3. Representation of Signals in the Frequency Domain

We can represent signals as the sum of other signals. By representing a signal as a sum of sinusoids, we
describe the frequency content of a signal. Suppose we input a signal to a extremely narrow bandpass
filter. At the output of this filter, we would have a sinusoid. The frequency of this sinusoid would be the
central frequency of the bandpass filter, and the amplitude and phase of this sinusoid would be
determined by the input signal. Any signal can be represented by the amplitude and phases of all of these
sinusoids. We call this the spectral content of the signal. To best describe frequency spectrum of signals,
we begin with the generalized Fourier series.

3.1 Generalized Fourier Series

Suppose we have a set of functions {¢(t)}n-12...~ Which is made up of functions that are mutually
orthogonal on the interval t, <t <t, + T. In other words:
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where ¢ (t) indicates the complex conjugate of ¢(t). If ¢, = 1 for all values of n, then we say that the set
of functions is orthonormal.

We would like to approximate some function x(t) on the interval (t,, t, + T) by the function x,(t) which is
given by:
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The best approximation is the one that minimizes the mean square error between the original signal, x(t),

and itself. The mean square error (MSE) is given by:
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Expansion of (3.3) yields:
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From (3.1), The final term in (3.4), X, X, .[¢" (t)g (t)dt is 0 when n #i and it is given by |X,°c, when n
t0
=i. Therefore (3.4) becomes:
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Let y, = J'x(t)¢; (t)dt. We rewrite (3.5) as:
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If we add the term Ci| y, |> to the summation in (3.6), then the sum can be factored. Therefore (3.6)
n

becomes:
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Only the final summation in (3.7) depends on X,. Every term in this summation must be positive.
Therefore to minimize (3.7), we must choose the values of X, so that every term in the final summation of
(3.7) is zero. Therefore, the best approximation for x(t) on the interval t, <t <t, + T is given by (3.2)
where X, is given by:
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From (3.8), we see that |X,|’ =i2|yn|2. For X, given by (3.8), the MSE between x(t) and its best
Cn
approximation is given by:
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Example 3.1

We wish to approximate the signal x(t) = t* on the interval 0 <t < 1 using the set of

N
orthogonal functions shown in Figure 3.1. Find x, (t) :Z X, () and ¢, for N =2 and

3. "
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Figure 3.1 Les fonctions orthogonales de I’exemple 3.1.

1 1 1 1
We can show that I 6 (t)|zo|t=j¢n2 (t)dt =J' dt=1 and that J’ . (04 (dt=0for n # m.
0 0 0 0

Thusc,=1forn=1, 2, 3. The generalized Fourier series coefficients are:
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Thus x,(t) and x5(t) are given by:
1 1
Xz(t)=§¢1(t)—%¢2(t) X
Xs(t)=§¢1(t)—z¢2(t)+ﬁ¢3('{)

The signal x(t) on the interval 0 <t < 1 is shown in Figure 3.2 along with its two
approximations, x,(t) and xs(t).
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Figure 3.2: The signal x(t) = t* on the interval 0 <t < 1 and its approximations x,(t) and
X3(t).

The coefficients X, found in the example are those that minimize the MSE between x(t)
and the approximations. The MSE is thus given by (3.9). We find that
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for n =1 to 3, therefore if we increase N, we decrease the MSE.

3.2 The Complex Exponential Fourier Series

N
We wish to find an approximation x, (t) = Z X .4, () for the signal x(t) on the interval t, <t <t, + T.
n=—N
The MSE between the signal and its approximation on this interval is given by:
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There exist some infinite sets of orthogonal functions {&(t)}.. < n < -, for which the approximation
approaches the original signal on the interval t,<t<t, + T. In other words, using this infinite set, we get:
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for any signal x(t) for which J'| x(t)|* dt <oo. However, should the signal x(t) contain discontinuities,
t
then it is possible that x,(t) is not equal to x(t) at the discontinuities.

One set of functions for which (3.11) — (3.13) are true is the set of complex exponential functions
@)} = {ejz””fot } -o0 < n < oo, Where f, = 1/T. The complex exponential function is given by:
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The complex exponential function is periodic with period T,. Thus e?™ft = g?M(4Te) _ gi2mfitgJ2mET,

For this to be true, e’*™ ™ =1. From (3.14), e/*™™ =1 when 2/mf,T, = 22zm where m and n are
integers. Thus T, = m/nf,. The fundamental period, Ty, is the smallest positive value of T,. Thus the
fundamental period of e/>™'is T; = 1/|n|f,.
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For m #n, (3.15) becomes
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since e!2#("-MfT —1 (f, = 1/T). From (3.17), we can see that the set of complex exponentials is made up
of mutually orthogonal functions.

