThreeWay) = succ(succ(succ(0)));
728 map(CallWaiting) = succ(succ(succ(succ(0))));
729 ofsort Bool
730 s1 eq s2 = map(s1) eq map(s2);
731 s1 ne s2 = not(s1 eq s2);
732 endtype (* StatItem *)
733
734 (* Status records collected in the switch during calls *)
735 type Stat is Address, StatItem
736 sorts Stat
737 opns
738 (* POTS: Busy A -> stat(Busy, A, undefined) *)
739 (* POTS: Ringing A B -> stat(Rigning, A, B) *)
740 (* POTS: AudibleRinging A B -> stat(AudibleRinging, A, B) *)
741 (* 3WC : ThreeWay X -> stat(ThreeWay, X, undefined) *)
742 (* CW : CallWaiting X -> stat(CallWaiting, X, undefined) *)
743 stat : StatItem, Address, Address -> Stat
744 _ eq _, _ ne _ : Stat, Stat -> Bool
745 eqns
746 forall a1, a2, b1, b2: Address,
747 si1, si2: StatItem
748 ofsort Bool
749 (a1 eq a2) and (b1 eq b2) and (si1 eq si2) =>
750 stat(si1, a1, b1) eq stat(si2, a2, b2) = true;
751 not((a1 eq a2) and (b1 eq b2) and (si1 eq si2)) =>
752 stat(si1, a1, b1) eq stat(si2, a2, b2) = false;
753 stat(si1, a1, b1) ne stat(si2, a2, b2) =
754 not(stat(si1, a1, b1) eq stat(si2, a2, b2));
755 endtype (* Stat *)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 52

756
757 (* Database of status records in the switch, implemented as a set. *)
758 (* We avoid the problem with ISLA’s renaming in actualization. *)
759 type Status0 is Set
760 actualizedby Stat using
761 sortnames
762 Stat for Element
763 Bool for FBool
764 endtype (* Status0 *)
765
766 type Status1 is Status0 renamedby
767 sortnames
768 Status for Set
769 opnnames
770 NoStatus for {} (* Empty list of status. *)
771 endtype (* Status1 *)
772
773 (* Query operators *)
774 type Status is Status1
775 opns
776 (* Tells whether a subscriber is Idle or Busy *)
777 isIdle, isBusy : Address, Status -> Bool
778 eqns
779 forall a1, a2, b1, b2 : Address,
780 si1, si2 : StatItem,
781 s : Status
782 ofsort Bool
783 (* isIdle *)
784 isIdle(a1, NoStatus) = true;
785 (a1 eq a2) and (si2 eq Busy) =>
786 isIdle(a1, Insert(stat(si2, a2, b2), s)) = false;
787 not((a1 eq a2) and (si2 eq Busy)) =>
788 isIdle(a1, Insert(stat(si2, a2, b2), s)) = isIdle(a1, s);
789 (* isBusy *)
790 isBusy(a1, s) = not(isIdle(a1, s));
791 endtype (* Status *)
792
793 (*===*)
794 (* Stub Path ADT definitions *)
795 (*===*)
796
797 (* Entry and exit points of each stub in the maps *)
798 type StubPath is NaturalNumber
799 sorts StubPath
800 opns
801 inPreD1, outPreD1, outPreD2, (* pre-dial stub *)
802 inPostD1, outPostD1, outPostD2, outPostD3, outPostD4,
803 outPostD5, (* post-dial stub *)
804 inBill1, outBill2, (* billing stub *)
805 inPC1, outPC1, outPC2, outPC3,
806 outPC4, (* process-call stub *)
807 inDisp1, outDisp1, (* display stub *)
808 inBusy1, outBusy1, outBusy2 (* busy stub *) : -> StubPath
809 map : StubPath -> Nat
810 _ eq _, _ ne _ : StubPath, StubPath -> Bool
811 eqns
812 forall sp1, sp2 : StubPath
813 ofsort Nat
814 map(inPreD1) (* From OffHook *) = 0;
815 map(outPreD1) (* To Dial *) = succ(map(inPreD1));
816 map(outPreD2) (* To Reject *) = succ(map(outPreD1));
817 map(inPostD1) (* From Dial *) = succ(map(outPreD2));
818 map(outPostD1) (* To Term-Connected *) = succ(map(inPostD1));
819 map(outPostD2) (* To Orig-Connected *) = succ(map(outPostD1));
820 map(outPostD3) (* To Billing *) = succ(map(outPostD2));

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 53

821 map(outPostD4) (* To Reject *) = succ(map(outPostD3));
822 map(outPostD5) (* To Busy *) = succ(map(outPostD4));
823 map(inBill1) (* From Post-Dial *) = succ(map(outPostD5));
824 map(outBill2) (* To Result-OS *) = succ(map(inBill1));
825 map(inPC1) (* From Call *) = succ(map(outBill2));
826 map(outPC1) (* To Ring (Term) *) = succ(map(inPC1));
827 map(outPC2) (* To Busy *) = succ(map(outPC1));
828 map(outPC3) (* To Reject *) = succ(map(outPC2));
829 map(outPC4) (* To stub itself *) = succ(map(outPC3));
830 map(inDisp1) (* From PC stub *) = succ(map(outPC4));
831 map(outDisp1) (* To OffHook *) = succ(map(inDisp1));
832 map(inBusy1) (* From Process-Call *) = succ(map(outDisp1));
833 map(outBusy1) (* To Busy *) = succ(map(inBusy1));
834 map(outBusy2) (* To Call_X *) = succ(map(outBusy1));
835 ofsort Bool
836 sp1 eq sp2 = map(sp1) eq map(sp2);
837 sp1 ne sp2 = not(sp1 eq sp2);
838 endtype (* StubPath *)
839
840 type SPList0 is Set
841 actualizedby StubPath using
842 sortnames
843 StubPath for Element
844 Bool for FBool
845 endtype (* SPList0 *)
846
847 type SPList is SPList0 renamedby
848 sortnames
849 SPList for Set
850 opnnames
851 NoSPList for {} (* Empty list of path identifiers. *)
852 endtype (* SPList *)
853
854 (*===*)
855 (* Behaviour Description *)
856 (*===*)
857
858 behaviour
859
860 (* Gates not visible to the users are set to be internal. *)
861 (* Interfaces (e.g. Switch2User) are splitted into several*)
862 (* gates, one per type of message. *)
863 hide Trigger, (* Switch2SCP *)
864 Resource, (* Switch2SCP *)
865 Response, (* SCP2Switch *)
866 LogBegin, (* 2OS *)
867 LogEnd, (* 2OS *)
868 AirBegin, (* 2OS *)
869 AirEnd, (* 2OS *)
870 Time (* NEW: Used by the Switch to get the time *)
871 in
872
873 (* Get the Initial state from the environment *)
874 Init ?InitSDB:SDB ?InitStatus:Status ?InitSCPDB:SCPDB ?currentTime:Time;
875 (
876 (* We create as many users as necessary. *)
877 UserFactory [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
878 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
879 Disconnect, Display, CreateUser]
880 |[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
881 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
882 Disconnect, Display]|
883 (
884 (
885 GlobalClock [Time](currentTime)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 54

886 |[Time]|
887 Switch [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
888 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
889 Disconnect, Display, Trigger, Resource, Response, LogBegin,
890 LogEnd, AirBegin, AirEnd, Time](InitSDB, InitStatus)
891 |[Trigger, Resource, Response]|
892 SCP [Trigger, Resource, Response, LogBegin, LogEnd, AirBegin, AirEnd](InitSCPDB)
893)
894 |[LogBegin, LogEnd, AirBegin, AirEnd]|
895 OS [LogBegin, LogEnd, AirBegin, AirEnd, Query](NoLog)
896)
897)
898
899 where
900
901 (**)
902 (* Process UserFactory: To create ans initialise necessary users . *)
903 (**)
904
905 process UserFactory [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
906 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
907 Disconnect, Display, CreateUser]: noexit :=
908 CreateUser ?userId:Address ?userFeatures:FList;
909 (
910 (* Create the user *)
911 User [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
912 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
913 Disconnect, Display] (userId, userFeatures)
914 |||
915 (* Prepare to accept new creation request *)
916 UserFactory [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
917 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
918 Disconnect, Display, CreateUser]
919)
920 endproc (* UserFactory *)
921
922
923 (**)
924 (* Process User: To be instantiated by all users with a userId. *)
925 (**)
926
927 process User [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
928 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
929 Disconnect, Display] (userId: Address, uf:FList): noexit :=
930
931 (* POTS - Origination (Root map) *)
932 OffHook !userId; (*_PROBE_*)
933 User [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
934 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
935 Disconnect, Display] (userId, uf)
936 []
937
938 DialTone !userId;
939 (
940 Dial !userId ?userTo:Address;
941 User [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
942 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
943 Disconnect, Display] (userId, uf)
944 []
945 OnHook !userId; (*_PROBE_*) stop
946)
947
948 []
949
950 LineBusyTone !userId;

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 55

951 OnHook !userId; (*_PROBE_*) stop
952
953 []
954
955 (* POTS - Origination (post-dial default map) *)
956 StartAR !userId ?userTo:Address;
957 (
958 OnHook !userId;
959 StopAR !userId !userTo; (*_PROBE_*) stop
960 []
961 StopAR !userId !userTo;
962 (* CONNECTED state! Use Disconnect map. *)
963 (
964 OnHook !userId; (*_PROBE_*) stop
965 []
966 Disconnect !userId !userTo;
967 OnHook !userId; (*_PROBE_*) stop
968)
969)
970
971 []
972
973 (* POTS - Termination (post-dial default map) *)
974
975 (
976 (
977 StartR !userId ?userFrom:Address; exit (userId, userFrom, uf, any SPList)
978 |||
979 DisplayStub[Display](userId, uf, Insert(inDisp1, NoSPList))
980)
981 >>
982 accept userId:Address, userFrom:Address, uf:FList, outPaths:SPList in
983 (* outDisp1 is the only possible outPath... *)
984 [outDisp1 IsIn outPaths] ->
985 (
986 OffHook !userId;
987 StopR !userId !userFrom;
988 (* CONNECTED state! Use Disconnect map) *)
989 (
990 Disconnect !userId !UserFrom;
991 OnHook !userId; (*_PROBE_*) stop
992 []
993 OnHook !userId; (*_PROBE_*) stop
994)
995 []
996 (* userFrom has gon on-hook. *)
997 StopR !userId !userFrom; (*_PROBE_*) stop
998)
999)
1000
1001 []
1002
1003 (* INTL - Origination (pre-dial INTL map) *)
1004 Announce !userId !AskForPIN;
1005 (
1006 Dial !userId ?p:PIN; (*_PROBE_*)
1007 User [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1008 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1009 Disconnect, Display] (userId, uf)
1010 []
1011 OnHook !userId; (*_PROBE_*) stop
1012)
1013
1014 []
1015

