
3. Representation of Signals in the Frequency Domain 

 
We can represent signals as the sum of other signals.  By representing a signal as a sum of sinusoids, we 

describe the frequency content of a signal.  Suppose we input a signal to a extremely narrow bandpass 

filter.  At the output of this filter, we would have a sinusoid.  The frequency of this sinusoid would be the 

central frequency of the bandpass filter, and the amplitude and phase of this sinusoid would be 

determined by the input signal.  Any signal can be represented by the amplitude and phases of all of these 

sinusoids.  We call this the spectral content of the signal.  To best describe frequency spectrum of signals, 

we begin with the generalized Fourier series. 

 

 

 3.1 Generalized Fourier Series 

 

Suppose we have a set of functions {n(t)}n=1,2,…,N which is made up of functions that are mutually 

orthogonal on the interval to ≤ t ≤ to + T.  In other words: 
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where j
*
(t) indicates the complex conjugate of j(t).  If cn = 1 for all values of n, then we say that the set 

of functions is orthonormal. 

 

We would like to approximate some function x(t) on the interval (to, to + T) by the function xa(t) which is 

given by: 
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The best approximation is the one that minimizes the mean square error between the original signal, x(t), 

and itself.  The mean square error (MSE) is given by:  
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Expansion of (3.3) yields: 
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From (3.1), The final term in (3.4), 
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= i.  Therefore (3.4) becomes: 
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Let 
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If we add the term 2||
1

n
n

y
c

 to the summation in (3.6), then the sum can be factored.  Therefore (3.6) 

becomes: 
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Only the final summation in (3.7) depends on Xn. Every term in this summation must be positive.  

Therefore to minimize (3.7), we must choose the values of Xn so that every term in the final summation of 

(3.7) is zero.  Therefore, the best approximation for x(t) on the interval to ≤ t ≤ to + T is given by (3.2) 

where Xn is given by: 
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From (3.8), we see that 
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X  .  For Xn given by (3.8), the MSE between x(t) and its best 

approximation is given by: 
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Example 3.1 

 

We wish to approximate the signal x(t) = t
2
 on the interval 0 ≤ t ≤ 1 using the set of 

orthogonal functions shown in Figure 3.1.  Find 
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Figure 3.1 Les fonctions orthogonales de l’exemple 3.1. 

 

We can show that   
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Thus cn = 1 for n = 1, 2, 3.  The generalized Fourier series coefficients are: 
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Thus x2(t) and x3(t) are given by: 
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The signal x(t) on the interval 0 ≤ t ≤ 1 is shown in Figure 3.2 along with its two 

approximations, x2(t) and x3(t). 

 

t 

1

1

1(t)

t 

1

1

2(t)

t 

1

1

3(t)

0.5

0.25 0.75

-1

-1



 
 

 

Figure 3.2: The signal x(t) = t
2
 on the interval 0 ≤ t ≤ 1 and its approximations x2(t) and 

x3(t). 

 

The coefficients Xn found in the example are those that minimize the MSE between x(t) 

and the approximations. The MSE is thus given by (3.9).  We find that 
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 .  Increasing N beyond N = 3 has no effect on Xn 

for n = 1 to 3, therefore if we increase N, we decrease the MSE. 

 

  

3.2 The Complex Exponential Fourier Series 

 

We wish to find an approximation 
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The MSE between the signal and its approximation on this interval is given by: 
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There exist some infinite sets of orthogonal functions {n(t)}-∞ ≤ n ≤ ∞, for which the approximation 

approaches the original signal on the interval  to ≤ t ≤ to + T.  In other words, using this infinite set, we get: 
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for any signal x(t) for which 
Tt
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dttx 2|)(| .  However, should the signal x(t) contain discontinuities, 

then it is possible that xa(t) is not equal to x(t) at the discontinuities. 

 

One set of functions for which (3.11) – (3.13) are true is the set of complex exponential functions 
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The complex exponential function is periodic with period Tp.  Thus poopoo
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integers.  Thus Tp = m/nfo.  The fundamental period, Tf, is the smallest positive value of Tp.  Thus the 

fundamental period of tnfj oe
2 is Tf = 1/|n|fo. 
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For m ≠ n, (3.15) becomes 
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 Tfmnj oe

  (fo = 1/T).  From (3.17), we can see that the set of complex exponentials is made up 

of mutually orthogonal functions. 

 

From the generalized Fourier series, the complex exponential Fourier series of x(t) on the interval to ≤ t ≤ 

to + T is given by: 
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The Complex Exponential Fourier Series of Periodic Signals 

Consider the Fourier series 
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2  on the interval -∞ ≤ t ≤ ∞.  It was shown previously that the 

complex exponential function is periodic with fundamental period 1/|n|fo = T/|n|.  The sum of periodic 

functions is also a periodic function if a lowest common multiple (LCM) of the periods of each of the 

functions in the sum exists.  In the case of the complex exponential Fourier series,the LCM of the 

fundamental periods is  T.  Thus 
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tnfj
n

oeX
2  is periodic with fundamental period T = 1/fo, and fo is 

known as the fundamental frequency. Thus, if x(t) is also periodic with fundamental period T, then (3.18) 

is valid on the interval -∞ ≤ t ≤ ∞.  We employ (3.19) to find the Fourier coefficients by integrating over 

one period of x(t).  We can express (3.19) for periodic signals as: 
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where   
T

dt  indicates that the integral is done on any time interval of duration T. 
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Example 3.2 

 

Find the complex exponential Fourier series of the periodic signal x(t) shown in Figure 

3.3. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Periodic signal of example 3.2. 