From the generalized Fourier series, the complex exponential Fourier series of x(t) on the interval t, <t <
t, + T is given by:

x(t) = Z X e 2t (3.18)
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The Complex Exponential Fourier Series of Periodic Signals

Consider the Fourier series anejz”"fﬂt on the interval -0 <t < oo. It was shown previously that the
N=—o0

complex exponential function is periodic with fundamental period 1/|n|f, = T/|[n|. The sum of periodic

functions is also a periodic function if a lowest common multiple (LCM) of the periods of each of the

functions in the sum exists. In the case of the complex exponential Fourier series,the LCM of the

fundamental periods is T. Thus > X,e!*™ is periodic with fundamental period T = 1/f,, and f, is
N=—c0

known as the fundamental frequency. Thus, if x(t) is also periodic with fundamental period T, then (3.18)

is valid on the interval -oo <t <o0. We employ (3.19) to find the Fourier coefficients by integrating over

one period of x(t). We can express (3.19) for periodic signals as:
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where J. (-)dt indicates that the integral is done on any time interval of duration T.
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Example 3.2

Find the complex exponential Fourier series of the periodic signal x(t) shown in Figure
3.3.

X(t)

0.25 0.5 078 t
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Figure 3.3 Periodic signal of example 3.2.

The signal x(t) is periodic with fundamental period T = 0.5. Thus f, = 2. The complex
exponential Fourier series of x(t) is:
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For even n, X, =0 and for odd n, X, = 2A/jzn. For n =0, X, = 0/0, but from (3.21), we
see that X; is:
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Thus we can represent x(t) by:
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3.3 Symmetry of the Fourier Series Coefficients

Assuming that the signal x(t) is a real signal. In other words Im{x(t)} = 0. The complex conjugate of the
Fourier series coefficient, X, , is given by:
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Thus, X, = X, if x(t) is a real signal. In other words, for real x(t), Re{X,} = Re{X..} and Im{X,}=-Im{X.
o} As a function of n, the real part of the Fourier series coefficients is an even function and the imaginary
part is an odd function for all real valued signals.

3.4 The Trigonometric Fourier Series

Let us consider a real valued signal, x(t). The real part of its complex exponential Fourier series
coefficients is given by:
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The imaginary part of its complex exponential Fourier series coefficients is given by:
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The complex exponential Fourier can also be expressed as:
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For a real valued signal, x(t), we know that X., = X,,", thus (3.25) becomes:
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Example 3.3

Using the complex exponential Fourier series of the signal x(t) in example 3.2, find its
trigonometric Fourier series.

Solution

In example 3.2, we found the complex exponential Fourier series to be:

X(t)z Z _Z_AeM;mt
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thus X = 0, Re{X,} = 0 and Im{X,} = -2A/zn for all odd values of n. Therefore b, =
4A/7n for all odd values of n. We can express x(t) as:
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The sum xy ()=
i=1

@ sindz(2i—1)t represents the sum of the first N harmonics
— (21—

of x(t). This sum is shown in Figure 3.4 for N =1 to 3.
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Figure 3.4: The approximation of x(t) by its first N terms in the trigonometric Fourier
series (N = 1to 3).

3.5 Properties of the Trigonometric Fourier Series

For any periodic signal, x(t), whose period is given by T, we can find the trigonometric Fourier series
coefficients by taking the integrals of (3.27) over any interval of duration T. Let us examine the case
where the interval of integration is -T/2 <t <T/2. Thus a,, a, and b, become:

1 T/2 1 0 1 T/2
%=1 Tj/ Z((t)dt:?_TI/ Z((t)dt+? ! x(t)dt (3.29)
2 T/2 2 0 2 T/2
a, =— Ix(t) cos 2znf tdt = — Ix(t) cos 2znf tdt +— Ix(t) cos 2znf tdt (3.30)
T -T/2 T -T/2 T 0
2 T/2 2 0 2 T/2
b, == j X(t) sin 2znf tdt = = j X(t) sin 27nf tdt + = j x(t)sin 2znf tdt  (3.31)
T -T/2 T -T/2 T 0