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 56

1016 Announce !userId !InvalidPIN;
1017 OnHook !userId; (*_PROBE_*) stop
1018
1019 []
1020
1021 (* TCS reject *)
1022 Announce !userId !ScreenedMessage;
1023 OnHook !userId; (*_PROBE_*) stop
1024
1025 (* NOT TO FORGET: Flash may be interpreted as OnHook-OffHook... *)
1026
1027 where
1028
1029 (**)
1030 (* Stub Process DisplayStub: in map Post-Dial. One input path and *)
1031 (* one output path *)
1032 (**)
1033 process DisplayStub[Display](userId:Address, uf:FList, inPaths:SPList) :
1034 exit (Address, Address, FList, SPList) :=
1035 (* In this stub, CND is optional (we do not have access to SCPDB). *)
1036 [CND NotIn uf] -> (* Can’t put a probe here... Check P13=!P6+P7+P8 instead. *)
1037 (* POTS default plugin *)
1038 exit (userId, any Address, uf, Insert(outDisp1, NoSPList))
1039 []
1040 [CND IsIn uf] ->
1041 (* CND plugin. UserFrom provided by the switch. *)
1042 Display !userId ?userFrom:Address; (*_PROBE_*)
1043 exit (userId, any Address, uf, Insert(outDisp1, NoSPList))
1044 endproc (* DisplayStub *)
1045
1046 endproc (* User *)
1047
1048
1049 (**)
1050 (* Process Switch: *)
1051 (**)
1052 process Switch [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1053 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1054 Disconnect, Display, Trigger, Resource, Response, LogBegin,
1055 LogEnd, AirBegin, AirEnd, Time] (sdb:SDB, status:Status)
1056 : noexit :=
1057
1058 OffHook ?userFrom:Address [isIdle(userFrom, status)];
1059 PreDialStub[OnHook, Trigger, Response, Resource, Announce, Dial, Time]
1060 (Insert(inPreD1, NoSPList), userFrom, sdb,
1061 (* Set userFrom Busy *)
1062 Insert(stat(Busy, userFrom, undefined), status))
1063 >>
1064 accept userFrom:Address, sdb:SDB, status:Status, outPaths:SPList in
1065 (* outPreD1: Ok *)
1066 [outPreD1 IsIn outPaths] ->
1067 (
1068 DialTone !userFrom;
1069 (
1070 (
1071 Dial !userFrom ?userTo:Address;
1072 PostDialStub[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1073 StartR, StartCWT, StopAR, StopR, StopCWT,
1074 LineBusyTone, Announce, Disconnect, Display,
1075 Trigger, Resource, Response, LogBegin, LogEnd,
1076 Time](Insert(inPostD1, NoSPList), userFrom, userTo, sdb, status)
1077 >>
1078 accept userFrom:Address, userTo:Address, userPay:Address, sdb:SDB, status:Status, outPat

hs:SPList in
1079 (* Output path 1 comes before 2,3, which can work as alternatives

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 57

(for disconnection purposes). *)
1080 (* Paths 4, 5, and {1,2,3} are alternative paths. *)
1081 [outPostD1 IsIn outPaths] ->
1082 (
1083 (* userFrom may have disconnected... *)
1084 [isBusy(userFrom, status)] ->
1085 Time ?t:time;
1086 LogBegin !userFrom !userTo !userPay !t;
1087 (
1088 (* Orig-Connected, and Orig disconnects (POTS 7) *)
1089 [outPostD2 IsIn outPaths] ->
1090 (
1091 OnHook !userFrom;
1092 (
1093 let status:Status = Remove(stat(Busy, userFrom, undefined), status) in
1094 (
1095 Disconnect !userTo !userFrom;
1096 exit (userFrom, userTo, sdb, status)
1097 |||
1098 Time ?t:time;
1099 LogEnd !userFrom !userTo !t;
1100 exit (userFrom, userTo, sdb, status)
1101)
1102 >> accept userFrom:Address, userTo:Address, sdb:SDB, status:Status in
1103 OnHook !userTo;
1104 (
1105 let status:Status = Remove(stat(Busy, userTo, undefined), status) in

(*_PROBE_*)
1106 stop
1107)
1108)
1109)
1110 []
1111 (* Term-Connected, and Term disconnects (POTS 10) *)
1112 [outPostD3 IsIn outPaths] ->
1113 (
1114 OnHook !userTo;
1115 (
1116 let status:Status = Remove(stat(Busy, userTo, undefined), status) in
1117 (
1118 Disconnect !userFrom !userTo;
1119 exit (userFrom, userTo, sdb, status)
1120 |||
1121 Time ?t:time;
1122 LogEnd !userFrom !userTo !t;
1123 exit (userFrom, userTo, sdb, status)
1124)
1125 >> accept userFrom:Address, userTo:Address, sdb:SDB, status:Status in
1126 OnHook !userFrom;
1127 (
1128 let status:Status = Remove(stat(Busy, userFrom, undefined), status)

in (*_PROBE_*)
1129 stop
1130)
1131)
1132)
1133)
1134 []
1135 [IsIdle(userFrom, status)] ->
1136 (
1137 (* UserFrom has gone on-hook. *) (*_PROBE_*)
1138 stop
1139)
1140)
1141 []

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 58

1142 [outPostD4 IsIn outPaths] ->
1143 (
1144 (* Reject path. *)
1145 Announce !userFrom !ScreenedMessage;
1146 OnHook !userFrom;
1147 (
1148 let status:Status = Remove(stat(Busy, userFrom, undefined), status) in

(*_PROBE_*)
1149 stop
1150)
1151)
1152 []
1153 [outPostD5 IsIn outPaths] ->
1154 (
1155 (* Busy. (POTS 15) *)
1156 LineBusyTone !userFrom;
1157 OnHook !userFrom;
1158 (
1159 let status:Status = Remove(stat(Busy, userFrom, undefined), status) in

(*_PROBE_*)
1160 stop
1161)
1162)
1163)
1164 []
1165 OnHook !userFrom; (* From POTS 7-12? *)
1166 (
1167 (* Set userFrom Idle *)
1168 let status:Status = Remove(stat(Busy, userFrom, undefined), status) in (*_PROBE_*)
1169 stop
1170)
1171)
1172)
1173 |||
1174 (* outPreD2: reject *)
1175 [outPreD2 IsIn outPaths] ->
1176 (
1177 OnHook !userFrom; (* From INTL 12 *)
1178 (
1179 (* Set userFrom Idle *)
1180 let status:Status = Remove(stat(Busy, userFrom, undefined), status) in (*_PROBE_*)
1181 stop
1182)
1183)
1184
1185 where
1186
1187 (**)
1188 (* Stub Process PreDialStub: *)
1189 (**)
1190 process PreDialStub[OnHook, Trigger, Response, Resource, Announce, Dial, Time]
1191 (inPaths: SPList, userFrom: Address, sdb: SDB,
1192 status: Status): exit (Address, SDB, Status, SPList) :=
1193 (* In this stub, INTL is mutually exclusive with all other features. *)
1194
1195 (* INTL plugin *)
1196 [has(userFrom, INTL, sdb)] ->
1197 (* NEW EVENTS: we believe that the INTL information should be located in the SCP. *)
1198 (* Is the time in the subscriber’s TeenTime interval? *)
1199 Time ?time:Time; (* Get the current time *)
1200 Resource !INTL !userFrom !time;
1201 Response !INTL !userFrom ?inTeenTime:Bool;
1202 (
1203 (* Unrestricted time for INTL *)
1204 [not(inTeenTime)] -> (*_PROBE_*)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 59

1205 exit (userFrom, sdb, status, Insert(outPreD1, NoSPList))
1206 []
1207 (* Restricted time for INTL *)
1208 [inTeenTime] ->
1209 Trigger !ORIGINATION_ATTEMPT !userFrom !userFrom !undefined !time ;
1210 Response !SEND_TO_RESOURCE !userFrom ?m:message;
1211 Announce !userFrom !m;
1212 (
1213 OnHook !UserFrom; (*_PROBE_*) stop (* INTL 13 *)
1214 []
1215 Dial !userFrom ?pin:PIN;
1216 Resource !userFrom !pin;
1217 (
1218 Response !CONTINUE !userFrom !userFrom !undefined; (*_PROBE_*)
1219 exit (userFrom, sdb, status, Insert(outPreD1, NoSPList))
1220 []
1221 Response !SEND_TO_RESOURCE !userFrom !invalidPIN;
1222 Resource !userFrom !undefined;
1223 Announce !userFrom !invalidPIN;
1224 Response !DISCONNECT !userFrom !undefined; (*_PROBE_*)
1225 exit (userFrom, sdb, status, Insert(outPreD2, NoSPList))
1226)
1227)
1228)
1229
1230 []
1231
1232 (* Default plugin *)
1233 [not(has(userFrom, INTL, sdb))] -> (*_PROBE_*)
1234 exit (userFrom, sdb, status, Insert(outPreD1, NoSPList))
1235 endproc (* PreDialStub *)
1236
1237
1238 (**)
1239 (* Stub Process PostDialStub: *)
1240 (**)
1241 process PostDialStub[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1242 StartR, StartCWT, StopAR, StopR, StopCWT,
1243 LineBusyTone, Announce, Disconnect, Display,
1244 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1245 (inPaths: SPList, userFrom: Address, userTo:Address, sdb: SDB,
1246 status: Status): exit (Address, Address, Address, SDB, Status, SPList) :=
1247
1248 (* Use the processCallStub first *)
1249 ProcessCallStub[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1250 StartR, StartCWT, StopAR, StopR, StopCWT,
1251 LineBusyTone, Announce, Disconnect, Display,
1252 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1253 (Insert(inPC1, NoSPList), userFrom, userTo, sdb, status)
1254 >>
1255 accept userFrom:Address, userTo:Address, userPay:Address, sdb:SDB, status:Status, outPaths:SPList

in
1256 (* All choices are mutually exclusive here. *)
1257 (* outPC1: Idle *)
1258 [outPC1 IsIn outPaths] ->
1259 (
1260 (* Set userTo Busy *)
1261 let status:Status = Insert(stat(Busy, userTo, undefined), status) in
1262 (
1263 StartAR !userFrom !userTo; (*_PROBE_*)
1264 exit (userFrom, userTo, userPay, any SDB, Insert(stat(AudibleRinging, userFrom, userTo),
1265 Insert(stat(Ringing, userTo, userFrom), status)))
1266 |||
1267 StartR !userTo !userFrom; (*_PROBE_*)
1268 exit (userFrom, userTo, userPay, any SDB, Insert(stat(AudibleRinging, userFrom, userTo),

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 60

1269 Insert(stat(Ringing, userTo, userFrom), status)))
1270 |||
1271 (* For SetDisplayStub and CND plugin for ProcessCallStub *)
1272 (
1273 [has(userTo, CND, sdb)] ->
1274 (* Update LastIncoming and Display it. *)
1275 Display !userTo !userFrom; (*_PROBE_*)
1276 exit (userFrom, userTo, userPay, setLastIncoming(userTo, userFrom, sdb), any Status)
1277 []
1278 [not(has(userTo, CND, sdb))] ->
1279 (* Do nothing special *) (*_PROBE_*)
1280 exit (userFrom, userTo, userPay, sdb, any Status)
1281)
1282)
1283 >>
1284 accept userFrom:Address, userTo:Address, userPay:Address, sdb:SDB, status:Status in
1285 OffHook !userTo; (* POTS 5 *)
1286 (
1287 StopAR !userFrom !userTo; (*_PROBE_*)
1288 exit (userFrom, userTo, userPay, sdb,
1289 Remove(stat(AudibleRinging, userFrom, userTo),
1290 Remove(stat(Ringing, userTo, userFrom), status)),
1291 Insert(outPostD1, Insert(outPostD2, Insert(outPostD3, NoSPList))))
1292 |||
1293 StopR !userTo !userFrom; (*_PROBE_*)
1294 exit (userFrom, userTo, userPay, sdb,
1295 Remove(stat(AudibleRinging, userFrom, userTo),
1296 Remove(stat(Ringing, userTo, userFrom), status)),
1297 Insert(outPostD1, Insert(outPostD2, Insert(outPostD3, NoSPList))))
1298)
1299 []
1300 (* Disconnection possible here... *)
1301 OnHook !userFrom; (* POTS 5 *)
1302 (
1303 (* Set userFrom Idle *)
1304 let status:Status = Remove(stat(Busy, userFrom, undefined), status) in
1305 (
1306 StopAR !userFrom !userTo; (* Set userTo idle after the synchronization *)

(*_PROBE_*)
1307 exit (userFrom, userTo, userPay, sdb,
1308 Remove(stat(Busy, userTo, undefined),
1309 Remove(stat(AudibleRinging, userFrom, userTo),
1310 Remove(stat(Ringing, userTo, userFrom), status))),
1311 Insert(outPostD1, NoSPList))
1312 |||
1313 StopR !userTo !userFrom; (*_PROBE_*)
1314 exit (userFrom, userTo, userPay, sdb,
1315 Remove(stat(Busy, userTo, undefined),
1316 Remove(stat(AudibleRinging, userFrom, userTo),
1317 Remove(stat(Ringing, userTo, userFrom), status))),
1318 Insert(outPostD1, NoSPList))
1319)
1320)
1321)
1322 []
1323 (* outPC2: Busy *)
1324 [outPC2 IsIn outPaths] ->
1325 (
1326 (* Invoke BusyStub *)
1327 BusyStub[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1328 StartR, StartCWT, StopAR, StopR, StopCWT,
1329 LineBusyTone, Announce, Disconnect, Display,
1330 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1331 (Insert(inBusy1, NoSPList), userFrom, userTo, userPay, sdb, status)
1332 >>

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 61

1333 accept userFrom:Address, userTo:Address, userPay:Address, sdb:SDB, status:Status,
outPaths:SPList in

1334 [outBusy1 IsIn outPaths] ->
1335 (* CC: invalid PIN *) (*_PROBE_*)
1336 exit (userFrom, userTo, userPay, sdb, status, Insert(outPostD5, NoSPList))
1337 []
1338 [outBusy2 IsIn outPaths] ->
1339 (* TO BE DONE *) (*_PROBE_*)
1340 stop
1341)
1342 []
1343 (* outPC3: Reject *)
1344 [outPC3 IsIn outPaths] ->
1345 (
1346 (* TCS Reject *) (*_PROBE_*)
1347 exit (userFrom, userTo, userPay, sdb, status, Insert(outPostD4, NoSPList))
1348)
1349 []
1350 (* outPC4: Back to stub *)
1351 [outPC4 IsIn outPaths] ->
1352 (
1353 (*_PROBE_*) stop (* TO BE DONE *)
1354)
1355
1356 where
1357
1358 (**)
1359 (* Stub Process ProcessCallStub: *)
1360 (**)
1361 process ProcessCallStub [OffHook, OnHook, Dial, Flash, DialTone,
1362 StartAR, StartR, StartCWT, StopAR, StopR, StopCWT,
1363 LineBusyTone, Announce, Disconnect, Display,
1364 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1365 (inPaths: SPList, userFrom: Address, userTo:Address,
1366 sdb: SDB, status: Status)
1367 : exit (Address, Address, Address, SDB, Status, SPList) :=
1368
1369 (* CND will be taken care of at outPC1, after all these plug-ins. *)
1370
1371 (* TCS (reject path) has priority over the other features. *)
1372 [has(userTo, TCS, sdb) and isOnTCS(userFrom, userTo, SDB)] -> (*_PROBE_*)
1373 (* Caller on the list. Reject call. *)
1374 exit (userFrom, userTo, userFrom, sdb, status, Insert(outPC3, NoSPList))
1375 []
1376 (* Remaining features *)
1377 [not(has(userTo, TCS, sdb) and isOnTCS(userFrom, userTo, SDB))] ->
1378 (
1379 (* INFB *)
1380 [has(userTo, INFB, sdb)] -> (*_PROBE_*)
1381 PluginINFB[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1382 StartR, StartCWT, StopAR, StopR, StopCWT,
1383 LineBusyTone, Announce, Disconnect, Display,
1384 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1385 (inPaths, userFrom, userTo, sdb, status)
1386 []
1387 (* Default *)
1388 [not(has(userTo, INFB, sdb))] -> (*_PROBE_*)
1389 PluginDefault[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1390 StartR, StartCWT, StopAR, StopR, StopCWT,
1391 LineBusyTone, Announce, Disconnect, Display,
1392 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1393 (inPaths, userFrom, userTo, sdb, status)
1394)
1395 where
1396

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 62

1397 process PluginINFB[OffHook, OnHook, Dial, Flash, DialTone,
1398 StartAR, StartR, StartCWT, StopAR, StopR, StopCWT,
1399 LineBusyTone, Announce, Disconnect, Display,
1400 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1401 (inPaths: SPList, userFrom: Address, userTo:Address,
1402 sdb: SDB, status: Status)
1403 : exit (Address, Address, Address, SDB, Status, SPList) :=
1404
1405 (* INFB plugin for ProcessCallStub *)
1406 Time ?t:Time;
1407 Trigger !INFO_ANALYZED !userTo !userFrom !userTo !t;
1408 Response !ANALYZE_ROUTE !userTo !userFrom !userTo !userTo;
1409 (
1410 [IsIdle(userTo, status)] -> (*_PROBE_*)
1411 (* Called party (userTo) pays. *)
1412 exit (userFrom, userTo, userTo, sdb, status, Insert(outPC1, NoSPList))
1413 []
1414 [IsBusy(userTo, status)] -> (*_PROBE_*)
1415 exit (userFrom, userTo, userTo, sdb, status, Insert(outPC2, NoSPList))
1416)
1417 endproc (* PluginINFB *)
1418
1419 process PluginDefault [OffHook, OnHook, Dial, Flash, DialTone,
1420 StartAR, StartR, StartCWT, StopAR, StopR, StopCWT,
1421 LineBusyTone, Announce, Disconnect, Display,
1422 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1423 (inPaths: SPList, userFrom: Address, userTo:Address,
1424 sdb: SDB, status: Status)
1425 : exit (Address, Address, Address, SDB, Status, SPList) :=
1426
1427 (* Default plugin for ProcessCallStub *)
1428 [IsIdle(userTo, status)] -> (*_PROBE_*)
1429 exit (userFrom, userTo, userFrom, sdb, status, Insert(outPC1, NoSPList))
1430 []
1431 [IsBusy(userTo, status)] -> (*_PROBE_*)
1432 exit (userFrom, userTo, userFrom, sdb, status, Insert(outPC2, NoSPList))
1433 endproc (* PluginDefault *)
1434
1435 endproc (* ProcessCallStub *)
1436
1437 (**)
1438 (* Stub Process BusyStub: *)
1439 (**)
1440 process BusyStub [OffHook, OnHook, Dial, Flash, DialTone,
1441 StartAR, StartR, StartCWT, StopAR, StopR, StopCWT,
1442 LineBusyTone, Announce, Disconnect, Display,
1443 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1444 (inPaths: SPList, userFrom: Address, userTo:Address,
1445 userPay:Address, sdb: SDB, status: Status)
1446 : exit (Address, Address, Address, SDB, Status, SPList) :=
1447
1448 (* POTS default plugin. *)
1449 exit (userFrom, userTo, userPay, sdb, status, Insert(outBusy1, NoSPList))
1450 (* No probe here. Obviously covered for now. *)
1451 (* TO BE DONE: other plugins. *)
1452 endproc (* BusyStub *)
1453
1454 endproc (* PostDialStub *)
1455
1456 endproc (* Switch *)
1457
1458
1459 (**)
1460 (* Process SCP: *)
1461 (**)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 63