Consider the case when x(t) is an even function. In other words, x(t) = x(-t). if we replace x(t) by x(-t) in

the first integral of (3.31), b, becomes:
0 T/2

b, = 2 j X(~t) sin 27znf tdt +2 [ x(¥)sin 27nf tat (3.32)
T -T/2 T 0
Substituting u for —t in the first integral of (3.32), we obtain the following:
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0
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=
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Therefore, for an even periodic function x(t), the coefficients {b,} are all equal to 0 and its
trigonometric Fourier series becomes:

x(t)=a, + Y_a, cos 2znf t (3.34)

n=1

Similarly, we can show that for odd periodic functions (x(t) = -x(-t)), the coefficients a, and a, equal 0.
For odd periodic functions, the trigonometric Fourier series is given by:

x(t) = 3"b, sin 27nf, (3.35)

n=1

For any arbitrary function, x(t), we can express it as a sum of one even and one odd function. In other
words, X(t) = Xe(t) + X,(t), where x.(t) is the even component of x(t) and x(t) is its odd component. When
X(t) is an even function, x,(t) = 0, and conversely, if x(t) is odd, X,(t) = 0. The even and odd components
of x(t) can be found to be:

X, (t) = X +x(1) +2X(_t) (3.36)
X, (t) = M (3.37)

Thus for x(t) = x(t) + X,(t), we can express its trigonometric Fourier series coefficients by the following:
1
a, =—| X, (t)dt
0 T %[ e( )
2
a, = ?I X, (t) cos 2znf tdt (3.38)
T

b, = 2 [ %, @®)sin 2:mf tdt
T T

Example 3.4

For the signal x(t) shown in Figure 3.5, find its trigonometric Fourier series.
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Figure 3.5: The signal x(t) of example 3.4.
Solution

The period of this signal is T = 4, thus the fundamental frequency is f, = ¥%. The
trigonometric Fourier series can be expressed as:

x(t)=a, + > a, cos[z ntj +> b, sin[z ntj
n=1 2 n=1 2
where

e, =4 [ Ja-far] o

-2

2 1 2
a, = 1 '[x(t) cos(E ntjdt = 1 jcos(z nt)dt - I c;os(£ nt)dt
2 2 2% 2 1 2

%sin[% ntj: —%Sin(% nt]j
[t (i
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=sinc(n/2) =4 (-2
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and
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where sinc(x) =sin(zx) / zxand sin(zn) = 0 for integer values of n. Therefore we can
express x(t) as:

X(t) = i—(_;)](;-zlz cos[m?tj+ i isin(mth

n=2 m
nodd n/2=oddinteger
= gcos[ﬂj - icos(s—ﬂtj + iCOS[E—ﬂtJ ~A + 3sin(yzt)+ isin(37zt)+A
V4 2 3 2 Y4 2 V4 3

The above sum contains an infinite number of terms. In figure 3.6, we show
approximations of x(t) which use a finite number of terms from the above sum. The
approximation xy(t) contains all terms from the above sum whose frequency is below 1
Hz and the approximation x,(t) contains all terms with frequencies below 2 Hz.
Mathematically, they are given by:

X, (t) = 2 cos(%) - % cos(%tj 2 sin(zt)

T T

2 at 2 3t 2 S5at 2 Tt
X, (t) = —cos| — |- —cos| — |+ —cCoS| — |- ——cCos| —
Vd 2) 3r 2 5z 2 1 2

+£sin(7zt)+ isin(37zt)
7 3

and
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Figure 3.6: The signal x(t) of example 3.4 with its two finite sum approximations, x;(t)
and x(t).

Example 3.5
For the signal x(t) of example 3.4, find its even and odd components, X.(t) and X(t).
Then find the trigonometric Fourier series of X.(t) and X,(t) and show that the
coefficients a, and a, that we obtain for x.(t) and the coefficients b, that we find for
Xo(t) are the same as those found in example 3.4.
Solution

The signals x(t) and x(-t), as well as the signals x.(t) = [x(t) + X(-t)]/2 and x,(t) = [x(t) —
X(-t)1/2 on the interval -2 <t <2 are shown in Figure 3.7.