1462 process SCP [Trigger, Resource, Response, LogBegin, LogEnd, AirBegin, AirEnd]
1463 (scpbd:SCPDB) : noexit :=
1464
1465 (* From INTL: check if time is within TeenTime limits. *)
1466 Resource !INTL ?user:Address ?time:Time;
1467 Response !INTL !user !IsInTeenTime(user, time, scpbd); (*_PROBE_*)
1468 SCP [Trigger, Resource, Response, LogBegin, LogEnd, AirBegin, AirEnd](scpbd)
1469 []
1470 (* From INTL: Origination attempt to connect. Ask for PIN. *)
1471 Trigger !ORIGINATION_ATTEMPT ?user:Address ?user2:Address !undefined ?t:Time [user eq user2];
1472 Response !SEND_TO_RESOURCE !user !AskForPIN; (*_PROBE_*)
1473 SCP [Trigger, Resource, Response, LogBegin, LogEnd, AirBegin, AirEnd](scpbd)
1474 []
1475 (* From INTL: check PIN *)
1476 Resource ?user:Address ?pin:PIN;
1477 (
1478 [IsValidTeenPIN(user, pin, scpbd)] ->
1479 Response !CONTINUE !user !user !undefined; (*_PROBE_*)
1480 SCP [Trigger, Resource, Response, LogBegin, LogEnd, AirBegin, AirEnd](scpbd)
1481 []
1482 [not(IsValidTeenPIN(user, pin, scpbd))] ->
1483 Response !SEND_TO_RESOURCE !user !invalidPIN;
1484 Resource ?user:Address !undefined;
1485 Response !DISCONNECT !user !undefined; (*_PROBE_*)
1486 SCP [Trigger, Resource, Response, LogBegin, LogEnd, AirBegin, AirEnd](scpbd)
1487)
1488 []
1489 (* From INFB: IN Analyze *)
1490 Trigger !INFO_ANALYZED ?userTo:Address ?userFrom:Address ?userTo2:Address ?t:Time [userTo eq userTo2]
1491 Response !ANALYZE_ROUTE !userTo !userFrom !userTo !userTo; (*_PROBE_*)
1492 SCP [Trigger, Resource, Response, LogBegin, LogEnd, AirBegin, AirEnd](scpbd)
1493 endproc (* SCP *)
1494
1495
1496 (**)
1497 (* Process OS: *)
1498 (**)
1499 process OS [LogBegin, LogEnd, AirBegin, AirEnd, Query](log:Log) : noexit :=
1500 LogBegin ?From:Address ?To:Address ?Paying:Address ?t:Time; (*_PROBE_*)
1501 OS[LogBegin, LogEnd, AirBegin, AirEnd, Query]
1502 (Insert(l(Begin, From, To, Paying, t),log))
1503 []
1504 LogEnd ?From:Address ?To:Address ?t:Time; (*_PROBE_*)
1505 OS[LogBegin, LogEnd, AirBegin, AirEnd, Query]
1506 (Insert(l(End, From, To, undefined, t),log))
1507 []
1508 (* For Phase II features *)
1509 AirBegin ?From:Address ?t:Time; (*_PROBE_*)
1510 OS[LogBegin, LogEnd, AirBegin, AirEnd, Query]
1511 (Insert(l(AirBegin, From, undefined, undefined, t),log))
1512 []
1513 AirEnd ?From:Address ?t:Time; (*_PROBE_*)
1514 OS[LogBegin, LogEnd, AirBegin, AirEnd, Query]
1515 (Insert(l(AirEnd, From, undefined, undefined, t),log))
1516 []
1517 (* NEW functionality which allow a test case to check the Log. *)
1518 Query !log; (*_PROBE_*)
1519 OS[LogBegin, LogEnd, AirBegin, AirEnd, Query](log)
1520 endproc (* OS *)
1521
1522
1523 (**)
1524 (* Process GlobalClock: computes the relative time incrementally and*)
1525 (* provides timestamps (t) when required. *)
1526 (**)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 64

1527
1528 process GlobalClock [Time](t:Time) : noexit :=
1529 Time !T; GlobalClock[Time](tic(t)) (* No probe here. Obviously covered... *)
1530
1531 endproc (* GlobalClock *)
1532
1533
1534 (*==*)
1535 (* *)
1536 (* POTS PROCESSES *)
1537 (* *)
1538 (*==*)
1539
1540 (* These six processes represent common test sequences (repreenting *)
1541 (* a canonical tester) among many features (POTS states 1, 2, 4, 5, *)
1542 (* 13 and 15). 3WC and CW are not covered entirely by these. *)
1543 (* They all exit so that we can check the Log afterwards in test cases*)
1544 (* using these processes. *)
1545
1546 process POTS_1 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1547 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1548 Disconnect, Display, Success] (userFrom:Address, userTo:Address)
1549 : exit (Nat) :=
1550 OffHook !userFrom;
1551 POTS_2 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1552 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1553 Disconnect, Display, Success] (userFrom, userTo)
1554 endproc (* POTS_1 *)
1555
1556
1557 process POTS_2 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1558 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1559 Disconnect, Display, Success] (userFrom:Address, userTo:Address)
1560 : exit (Nat) :=
1561 DialTone !userFrom; (* State 2 *)
1562 (
1563 i ; OnHook !userFrom; exit (succ(succ(succ(succ(0))))) (* State 17 *)
1564 []
1565 i ; Dial !userFrom !userTo; (* State 3 *)
1566 (
1567 POTS_4 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1568 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1569 Disconnect, Display, Success] (userFrom, userTo)
1570 []
1571 POTS_15 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1572 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1573 Disconnect, Display, Success] (userFrom, userTo)
1574)
1575)
1576 endproc (* POTS_2 *)
1577
1578
1579 process POTS_4 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1580 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1581 Disconnect, Display, Success] (userFrom:Address, userTo:Address)
1582 : exit (Nat) :=
1583 (
1584 StartAR !userFrom !userTo; exit (userFrom, userTo)
1585 |||
1586 StartR !userTo !userFrom; exit (userFrom, userTo)
1587)
1588 >> accept userFrom:Address, userTo:Address in
1589 (
1590 i ; POTS_5 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1591 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 65

1592 Disconnect, Display, Success] (userFrom, userTo)
1593 []
1594 i ; POTS_13[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1595 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1596 Disconnect, Display, Success] (userFrom, userTo)
1597)
1598 endproc (* POTS_4 *)
1599
1600
1601 process POTS_5 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1602 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1603 Disconnect, Display, Success] (userFrom:Address, userTo:Address)
1604 : exit (Nat) :=
1605 OffHook !userTo;
1606 (
1607 (* State 6 *)
1608 StopAR !userFrom !userTo; exit (userFrom, userTo)
1609 |||
1610 StopR !userTo !userFrom; exit (userFrom, userTo)
1611)
1612 >> accept userFrom:Address, userTo:Address in
1613 (
1614 i ; OnHook !userFrom; (* State 7 *)
1615 Disconnect !userTo !userFrom; (* State 8 *)
1616 onHook !userTo; exit (0) (* State 9 *)
1617 []
1618 i ; OnHook !userTo; (* State 10 *)
1619 Disconnect !userFrom !userTo; (* State 11 *)
1620 OnHook !userFrom; exit (succ(0)) (* State 12 *)
1621)
1622 endproc (* POTS_5 *)
1623
1624
1625 process POTS_13[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1626 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1627 Disconnect, Display, Success] (userFrom:Address, userTo:Address)
1628 : exit (Nat) :=
1629 OnHook !userFrom;
1630 (
1631 (* State 14 *)
1632 StopAR !userFrom !userTo; exit (succ(succ(0)))
1633 |||
1634 StopR !userTo !userFrom; exit (succ(succ(0)))
1635)
1636 endproc (* POTS_13 *)
1637
1638
1639 process POTS_15[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1640 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1641 Disconnect, Display, Success] (userFrom:Address, userTo:Address)
1642 : exit (Nat) :=
1643 LineBusyTone !userFrom;
1644 OnHook !userFrom; exit (succ(succ(succ(0)))) (* State 16 *)
1645 endproc (* POTS_15 *)
1646
1647
1648 (*==*)
1649 (* *)
1650 (* TEST PROCESSES *)
1651 (* *)
1652 (*==*)
1653
1654 (**********)
1655 (** POTS **)
1656 (**********)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 66

1657
1658 (* TEST CASES *)
1659 process tPOTS1 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1660 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1661 Disconnect, Display, Init, CreateUser, Query, Success] : noexit :=
1662 (* Cases where userB is not busy. *)
1663 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
1664 Insert(sub(userB, NoFList, undefined, undefined, NoAddList, validPIN), NoSDB))
1665 !NoStatus
1666 !NoSCPDB
1667 !InitTime;
1668 CreateUser !userA !NoFList;
1669 CreateUser !userB !NoFList;
1670 POTS_1 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1671 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1672 Disconnect, Display, Success] (userA, userB)
1673
1674 (* Check the Log *)
1675 >> accept exitCode:Nat in
1676 (
1677 (* One connection *)
1678 [(exitCode eq 0) or (exitCode eq succ(0))] ->
1679 Query !Insert(l(End, userA, userB, undefined, tic(InitTime)),
1680 Insert(l(Begin, userA, userB, userA, InitTime), NoLog));
1681 Success; stop
1682 []
1683 (* No connection *)
1684 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
1685 Query !NoLog;
1686 Success; stop
1687)
1688 endproc (* tPOTS1 *)
1689
1690 process tPOTS2 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1691 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1692 Disconnect, Display, Init, CreateUser, Query, Success] : noexit :=
1693 (* Cases where userB is busy. *)
1694 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
1695 Insert(sub(userB, NoFList, undefined, undefined, NoAddList, validPIN), NoSDB))
1696 !Insert(stat(Busy, userB, undefined), NoStatus)
1697 !NoSCPDB
1698 !InitTime;
1699 CreateUser !userA !NoFList;
1700 CreateUser !userB !NoFList;
1701 POTS_1 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1702 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1703 Disconnect, Display, Success] (userA, userB)
1704
1705 (* Check the Log *)
1706 >> accept exitCode:Nat in
1707 (
1708 (* No connection only. *)
1709 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
1710 Query !NoLog;
1711 Success; stop
1712)
1713 endproc (* tPOTS2 *)
1714
1715 (**********)
1716 (** INTL **)
1717 (**********)
1718
1719 (* COMMON BEHAVIOUR *)
1720 process cINTL1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1721 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 67

1722 Disconnect, Display, Success] : exit (Nat) :=
1723 (* Cases where TeenTime is restricted and A provides the valid PIN. *)
1724 OffHook !userA;
1725 Announce !userA !AskForPIN;
1726 (
1727 i ; Dial !userA !validPIN;
1728 POTS_2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1729 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1730 Disconnect, Display, Success] (userA, userB)
1731 []
1732 i ; OnHook !userA; exit (succ(succ(succ(succ(succ(0))))))
1733)
1734 endproc (* cINTL1 *)
1735
1736 process cINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1737 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1738 Disconnect, Display, Success] : exit (Nat) :=
1739 (* Cases where TeenTime is restricted and A does not provide the valid PIN. *)
1740 OffHook !userA;
1741 Announce !userA !AskForPIN;
1742 (
1743 i ; Dial !userA !invalidPIN;
1744 Announce !userA !invalidPIN;
1745 OnHook !userA; exit (succ(succ(succ(succ(succ(succ(0)))))))
1746 []
1747 i ; OnHook !userA; exit (succ(succ(succ(succ(succ(0))))))
1748)
1749 endproc (* cINTL2 *)
1750
1751 (* TEST PROCESSES *)
1752 process tINTL1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1753 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1754 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
1755 (* Cases where TeenTime is not restricted. *)
1756 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
1757 Insert(sub(userB, NoFList, undefined, undefined, NoAddList, validPIN), NoSDB))
1758 !NoStatus
1759 !Insert(scp(TeenTime, userA, undefined, tic(tic(initTime)), tic(tic(tic(initTime))), undefined,

validPIN), NoSCPDB)
1760 !InitTime;
1761 CreateUser !userA !Insert(INTL, NoFList);
1762 CreateUser !userB !NoFList;
1763 POTS_1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1764 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1765 Disconnect, Display, Success](userA, userB)
1766
1767 (* Check the Log *)
1768 >> accept exitCode:Nat in
1769 (
1770 (* One connection *)
1771 [(exitCode eq 0) or (exitCode eq succ(0))] ->
1772 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
1773 Insert(l(Begin, userA, userB, userA, tic(InitTime)), NoLog));
1774 Success; stop
1775 []
1776 (* No connection *)
1777 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
1778 Query !NoLog;
1779 Success; stop
1780)
1781 endproc (* tINTL1 *)
1782
1783 process tINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1784 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1785 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 68

1786 (* Cases where TeenTime is restricted and A provides the valid PIN. *)
1787 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
1788 Insert(sub(userB, NoFList, undefined, undefined, NoAddList, validPIN), NoSDB))
1789 !NoStatus
1790 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
1791 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
1792 !InitTime;
1793 CreateUser !userA !Insert(INTL, NoFList);
1794 CreateUser !userB !NoFList;
1795 cINTL1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1796 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1797 Disconnect, Display, Success]
1798
1799 (* Check the Log *)
1800 >> accept exitCode:Nat in
1801 (
1802 (* One connection *)
1803 [(exitCode eq 0) or (exitCode eq succ(0))] ->
1804 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
1805 Insert(l(Begin, userA, userB, userA, tic(InitTime)), NoLog));
1806 Success; stop
1807 []
1808 (* No connection *)
1809 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
1810 Query !NoLog;
1811 Success; stop
1812)
1813 endproc (* tINTL2 *)
1814
1815 process tINTL3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1816 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1817 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
1818 (* Cases where TeenTime is restricted and A does not provide the valid PIN. *)
1819 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
1820 Insert(sub(userB, NoFList, undefined, undefined, NoAddList, validPIN), NoSDB))
1821 !NoStatus
1822 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
1823 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
1824 !InitTime;
1825 CreateUser !userA !Insert(INTL, NoFList);
1826 CreateUser !userB !NoFList;
1827 cINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1828 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1829 Disconnect, Display, Success]
1830
1831 (* Check the Log *)
1832 >> accept exitCode:Nat in
1833 (
1834 (* No connection *)
1835 [(exitCode eq succ(succ(succ(succ(succ(0)))))) or (exitCode eq

succ(succ(succ(succ(succ(succ(0)))))))] ->
1836 Query !NoLog;
1837 Success; stop
1838)
1839 endproc (* tINTL3 *)
1840
1841 (*********)
1842 (** CND **)
1843 (*********)
1844
1845 (* COMMON BEHAVIOUR *)
1846 process cCND1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1847 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1848 Disconnect, Display, Success] : exit (Nat) :=
1849 (* Starts at POTS state 2. *)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 69

1850 (* Should Display the originator’s number. *)
1851 DialTone !userA;
1852 Dial !userA !userB;
1853 (
1854 StartAR !userA !userB; exit (userA, userB)
1855 |||
1856 StartR !userB !userA; exit (userA, userB)
1857 |||
1858 Display !userB !userA; exit (userA, userB)
1859)
1860 >> accept userFrom:Address, userTo:Address in
1861 (
1862 i ; POTS_5 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1863 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1864 Disconnect, Display, Success] (userFrom, userTo)
1865 []
1866 i ; POTS_13[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1867 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1868 Disconnect, Display, Success] (userFrom, userTo)
1869)
1870 endproc (* cCND1 *)
1871
1872 (* TEST PROCESSES *)
1873 process tCND1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1874 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1875 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
1876 (* Should Display the originator’s number. *)
1877 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
1878 Insert(sub(userB, Insert(CND, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
1879 !NoStatus
1880 !NoSCPDB
1881 !InitTime;
1882 CreateUser !userA !NoFList;
1883 CreateUser !userB !Insert(CND, NoFList);
1884 OffHook !userA;
1885 cCND1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1886 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1887 Disconnect, Display, Success]
1888
1889 (* Check the Log *)
1890 >> accept exitCode:Nat in
1891 (
1892 (* One connection *)
1893 [(exitCode eq 0) or (exitCode eq succ(0))] ->
1894 Query !Insert(l(End, userA, userB, undefined, tic(InitTime)),
1895 Insert(l(Begin, userA, userB, userA, InitTime), NoLog));
1896 Success; stop
1897 []
1898 (* No connection *)
1899 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
1900 Query !NoLog;
1901 Success; stop
1902)
1903 endproc (* tCND1 *)
1904
1905 process tCND2 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1906 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1907 Disconnect, Display, Init, CreateUser, Query, Success] : noexit :=
1908 (* Cases where userB is busy. *)
1909 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
1910 Insert(sub(userB, Insert(INFB, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
1911 !Insert(stat(Busy, userB, undefined), NoStatus)
1912 !NoSCPDB
1913 !InitTime;
1914 CreateUser !userA !NoFList;

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 70

1915 CreateUser !userB !Insert(INFB, NoFList);
1916 POTS_1 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1917 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1918 Disconnect, Display, Success] (userA, userB)
1919
1920 (* Check the Log *)
1921 >> accept exitCode:Nat in
1922 (
1923 (* No connection only. *)
1924 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
1925 Query !NoLog;
1926 Success; stop
1927)
1928 endproc (* tCND2 *)
1929
1930 (**********)
1931 (** INFB **)
1932 (**********)
1933
1934 (* NO SPECIAL COMMON BEHAVIOUR *)
1935 (* TEST PROCESSES *)
1936 process tINFB1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1937 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1938 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
1939 (* Cases where B is not Busy. Affect the billing. *)
1940 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
1941 Insert(sub(userB, Insert(INFB, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
1942 !NoStatus
1943 !NoSCPDB
1944 !InitTime;
1945 CreateUser !userA !NoFList;
1946 CreateUser !userB !Insert(INFB, NoFList);
1947 POTS_1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1948 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1949 Disconnect, Display, Success](userA, userB)
1950
1951 (* Check the Log. UserB should be charged. *)
1952 >> accept exitCode:Nat in
1953 (
1954 (* One connection *)
1955 [(exitCode eq 0) or (exitCode eq succ(0))] ->
1956 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
1957 Insert(l(Begin, userA, userB, userB, tic(InitTime)), NoLog));
1958 Success; stop
1959 []
1960 (* No connection *)
1961 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
1962 Query !NoLog;
1963 Success; stop
1964)
1965 endproc (* tINFB1 *)
1966
1967 process tINFB2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1968 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1969 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
1970 (* Cases where B is Busy. Do not affect billing. *)
1971 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
1972 Insert(sub(userB, Insert(INFB, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
1973 !Insert(stat(Busy, userB, undefined), NoStatus)
1974 !NoSCPDB
1975 !InitTime;
1976 CreateUser !userA !NoFList;
1977 CreateUser !userB !Insert(INFB, NoFList);
1978 POTS_1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1979 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 71

1980 Disconnect, Display, Success](userA, userB)
1981
1982 (* Check the Log *)
1983 >> accept exitCode:Nat in
1984 (
1985 (* No connection only. *)
1986 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
1987 Query !NoLog;
1988 Success; stop
1989)
1990 endproc (* tINFB2 *)
1991
1992 (*********)
1993 (** TCS **)
1994 (*********)
1995
1996 (* COMMON BEHAVIOUR *)
1997 process cTCS1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
1998 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
1999 Disconnect, Display, Success] : exit (Nat) :=
2000 OffHook !userA;
2001 DialTone !userA; (* State 2 *)
2002 (
2003 i ; OnHook !userA; exit (succ(succ(succ(succ(0))))) (* State 17 *)
2004 []
2005 i ; Dial !userA !userB; (* State 3 *)
2006 POTS_4[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2007 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2008 Disconnect, Display, Success](userA, userB)
2009)
2010 endproc (* cTCS1 *)
2011
2012 process cTCS2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2013 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2014 Disconnect, Display, Success] : exit (Nat) :=
2015 OffHook !userA;
2016 DialTone !userA; (* State 2 *)
2017 (
2018 i ; OnHook !userA; exit (succ(succ(succ(succ(0))))) (* State 17 *)
2019 []
2020 i ; Dial !userA !userB; (* State 3 *)
2021 POTS_15[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2022 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2023 Disconnect, Display, Success](userA, userB)
2024)
2025 endproc (* cTCS2 *)
2026
2027 process cTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2028 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2029 Disconnect, Display, Success] : exit (Nat) :=
2030 OffHook !userA;
2031 DialTone !userA; (* State 2 *)
2032 (
2033 i ; OnHook !userA; exit (succ(succ(succ(succ(0))))) (* State 17 *)
2034 []
2035 i ; Dial !userA !userB; (* State 3 *)
2036 Announce !userA !ScreenedMessage;
2037 OnHook !userA;
2038 exit (succ(succ(succ(succ(0))))) (* TCS State 4, same as POTS State 17 *)
2039)
2040 endproc (* cTCS3 *)
2041
2042 (* TEST PROCESSES *)
2043 process tTCS1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2044 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 72

2045 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2046 (* Cases where B is not Busy and A is not screened. *)
2047 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2048 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userC, NoAddList), validPIN),

NoSDB))
2049 !NoStatus
2050 !NoSCPDB
2051 !InitTime;
2052 CreateUser !userA !NoFList;
2053 CreateUser !userB !Insert(TCS, NoFList);
2054 cTCS1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2055 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2056 Disconnect, Display, Success]
2057
2058 (* Check the Log. UserA should be charged. *)
2059 >> accept exitCode:Nat in
2060 (
2061 (* One connection *)
2062 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2063 Query !Insert(l(End, userA, userB, undefined, tic(InitTime)),
2064 Insert(l(Begin, userA, userB, userA, InitTime), NoLog));
2065 Success; stop
2066 []
2067 (* No connection *)
2068 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2069 Query !NoLog;
2070 Success; stop
2071)
2072 endproc (* tTCS1 *)
2073
2074 process tTCS2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2075 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2076 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2077 (* Cases where B is Busy and A is not screened. *)
2078 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2079 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userC, NoAddList), validPIN),