From (3.38), we find the trigonometric Fourier series coefficients to be:

a, - %ixe (t)dt = %[f(— %)dt . j[%)dt ; j(— %)dt] 0

-2 -1
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Figure 3.7: The signals x(t), X(-t), Xe(t) and X,(t).
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We see that the coefficients are the same as those obtained in Example 3.4

3.6 The Fourier Transform

Consider a periodic signal x(t) = Z:xnejz””fot where f, = /T, T is the period of x(t) and X, is given by

(3.19). Therefore x(t) is given by:
T/2
X(t) = Z jx(t)e‘”””fot dt} 2zt (3.39)

n— —T/2

If X(t) is aperiodic, its “period” T — oo and therefore f, — 0. Thus 1/T becomes df, nf, becomes f and the
sums become integrals. Thus (3.39) becomes:

x(t) = j [ j x(t)e" ’Z”ﬁdt}e‘z”ﬂdf = j X (f)e 2" df (3.40)

— 00 00

X(f) is called the Fourier transform of x(t). It describes the spectral content of the signal x(t). It is given
by:

X (f)=H{x(t)}= Tx(t)ejz’f“dt (3.41)

The inverse Fourier transform can be found from (3.40). With it, we can determine the time domain
signal from its Fourier transform. It is given by:

x(t) = #YX(H}= TX(f)eJ’Z”“df . (3.42)



Example 3.6
Find the Fourier transform of x(t) = I1(t).
Solution

The Fourier transform of x(t) is:
1/2
X(f)= jn(f)e 2t it = je 2t it
-1/2
1/2

:—#e*jznﬁ :_L(e jAf eJ;zf)
j2nf s 2k
id =i :
_e _ e :smﬂf _sinc(f)
j2nf af

Example 3.7
Find the Fourier transform of x(t) = A(t).
Solution

X(f)= jA(f)e 12”“olt_j(1+t)e 'Z”“dt+j(1 t)e 1M dt

-1

_|_ .1 p-izt _ .t p-izAt | 1 Ze—jzm
j2rf j2rf (2)

0

-1

1
+ _Le*jbffI —jeAt _ efj27zf'[
j2nf j2nf (27f)? .
_ 1 N 1 N 1 N 1 o2 _ 1 o2
j2+  (2A)*  j2Af j2nf (2A)?
_ 1 jos 1 -jenf _ 1 - jent 1 n 1
j2nf j2nf (2Af)? j2f  (2Af)?
_ 2 1 (e _ ,JM)_Z 2c0s 2af 4sm bl sm i
(2A4)"  (24)* (2 ) @A4)* ()’
=sinc?(f)

Example 3.8
Find the Fourier transform of x(t) = &t).

Solution



X(f)=[oe " dt=e*"| =1

3.7 Properties of the Fourier Transform
3.7.1 Linearity

The Fourier transform is a linear function. This means that for xs(t) = axi(t) + pX(t), Xs(f) = F
{xa(O}=aXa(f) + BX(f), where X (f) = F{xa(t)} and X(f) = & {xz(1)}.

Proof

X,(f)= sz(t)e‘jz”ﬁdt

o0

= [(ox, (1) + B, (1)) 1" dit

_ T(axl(t)e‘jz”“ T, (t)e 2 kit
= Taxl(t)eiz”“dt + T,&(Z(t)ejz”ﬁdt

=ajx1(t)e-12”“dt +ﬂjx2 (t)e 1" dt

=aX, (f) + BX,(f)

Example 3.9
Find the Fourier transform of the signal x(t) = 2(t) + 3TI(t).
Solution
X(f) = #L28(t) + M1V} = 2 F{KO} + 3 F{TI()} = 2(1) + 3(sinc(f)) = 2 + 3sinc(f).

F{28¢t) + 3TI()} = 2 + 3sinc(f)




3.7.2 Time Delay

Suppose that the Fourier transform of x,(t) is X;(f). Then the Fourier transform of x,(t) = X;(t-t,) is:

X,(f)= F{xa(t-t)}= X, (f)e 1™ (3.43)
Proof
X,(f)= Ixz(t)e‘jz”“dt: [ t—t,)e > dt (3.44)

Let u = t-t, and du = dt. Equation (3.44) becomes

X,(f)= jxl(u)e-“”f(““o’du

—00

= '[xl(u)e"'z”f“e*”’”“)du

—00

=g 17 .[xl (We #™du

—00

=g /¥ X, (f)

Example 3.10

Find the Fourier transform of x(t) = &(t-t,).

Solution
X(f) = F{At-t)} = F{AO}e >
X(f) = (1) e/ = g2t
F{A} = e (3.45)
Example 3.11

Find the Fourier transform of x(t) shown in Figure 3.8 using the Fourier transform of
I1(t) and the properties of linearity and time delay.

X(t)

Figure 3.8: The signal x(t) of example 3.11.



Solution

Although there are many ways to determine the Fourier transform of the signal shown in
Figure 3.8, we have been limited to using the linearity and time delay properties. It is
easily shown that x(t) = TI(t + %2) + I1(t - %). Donc X(f) = HII(t + ¥2) + I1(t - %)} =
HTI(t+ %)} + HII(E - Y%2)} = e H{II(O} + e HII(D)}-

X(f):(e"”f +e %inc(f)
= (e¥ +e 7 )sin(#f ) /(£
(ej”f +e i Xej”f —e""’f)

jork
(ej27zf _pied )
o oA
_sin@A) _,sin@A) _ o)
pr P

3.7.3 Time Scaling

Given that the Fourier transform of x,(t) is X(f), and x,(t) = x;(at) where a is a constant, Then the Fourier
transform of x,(t) is X,(f) = L X, (£).

fa
Proof
1) Fora>0.
()= Jx(ae 2 (3.46)
Let u=atand du = adt. Equation (3.46) becomes: -
X,(f)= Txl(u)e—jzﬂf(u/a) au

zi'l'xl(u)e—jbr(f/a)udu
afoo

=MD
a ‘la) |a|l 'la

Let u = -jajt and du = -|a|dt. Equation (3.46) becomes:

2) Fora<O0(a=-al)



—lal

X, (1) =[x (e e/

17 s ~
__ = IXl(U)e j2z(f1-au g

|al
:i ]EX (u)e—jZH(f/—|a\)udu
lal =,
IESP (R O S O
lal \-lal) [a] "\a
Therefore,
FH{x(at)} = Xl(ij (3.47)
lal a
Example 3.12

Repeat example 3.11 using the time scaling property.
Solution

The signal x(t) is a time scaled version of T1(t) where we have spread the function over
time by a factor of 2, thus x(t) = TI(t/2). Therefore a = % and X(f) = 2#{ T1(t)} = 2
Therefore X(f)=2sinc(2f).

3.7.4 Duality

If the Fourier transform of x(t) is X(f), then the Fourier transform of X(t) is x(-f).

Proof

The inverse Fourier transform of X(f) is:
[ X(f)ei"df =x(t) (3.48)

If we exchange f and t in (3.48) we obtain

TX(t)ejz"f‘dt:x(f)

The Fourier transform of X(t) is:

FHX(t)}= T X (e 1#™dt = T X (t)e!?*C Dt = x(~f) (3.49)



Example 3.13
Find the Fourier transform of sinc(2t).
Solution

FHLLII(t/12}} = sinc(2f). Thus the Fourier transform of sinc(2t) is #{sinc(2t)} = YIl(-
fI12) = YI1(f/2).

Example 3.14
Find the Fourier transform of x(t) = A.
Solution

We know that #{d(t)} = 1, therefore F{ANt)} = A. Using the duality property of the
Fourier transform, #{A} = AX(-f) = AXT).

3.7.5 Frequency Shifting

If Xo(t) = Xa(t) e 127 and X, (f) = Fxu(1)}, then Xo(f) = Fxa()} = Xo(F-F,).

Proof
X,(f)= jxl(t)eizﬂfote-“”f‘dt

— ]ixl(t)e—jZ/z‘ijZﬂfotdu

= [x e ¥ dy

= Xl(f - fo)
Therefore

FHx(t) el }= X (f - f,) (3.50)

Example 3.15

Find #{cos(2f,t)}.



Solution

We can express cos(2xfot) as Lel?

1eI2t | 17120t = 15 §(f-fy) + Yo (F+Ey).

+1e71%% Therefore #{cos(2Aft)} =

3.7.6 Convolution

If X(f) = #x()} and Y(f) = #{y(t)}, then for z(t) = x(t)*y(t), the Fourier transform is Z(f) = X(f)Y(f).