NoSDB))
2080 !Insert(stat(Busy, userB, undefined), NoStatus)
2081 !NoSCPDB
2082 !InitTime;
2083 CreateUser !userA !NoFList;
2084 CreateUser !userB !Insert(TCS, NoFList);
2085 cTCS2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2086 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2087 Disconnect, Display, Success]
2088
2089 (* Check the Log. *)
2090 >> accept exitCode:Nat in
2091 (
2092 (* No connection only. *)
2093 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2094 Query !NoLog;
2095 Success; stop
2096)
2097 endproc (* tTCS2 *)
2098
2099 process tTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2100 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2101 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2102 (* Cases where A is screened. *)
2103 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2104 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userA, NoAddList), validPIN),

NoSDB))
2105 !NoStatus
2106 !NoSCPDB

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 73

2107 !InitTime;
2108 CreateUser !userA !NoFList;
2109 CreateUser !userB !Insert(TCS, NoFList);
2110 cTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2111 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2112 Disconnect, Display, Success]
2113
2114 (* Check the Log. *)
2115 >> accept exitCode:Nat in
2116 (
2117 (* No connection only. *)
2118 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2119 Query !NoLog;
2120 Success; stop
2121)
2122 endproc (* tTCS3 *)
2123
2124 (*==*)
2125 (* *)
2126 (* FI TEST PROCESSES *)
2127 (* *)
2128 (*==*)
2129
2130 (**************)
2131 (* INTL - CND *)
2132 (**************)
2133
2134 process fiINTL_CND[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2135 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2136 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2137 (* Should Display the originator’s number. *)
2138
2139 (
2140 (* Cases where TeenTime is not restricted. *)
2141 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2142 Insert(sub(userB, Insert(CND, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2143 !NoStatus
2144 !Insert(scp(TeenTime, userA, undefined, tic(tic(initTime)), tic(tic(tic(initTime))), undefined,

validPIN), NoSCPDB)
2145 !InitTime;
2146 CreateUser !userA !Insert(INTL, NoFList);
2147 CreateUser !userB !Insert(CND, NoFList);
2148 OffHook !userA;
2149 cCND1 [OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2150 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2151 Disconnect, Display, Success]
2152
2153 (* Check the Log. *)
2154 >> accept exitCode:Nat in
2155 (
2156 (* One connection *)
2157 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2158 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
2159 Insert(l(Begin, userA, userB, userA, tic(InitTime)), NoLog));
2160 Success; stop
2161 []
2162 (* No connection *)
2163 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2164 Query !NoLog;
2165 Success; stop
2166)
2167)
2168 []
2169 (
2170 (* tINTL2 *)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 74

2171 (* Cases where TeenTime is restricted and A provides the valid PIN. *)
2172 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2173 Insert(sub(userB, Insert(CND, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2174 !NoStatus
2175 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2176 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2177 !InitTime;
2178 CreateUser !userA !Insert(INTL, NoFList);
2179 CreateUser !userB !Insert(CND, NoFList);
2180 OffHook !userA;
2181 Announce !userA !AskForPIN;
2182 Dial !userA !validPIN;
2183 cCND1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2184 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2185 Disconnect, Display, Success]
2186
2187 (* Check the Log. *)
2188 >> accept exitCode:Nat in
2189 (
2190 (* One connection *)
2191 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2192 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
2193 Insert(l(Begin, userA, userB, userA, tic(InitTime)), NoLog));
2194 Success; stop
2195 []
2196 (* No connection *)
2197 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2198 Query !NoLog;
2199 Success; stop
2200)
2201)
2202 []
2203 (
2204 (* tINTL3 *)
2205 (* Cases where TeenTime is restricted and A does not provide the valid PIN. *)
2206 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2207 Insert(sub(userB, Insert(CND, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2208 !NoStatus
2209 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2210 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2211 !InitTime;
2212 CreateUser !userA !Insert(INTL, NoFList);
2213 CreateUser !userB !Insert(CND, NoFList);
2214 cINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2215 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2216 Disconnect, Display, Success]
2217
2218 (* Check the Log *)
2219 >> accept exitCode:Nat in
2220 (
2221 (* No connection *)
2222 [(exitCode eq succ(succ(succ(succ(succ(0)))))) or (exitCode eq

succ(succ(succ(succ(succ(succ(0)))))))] ->
2223 Query !NoLog;
2224 Success; stop
2225)
2226)
2227 endproc (* fiINTL_CND *)
2228
2229 (***************)
2230 (* INTL - INFB *)
2231 (***************)
2232
2233 process fiINTL_INFB[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2234 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 75

2235 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2236 (* Should Display the originator’s number. *)
2237
2238 (
2239 (* Cases where TeenTime is not restricted. *)
2240 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2241 Insert(sub(userB, Insert(INFB, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2242 !NoStatus
2243 !Insert(scp(TeenTime, userA, undefined, tic(tic(tic(initTime))),
2244 tic(tic(tic(tic(initTime)))), undefined, validPIN), NoSCPDB)
2245 !InitTime;
2246 CreateUser !userA !Insert(INTL, NoFList);
2247 CreateUser !userB !Insert(INFB, NoFList);
2248 POTS_1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2249 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2250 Disconnect, Display, Success](userA, userB)
2251
2252 (* Check the Log. UserB should be charged. *)
2253 >> accept exitCode:Nat in
2254 (
2255 (* One connection *)
2256 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2257 Query !Insert(l(End, userA, userB, undefined, tic(tic(tic(InitTime)))),
2258 Insert(l(Begin, userA, userB, userB, tic(tic(InitTime))), NoLog));
2259 Success; stop
2260 []
2261 (* No connection *)
2262 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2263 Query !NoLog;
2264 Success; stop
2265)
2266)
2267 []
2268 (
2269 (* tINTL2 *)
2270 (* Cases where TeenTime is restricted and A provides the valid PIN. *)
2271 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2272 Insert(sub(userB, Insert(INFB, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2273 !NoStatus
2274 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(tic(initTime))), undefined, validPIN),
2275 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2276 !InitTime;
2277 CreateUser !userA !Insert(INTL, NoFList);
2278 CreateUser !userB !Insert(INFB, NoFList);
2279 cINTL1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2280 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2281 Disconnect, Display, Success]
2282
2283 (* Check the Log. UserB should be charged. *)
2284 >> accept exitCode:Nat in
2285 (
2286 (* One connection *)
2287 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2288 Query !Insert(l(End, userA, userB, undefined, tic(tic(tic(InitTime)))),
2289 Insert(l(Begin, userA, userB, userB, tic(tic(InitTime))), NoLog));
2290 Success; stop
2291 []
2292 (* No connection *)
2293 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2294 Query !NoLog;
2295 Success; stop
2296)
2297)
2298 []
2299 (

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 76

2300 (* tINTL3 *)
2301 (* Cases where TeenTime is restricted and A does not provide the valid PIN. *)
2302 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2303 Insert(sub(userB, Insert(INFB, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2304 !NoStatus
2305 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(tic(initTime))), undefined, validPIN),
2306 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2307 !InitTime;
2308 CreateUser !userA !Insert(INTL, NoFList);
2309 CreateUser !userB !Insert(INFB, NoFList);
2310 cINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2311 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2312 Disconnect, Display, Success]
2313
2314 (* Check the Log *)
2315 >> accept exitCode:Nat in
2316 (
2317 (* No connection *)
2318 [(exitCode eq succ(succ(succ(succ(succ(0)))))) or (exitCode eq

succ(succ(succ(succ(succ(succ(0)))))))] ->
2319 Query !NoLog;
2320 Success; stop
2321)
2322)
2323 endproc (* fiINTL_INFB *)
2324
2325 (****************)
2326 (** CND - INFB **)
2327 (****************)
2328
2329 process fiCND_INFB[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2330 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2331 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2332 (
2333 (* Should Display the originator’s number. *)
2334 (* Cases where B is not Busy. Affect the billing. *)
2335 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2336 Insert(sub(userB, Insert(CND, Insert(INFB, NoFList)), undefined, undefined, NoAddList, validPIN),

NoSDB))
2337 !NoStatus
2338 !NoSCPDB
2339 !InitTime;
2340 CreateUser !userA !NoFList;
2341 CreateUser !userB !Insert(CND, Insert(INFB, NoFList));
2342 OffHook !userA;
2343 cCND1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2344 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2345 Disconnect, Display, Success]
2346
2347 (* Check the Log. UserB should be charged. *)
2348 >> accept exitCode:Nat in
2349 (
2350 (* One connection *)
2351 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2352 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
2353 Insert(l(Begin, userA, userB, userB, tic(InitTime)), NoLog));
2354 Success; stop
2355 []
2356 (* No connection *)
2357 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2358 Query !NoLog;
2359 Success; stop
2360)
2361)
2362 []

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 77

2363 (
2364 (* Cases where B is Busy. Does not affect billing. *)
2365 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2366 Insert(sub(userB, Insert(CND, Insert(INFB, NoFList)), undefined, undefined, NoAddList, validPIN),

NoSDB))
2367 !Insert(stat(Busy, userB, undefined), NoStatus)
2368 !NoSCPDB
2369 !InitTime;
2370 CreateUser !userA !NoFList;
2371 CreateUser !userB !Insert(CND, Insert(INFB, NoFList));
2372 POTS_1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2373 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2374 Disconnect, Display, Success](userA, userB)
2375
2376 (* Check the Log *)
2377 >> accept exitCode:Nat in
2378 (
2379 (* No connection only. *)
2380 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2381 Query !NoLog;
2382 Success; stop
2383)
2384
2385)
2386 endproc (* fiCND_INFB *)
2387
2388 (**************)
2389 (* INTL - TCS *)
2390 (**************)
2391
2392 process fiINTL_TCS[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2393 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2394 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2395
2396 (
2397 (* Cases where A’s TeenTime is not restricted, A is not on B’s TCS list, and B is idle. *)
2398 (* tTCS1 and tINTL1 *)
2399 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2400 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userC, NoAddList), validPIN),

NoSDB))
2401 !NoStatus
2402 !Insert(scp(TeenTime, userA, undefined, tic(tic(initTime)), tic(tic(tic(initTime))), undefined,

validPIN), NoSCPDB)
2403 !InitTime;
2404 CreateUser !userA !Insert(INTL, NoFList);
2405 CreateUser !userB !Insert(TCS, NoFList);
2406 cTCS1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2407 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2408 Disconnect, Display, Success]
2409
2410 (* Check the Log. *)
2411 >> accept exitCode:Nat in
2412 (
2413 (* One connection *)
2414 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2415 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
2416 Insert(l(Begin, userA, userB, userA, tic(InitTime)), NoLog));
2417 Success; stop
2418 []
2419 (* No connection *)
2420 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2421 Query !NoLog;
2422 Success; stop
2423)
2424)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 78