Proof
X(t) = [ X(f)el"df

X(t)*y(t) = [ y(A)x(t - 2)d2

0

- j y(/I)ﬁX(f)ejz”f“”df}dl

_ j j X (f)el#* A y(1)dAdf

—00—00

o0

o0

IX(f)ejz”“Y(f)df

= TX(f)Y(f)ejz”ﬁdf
Therefore x(t)*y()=F"{X(f)Y(H}. Therefo}:

Hx(®)*y(0)} = X(HY(H)

= X(f)eimﬁeiz’“y(z)dz}df

Example 3.16

Find the Fourier transform of x(t+t,) + X(t-t,).

Solution

(3.51)



It can be shown that x(t+t) + X(t-t;) = X(t) * [At-to) + At+t,)]. FH[At-to) + At+to)]} =
e 12M 1 ¢127 _ 2005 244t . Therefore F{x(t+t,) + X(t-to)} = 2X(f) cos 2t , .

3.7.7 Multiplication in time

The Fourier transform of z(t) = x(t)y(t) is Z(f) = X(f)*Y(f).

Proof
X(F)*Y(f)= TX(A)Y(f ~A)dA = TX(,I)UEy(t)eiZH(f&)tdt}dl
= f Tx(i)y(t)e””“e”””dtdﬂ = Ty(t)ejz”ﬁﬁx(ﬂ»)e"z’“di}dt
= Tx(t)y(t)eiz”“dt
=Hx(OY0)
Example 3.17

Find the Fourier transform of x(t) = I(t)cos20xt.

Solution

HII(t)} = sinc(f) and F{cos204t} = %&f-10) + %&f-10). Then, from (3.52),
H{T1(t)cos20zt} = sinc(f)*[2Af-10) + Y%LNf-10)] = Yesinc(f-10) + ¥sinc(f+10). The
Fourier transform of T1(t)cos20t is shown in Figure 3.9.

(3.52)
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Figure 3.9: #{I1(t)cos20xt}

3.7.8 Time Derivatives
If #H{x()} = X(f), then #H{ 2L } = 24X(H).

Proof

H d);(tt) 1= I%G_J‘zﬂﬂdt (3.53)

We must solve the integral in (3.53) by parts. Letu=e¥®™and dv = % dt. Therefore du =
-j2Afe¥?™ and v = x(t). Equation (3.53) becomes:

RO Y= xOe | + jorf [x(0e &9

The existence of the Fourier transform of x(t) implies x(zo) = 0, therefore the first term in (3.54) is 0.
Equation (3.54) becomes:

A2V Y= j2AX (f) (3.55)

Example 3.18

Find the Fourier transform of sin2 zf,t.



Solution

F{cos2rft} = Y%ffy) + %f+). The function sin2zfot = —;1- 924t Thys
Hsin2aff} = -G t00} = — A< j2 L S(f - f)+1S(F+f,)] =

- x[info8(F — )= i S (f + )] st -t -dact+ )]

£ 5(F - f5) =% (F+15).

3.7.9 Integration in time

-0 —o0

t t
The function y(t) = Ix(/l)dﬂ. has Fourier transform Y (f) = T{jx(ﬁ)dz} JM X(f)+1X(©0)5(f).

Proof

The Fourier transform of u(t) is U(f). The derivative of u(t), %42 = &t). Therefore j2U(f) = 1. Also,

u(t)+u(-t) = 1. Therefore U(f)+U(-) = &f). The latter identity |nd|cates that U(f) = -U(-f), except for f =
0, where U(0) = U(-0) = ¥.4(f). Therefore, from the two identities, the Fourier transform of u(t) is U(f) =
+30(f).

y(t) = jx(l)di = Tx(/l)u(t —A)dA = x(t) *u(t)

Therefore Y(f) = X(HU(® = (¢ 70—55(f))X(f7;)— e X(F)+1X(0)5(f).

Example 3.19
Find the Fourier transform of y(t) = (1-e") u(t).
Solution
Let x(t) = e'u(t) which has Fourier transform X(f) = 1/(j2Af+1).
j.e‘iu(/l)dxlz(l—e‘t)u(t). Therefore Y(f) = (Uj2A)X®) + %X(0)&f) = 1(j2-

(_27zf)2) + ().

3.7.10 Complex Conjugate
If X(f) = #H{x(H)}, then AxX ()} = X'(-).

Proof



HxX'(H)}= Tx*(t)e‘jz”ﬁ dt
= [[xcte’™ ] at

- { T x(t)ejz”(”tdt} (3.56)
=[X()] =X"(-1)