2425 []
2426 (
2427 (* Cases where A’s TeenTime is not restricted, A is not on B’s TCS list, and B is Busy. *)
2428 (* tTCS2 and tINTL1 *)
2429 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2430 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userC, NoAddList), validPIN),

NoSDB))
2431 !Insert(stat(Busy, userB, undefined), NoStatus)
2432 !Insert(scp(TeenTime, userA, undefined, tic(tic(initTime)), tic(tic(tic(initTime))), undefined,

validPIN), NoSCPDB)
2433 !InitTime;
2434 CreateUser !userA !Insert(INTL, NoFList);
2435 CreateUser !userB !Insert(TCS, NoFList);
2436 cTCS2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2437 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2438 Disconnect, Display, Success]
2439
2440 (* Check the Log. *)
2441 >> accept exitCode:Nat in
2442 (
2443 (* No connection only. *)
2444 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2445 Query !NoLog;
2446 Success; stop
2447)
2448)
2449 []
2450 (
2451 (* Cases where A’s TeenTime is not restricted, and A is on B’s TCS list. *)
2452 (* tTCS3 and tINTL1 *)
2453 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2454 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userA, NoAddList), validPIN),

NoSDB))
2455 !Insert(stat(Busy, userB, undefined), NoStatus)
2456 !Insert(scp(TeenTime, userA, undefined, tic(tic(initTime)), tic(tic(tic(initTime))), undefined,

validPIN), NoSCPDB)
2457 !InitTime;
2458 CreateUser !userA !Insert(INTL, NoFList);
2459 CreateUser !userB !Insert(TCS, NoFList);
2460 cTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2461 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2462 Disconnect, Display, Success]
2463
2464 (* Check the Log. *)
2465 >> accept exitCode:Nat in
2466 (
2467 (* No connection only. *)
2468 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2469 Query !NoLog;
2470 Success; stop
2471)
2472)
2473 []
2474 (
2475 (* Cases where A’s TeenTime is restricted, A has the valid PIN, A is not on B’s TCS list, and B is idle. *

)
2476 (* tTCS1 and tINTL2 *)
2477 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2478 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userC, NoAddList), validPIN),

NoSDB))
2479 !NoStatus
2480 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2481 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2482 !InitTime;
2483 CreateUser !userA !Insert(INTL, NoFList);

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 79

2484 CreateUser !userB !Insert(TCS, NoFList);
2485 cINTL1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2486 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2487 Disconnect, Display, Success]
2488
2489 (* Check the Log. *)
2490 >> accept exitCode:Nat in
2491 (
2492 (* One connection *)
2493 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2494 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
2495 Insert(l(Begin, userA, userB, userA, tic(InitTime)), NoLog));
2496 Success; stop
2497 []
2498 (* No connection *)
2499 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2500 Query !NoLog;
2501 Success; stop
2502)
2503)
2504 []
2505 (
2506 (* Cases where A’s TeenTime is restricted, A has the valid PIN, A is not on B’s TCS list, and B is busy. *

)
2507 (* tTCS2 and tINTL2 *)
2508 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2509 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2510 !Insert(stat(Busy, userB, undefined), NoStatus)
2511 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2512 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2513 !InitTime;
2514 CreateUser !userA !Insert(INTL, NoFList);
2515 CreateUser !userB !Insert(TCS, NoFList);
2516 cINTL1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2517 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2518 Disconnect, Display, Success]
2519
2520 (* Check the Log. *)
2521 >> accept exitCode:Nat in
2522 (
2523 (* No connection only. *)
2524 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2525 Query !NoLog;
2526 Success; stop
2527)
2528)
2529 []
2530 (
2531 (* Cases where A’s TeenTime is restricted, A has the valid PIN, A is on B’s TCS list. *)
2532 (* tTCS3 and tINTL2 *)
2533 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, validPIN),
2534 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userA, NoAddList), validPIN),

NoSDB))
2535 !NoStatus
2536 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2537 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2538 !InitTime;
2539 CreateUser !userA !Insert(INTL, NoFList);
2540 CreateUser !userB !Insert(TCS, NoFList);
2541 OffHook !userA;
2542 Announce !userA !AskForPIN;
2543 (
2544 i ; Dial !userA !validPIN;
2545 DialTone !userA;
2546 Dial !userA !userB;

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 80

2547 Announce !userA !ScreenedMessage;
2548 OnHook !userA;
2549 exit (succ(succ(succ(succ(0))))) (* TCS State 4, same as POTS State 17 *)
2550 []
2551 i ; OnHook !userA; exit (succ(succ(succ(0))))
2552)
2553
2554 (* Check the Log. *)
2555 >> accept exitCode:Nat in
2556 (
2557 (* No connection only. *)
2558 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2559 Query !NoLog;
2560 Success; stop
2561)
2562)
2563 []
2564 (
2565 (* Cases where A’s TeenTime is restricted, A has an invalid PIN, A is not on B’s TCS list, and B is idle*)
2566 (* tTCS1 and tINTL3 *)
2567 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, invalidPIN),
2568 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2569 !NoStatus
2570 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2571 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2572 !InitTime;
2573 CreateUser !userA !Insert(INTL, NoFList);
2574 CreateUser !userB !Insert(TCS, NoFList);
2575 cINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2576 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2577 Disconnect, Display, Success]
2578
2579 (* Check the Log *)
2580 >> accept exitCode:Nat in
2581 (
2582 (* No connection *)
2583 [(exitCode eq succ(succ(succ(succ(succ(0)))))) or (exitCode eq

succ(succ(succ(succ(succ(succ(0)))))))] ->
2584 Query !NoLog;
2585 Success; stop
2586)
2587)
2588 []
2589 (
2590 (* Cases where A’s TeenTime is restricted, A has an invalid PIN, A is not on B’s TCS list, and B is busy*)

2591 (* tTCS1 and tINTL3 *)
2592 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, invalidPIN),
2593 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, NoAddList, validPIN), NoSDB))
2594 !Insert(stat(Busy, userB, undefined), NoStatus)
2595 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2596 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2597 !InitTime;
2598 CreateUser !userA !Insert(INTL, NoFList);
2599 CreateUser !userB !Insert(TCS, NoFList);
2600 cINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2601 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2602 Disconnect, Display, Success]
2603
2604 (* Check the Log *)
2605 >> accept exitCode:Nat in
2606 (
2607 (* No connection *)
2608 [(exitCode eq succ(succ(succ(succ(succ(0)))))) or (exitCode eq

succ(succ(succ(succ(succ(succ(0)))))))] ->

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 81

2609 Query !NoLog;
2610 Success; stop
2611)
2612)
2613 []
2614 (
2615 (* Cases where A’s TeenTime is restricted, A has an invalid PIN, A is on B’s TCS list *)
2616 (* tTCS1 and tINTL3 *)
2617 Init !Insert(sub(userA, Insert(INTL, NoFList), undefined, undefined, NoAddList, invalidPIN),
2618 Insert(sub(userB, Insert(TCS, NoFList), undefined, undefined, Insert(userA, NoAddList), validPIN),

NoSDB))
2619 !NoStatus
2620 !Insert(scp(TeenTime, userA, undefined, initTime, tic(tic(initTime)), undefined, validPIN),
2621 Insert(scp(TeenPIN, userA, undefined, initTime, initTime, undefined, validPIN), NoSCPDB))
2622 !InitTime;
2623 CreateUser !userA !Insert(INTL, NoFList);
2624 CreateUser !userB !Insert(TCS, NoFList);
2625 cINTL2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2626 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2627 Disconnect, Display, Success]
2628
2629 (* Check the Log *)
2630 >> accept exitCode:Nat in
2631 (
2632 (* No connection *)
2633 [(exitCode eq succ(succ(succ(succ(succ(0)))))) or (exitCode eq

succ(succ(succ(succ(succ(succ(0)))))))] ->
2634 Query !NoLog;
2635 Success; stop
2636)
2637)
2638 endproc (* fiINTL_TCS *)
2639
2640 (*************)
2641 (* CND - TCS *)
2642 (*************)
2643
2644 process fiCND_TCS[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2645 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2646 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2647
2648 (
2649 (* Cases where A is not on B’s TCS list, and B is idle. Should Display the originator’s number. *)
2650 (* tTCS1 and tCND1 *)
2651 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2652 Insert(sub(userB, Insert(TCS, Insert(CND, NoFList)), undefined, undefined, NoAddList, validPIN),

NoSDB))
2653 !NoStatus
2654 !NoSCPDB
2655 !InitTime;
2656 CreateUser !userA !NoFList;
2657 CreateUser !userB !Insert(TCS, Insert(CND, NoFList));
2658 OffHook !userA;
2659 cCND1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2660 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2661 Disconnect, Display, Success]
2662
2663 (* Check the Log *)
2664 >> accept exitCode:Nat in
2665 (
2666 (* One connection *)
2667 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2668 Query !Insert(l(End, userA, userB, undefined, tic(InitTime)),
2669 Insert(l(Begin, userA, userB, userA, InitTime), NoLog));
2670 Success; stop

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 82

2671 []
2672 (* No connection *)
2673 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2674 Query !NoLog;
2675 Success; stop
2676)
2677)
2678 []
2679 (
2680 (* Cases where A is not on B’s TCS list, and B is busy. *)
2681 (* tTCS2 and tCND2 *)
2682 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2683 Insert(sub(userB, Insert(TCS, Insert(CND, NoFList)), undefined, undefined,

Insert(userC, NoAddList), validPIN), NoSDB))
2684 !Insert(stat(Busy, userB, undefined), NoStatus)
2685 !NoSCPDB
2686 !InitTime;
2687 CreateUser !userA !NoFList;
2688 CreateUser !userB !Insert(TCS, Insert(CND, NoFList));
2689 cTCS2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2690 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2691 Disconnect, Display, Success]
2692
2693 (* Check the Log. *)
2694 >> accept exitCode:Nat in
2695 (
2696 (* No connection only. *)
2697 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2698 Query !NoLog;
2699 Success; stop
2700)
2701)
2702 []
2703 (
2704 (* Cases where A is on B’s TCS list, and B is busy. Do not display. *)
2705 (* tTCS3 and tCND2 *)
2706 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2707 Insert(sub(userB, Insert(TCS, Insert(CND, NoFList)), undefined, undefined,

Insert(userA, NoAddList), validPIN), NoSDB))
2708 !Insert(stat(Busy, userB, undefined), NoStatus)
2709 !NoSCPDB
2710 !InitTime;
2711 CreateUser !userA !NoFList;
2712 CreateUser !userB !Insert(TCS, Insert(CND, NoFList));
2713 cTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2714 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2715 Disconnect, Display, Success]
2716
2717 (* Check the Log. *)
2718 >> accept exitCode:Nat in
2719 (
2720 (* No connection only. *)
2721 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2722 Query !NoLog;
2723 Success; stop
2724)
2725)
2726 []
2727 (
2728 (* Cases where A is on B’s TCS list, and B is idle. Do not display. *)
2729 (* tTCS3 and tCND1 *)
2730 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2731 Insert(sub(userB, Insert(TCS, Insert(CND, NoFList)), undefined, undefined,

Insert(userA, NoAddList), validPIN), NoSDB))
2732 !NoStatus

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 83

2733 !NoSCPDB
2734 !InitTime;
2735 CreateUser !userA !NoFList;
2736 CreateUser !userB !Insert(TCS, Insert(CND, NoFList));
2737 cTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2738 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2739 Disconnect, Display, Success]
2740
2741 (* Check the Log. *)
2742 >> accept exitCode:Nat in
2743 (
2744 (* No connection only. *)
2745 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2746 Query !NoLog;
2747 Success; stop
2748)
2749)
2750 endproc (* fiCND_TCS *)
2751
2752
2753 (**************)
2754 (* INFB - TCS *)
2755 (**************)
2756
2757 process fiINFB_TCS[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2758 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2759 Disconnect, Display, Success, CreateUser, Query, Init] : noexit :=
2760
2761 (
2762 (* Cases where A is not on B’s TCS list, and B is idle. Affect the billing. *)
2763 (* tTCS1 and tINFB1 *)
2764 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2765 Insert(sub(userB, Insert(TCS, Insert(INFB, NoFList)), undefined, undefined,

Insert(userC, NoAddList), validPIN), NoSDB))
2766 !NoStatus
2767 !NoSCPDB
2768 !InitTime;
2769 CreateUser !userA !NoFList;
2770 CreateUser !userB !Insert(TCS, Insert(INFB, NoFList));
2771 cTCS1[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2772 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2773 Disconnect, Display, Success]
2774
2775 (* Check the Log. UserB should be charged. *)
2776 >> accept exitCode:Nat in
2777 (
2778 (* One connection *)
2779 [(exitCode eq 0) or (exitCode eq succ(0))] ->
2780 Query !Insert(l(End, userA, userB, undefined, tic(tic(InitTime))),
2781 Insert(l(Begin, userA, userB, userB, tic(InitTime)), NoLog));
2782 Success; stop
2783 []
2784 (* No connection *)
2785 [not((exitCode eq 0) or (exitCode eq succ(0)))] ->
2786 Query !NoLog;
2787 Success; stop
2788)
2789)
2790 []
2791 (
2792 (* Cases where A is not on B’s TCS list, and B is busy. Do not affect the billing. *)
2793 (* tTCS2 and tINFB2 *)
2794 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2795 Insert(sub(userB, Insert(TCS, Insert(INFB, NoFList)), undefined, undefined,

Insert(userC, NoAddList), validPIN), NoSDB))

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 84

2796 !Insert(stat(Busy, userB, undefined), NoStatus)
2797 !NoSCPDB
2798 !InitTime;
2799 CreateUser !userA !NoFList;
2800 CreateUser !userB !Insert(TCS, Insert(INFB, NoFList));
2801 cTCS2[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2802 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2803 Disconnect, Display, Success]
2804
2805 (* Check the Log. *)
2806 >> accept exitCode:Nat in
2807 (
2808 (* No connection only. *)
2809 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2810 Query !NoLog;
2811 Success; stop
2812)
2813)
2814 []
2815 (
2816 (* Cases where A is on B’s TCS list, and B is busy. Do not affect the billing. *)
2817 (* tTCS3 and tINFB2 *)
2818 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2819 Insert(sub(userB, Insert(TCS, Insert(INFB, NoFList)), undefined, undefined,

Insert(userA, NoAddList), validPIN), NoSDB))
2820 !Insert(stat(Busy, userB, undefined), NoStatus)
2821 !NoSCPDB
2822 !InitTime;
2823 CreateUser !userA !NoFList;
2824 CreateUser !userB !Insert(TCS, Insert(INFB, NoFList));
2825 cTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2826 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2827 Disconnect, Display, Success]
2828
2829 (* Check the Log. *)
2830 >> accept exitCode:Nat in
2831 (
2832 (* No connection only. *)
2833 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2834 Query !NoLog;
2835 Success; stop
2836)
2837)
2838 []
2839 (
2840 (* Cases where A is on B’s TCS list, and B is idle. Do not affect the billing. *)
2841 (* tTCS3 and tINFB1 *)
2842 Init !Insert(sub(userA, NoFList, undefined, undefined, NoAddList, validPIN),
2843 Insert(sub(userB, Insert(TCS, Insert(INFB, NoFList)), undefined, undefined,

Insert(userA, NoAddList), validPIN), NoSDB))
2844 !NoStatus
2845 !NoSCPDB
2846 !InitTime;
2847 CreateUser !userA !NoFList;
2848 CreateUser !userB !Insert(TCS, Insert(INFB, NoFList));
2849 cTCS3[OffHook, OnHook, Dial, Flash, DialTone, StartAR, StartR,
2850 StartCWT, StopAR, StopR, StopCWT, LineBusyTone, Announce,
2851 Disconnect, Display, Success]
2852
2853 (* Check the Log. *)
2854 >> accept exitCode:Nat in
2855 (
2856 (* No connection only. *)
2857 [(exitCode eq succ(succ(succ(0)))) or (exitCode eq succ(succ(succ(succ(0)))))] ->
2858 Query !NoLog;

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:47 LOTOS Specification p. 85

2859 Success; stop
2860)
2861)
2862 endproc (* fiINFB_TCS *)
2863
2864 endspec (* FI_UCM *)

Use Case Maps for the Design and the Validation of Interaction-Free Telephony Features

12 November, 1998 17:15 Erroneous Specification for stub process-call p. 86

B ERRONEOUS SPECIFICATION FOR STUB PROCESS-CALL

Here is the part of the incorrect LOTOS specification that was replaced by lines 1361 to 1395 in the correct speci-
fication of appendix A.
1361 process ProcessCallStub [OffHook, OnHook, Dial, Flash, DialTone,
1362 StartAR, StartR, StartCWT, StopAR, StopR, StopCWT,
1363 LineBusyTone, Announce, Disconnect, Display,
1364 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1365 (inPaths: SPList, userFrom: Address, userTo:Address,
1366 sdb: SDB, status: Status)
1367 : exit (Address, Address, Address, SDB, Status, SPList) :=
1368
1369 (* CND will be taken care of at outPC1, after all these plug-ins. *)
1370
1371 (* TCS *)
1372 [has(userTo, TCS, sdb)] ->
1373 PluginTCS[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1374 StartR, StartCWT, StopAR, StopR, StopCWT,
1375 LineBusyTone, Announce, Disconnect, Display,
1376 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1377 (inPaths, userFrom, userTo, sdb, status)
1378 []
1379 (* INFB *)
1380 [has(userTo, INFB, sdb)] ->
1381 PluginINFB[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1382 StartR, StartCWT, StopAR, StopR, StopCWT,
1383 LineBusyTone, Announce, Disconnect, Display,
1384 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1385 (inPaths, userFrom, userTo, sdb, status)
1386 []
1387 (* Default *)
1388 [not(has(userTo, INFB, sdb)) and not(has(userTo, TCS, sdb))] ->
1389 PluginDefault[OffHook, OnHook, Dial, Flash, DialTone, StartAR,
1390 StartR, StartCWT, StopAR, StopR, StopCWT,
1391 LineBusyTone, Announce, Disconnect, Display,
1392 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1393 (inPaths, userFrom, userTo, sdb, status)
1394 where
1395
1396 process PluginTCS [OffHook, OnHook, Dial, Flash, DialTone,
1397 StartAR, StartR, StartCWT, StopAR, StopR, StopCWT,
1398 LineBusyTone, Announce, Disconnect, Display,
1399 Trigger, Resource, Response, LogBegin, LogEnd, Time]
1400 (inPaths: SPList, userFrom: Address, userTo:Address,
1401 sdb: SDB, status: Status)
1402 : exit (Address, Address, Address, SDB, Status, SPList) :=
1403
1404 (* TCS plugin for ProcessCallStub *)
1405 [isOnTCS(userFrom, userTo, SDB)] ->
1406 (* Caller on the list. Reject call. *)
1407 exit (userFrom, userTo, userFrom, sdb, status, Insert(outPC3, NoSPList))
1408 []
1409 [not(isOnTCS(userFrom, userTo, SDB))]->
1410 (* Caller NOT on the list. Continue. *)
1411 (
1412 [IsIdle(userTo, status)] ->
1413 exit (userFrom, userTo, userFrom, sdb, status, Insert(outPC1, NoSPList))
1414 []
1415 [IsBusy(userTo, status)] ->
1416 exit (userFrom, userTo, userFrom, sdb, status, Insert(outPC2, NoSPList))
1417)
1418 endproc (* PluginTCS *)

	1 Introduction
	2 Methodology
	2.1 Rigorous Approach Based on Scenarios

	3 Use Case Maps for Features
	3.1 Use Case Maps in a Nutshell
	3.2 Overview of the FI Contest Content
	Network Structure
	Features

	3.3 UCM Capture from Chisel Diagrams
	3.4 Integration of UCM Scenarios
	Root Map
	Binding of Plugins to Stubs
	Other Relevant Plugins

	3.5 Avoiding Feature Interactions

	4 Lotos Specification
	4.1 Lotos and the Synthesis & Validation Approach ...
	Overview of Lotos
	Synthesis of Specifications from UCMs
	Lotos Validation
	Lotos Testing from UCMs using Lola

	4.2 Synthesis
	Data Types
	Structure
	Process Behaviour

	4.3 Testing
	Structure of the Test Suite
	POTS Common Behaviour
	POTS Test Cases
	Test Cases for Individual Features

	5 Detecting Feature Interactions
	5.1 Test Cases for Detecting FI
	5.2 Unexpected Interactions
	Fixing the UCM

	5.3 Ensuring Coverage with Probes

	6 Discussion
	6.1 Adding New Features
	Impact on the UCMs
	Impact on the Specification
	Impact on the Test Suite

	6.2 Performance
	6.3 Improved Call Structure
	6.4 Limitations of Plugins, Bindings, and Composit...
	6.5 Comparison with Other Techniques
	Agent Systems
	GCS and GPRS
	Faci’s Approach

	7 Conclusions
	Future Work
	Acknowledgements

	8 References
	A Lotos Specification
	B Erroneous Specification for stub process-call