 

The signal x(t) is periodic with fundamental period T = 0.5.  Thus fo = 2.  The complex 

exponential Fourier series of x(t) is: 
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where Xn is given by: 
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For even n, Xn =0 and for odd n, Xn = 2A/jn.  For n = 0, X0 = 0/0, but from (3.21), we 

see that X0 is: 
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Thus we can represent x(t) by: 
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3.3 Symmetry of the Fourier Series Coefficients 

 

Assuming that the signal x(t) is a real signal.  In other words Im{x(t)} = 0.  The complex conjugate of the 

Fourier series coefficient, Xn
*
, is given by: 
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Thus, X-n = Xn
*
 if x(t) is a real signal.  In other words, for real x(t),  Re{Xn} = Re{X-n} and Im{Xn}=-Im{X-

n}.  As a function of n, the real part of the Fourier series coefficients is an even function and the imaginary 

part is an odd function for all real valued signals. 

 

 3.4 The Trigonometric Fourier Series 

 

Let us consider a real valued signal, x(t).  The real part of its complex exponential Fourier series 

coefficients is given by: 
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The imaginary part of its complex exponential Fourier series coefficients is given by: 
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The complex exponential Fourier can also be expressed as: 
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For a real valued signal, x(t),  we know that X-n = Xn
*
, thus (3.25) becomes: 
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where  
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Example 3.3 

 

Using the complex exponential Fourier series of the signal x(t) in example 3.2, find its 

trigonometric Fourier series.  

 

Solution 

 

In example 3.2, we found the complex exponential Fourier series to be: 
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thus X0 = 0, Re{Xn} = 0 and Im{Xn} = -2A/n for all odd values of n.  Therefore bn = 

4A/n for all odd values of n.  We can express x(t) as: 
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The sum 
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  represents the sum of the first N harmonics 

of x(t).  This sum is shown in Figure 3.4 for N = 1 to 3.     

 



 
Figure 3.4: The approximation of x(t) by its first N terms in the trigonometric Fourier 

series (N = 1 to 3). 
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 3.5 Properties of the Trigonometric Fourier Series 

 

For any periodic signal, x(t), whose period is given by T, we can find the trigonometric Fourier series 

coefficients by taking the integrals of (3.27) over any interval of duration T.  Let us examine the case 

where the interval of integration is -T/2 ≤ t ≤ T/2.  Thus a0, an and bn become: 
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Consider the case when x(t) is an even function.  In other words, x(t) = x(-t).  if we replace x(t) by x(-t) in 

the first integral of (3.31), bn becomes: 
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Substituting u for –t in the first integral of (3.32), we obtain the following: 
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Therefore, for an even periodic function x(t), the coefficients {bn} are all equal to 0 and its 

trigonometric Fourier series becomes: 
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Similarly, we can show that for odd periodic functions (x(t) = -x(-t)), the coefficients a0 and an equal 0.  

For odd periodic functions, the trigonometric Fourier series is given by: 
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For any arbitrary function, x(t), we can express it as a sum of one even and one odd function.  In other 

words, x(t) = xe(t) + xo(t), where xe(t) is the even component of x(t) and xo(t) is its odd component.  When 

x(t) is an even function, xo(t) = 0, and conversely, if x(t) is odd, xe(t) = 0.  The even and odd components 

of x(t) can be found to be: 
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Thus for x(t) = xe(t) + xo(t), we can express its trigonometric Fourier series coefficients by the following: 
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Example 3.4 

 

For the signal x(t) shown in Figure 3.5, find its trigonometric Fourier series. 

 

 



 

 

 

 

 

 

 

 

 

Figure 3.5: The signal x(t) of example 3.4. 

 

Solution 

 

The period of this signal is T = 4, thus the fundamental frequency is fo = ¼.  The 

trigonometric Fourier series can be expressed as: 
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where xxx  /)sin()(sinc  and sin(n) = 0 for integer values of n.  Therefore we can 

express x(t) as: 
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The above sum contains an infinite number of terms.  In figure 3.6, we show 

approximations of x(t) which use a finite number of terms from the above sum. The 

approximation x1(t) contains all terms from the above sum whose frequency is below 1 

Hz and the approximation x2(t) contains all terms with frequencies below 2 Hz.  

Mathematically, they are given by: 
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Figure 3.6: The signal x(t) of example 3.4 with its two finite sum approximations, x1(t) 

and x2(t). 

 

______________________________________________________________________________ 

 

Example 3.5 

 

For the signal x(t) of example 3.4, find its even and odd components, xe(t) and xo(t).  

Then find the trigonometric Fourier series of xe(t) and xo(t) and show that the 

coefficients a0 and an that we obtain for xe(t) and the coefficients bn that we find for 

xo(t) are the same as those found in example 3.4. 

 

Solution 

 

The signals x(t) and x(-t), as well as the signals xe(t) = [x(t) + x(-t)]/2 and xo(t) = [x(t) – 

x(-t)]/2  on the interval -2 ≤ t ≤ 2 are shown in Figure 3.7. 

 

From (3.38), we find the trigonometric Fourier series coefficients to be: 

 

0
2

1

2

1

2

1

4

1
)(

4

1
2

1

1

1

1

2

2

2

0 






































 







dtdtdtdttxa e  

 


























































































































































































odd is  ,
2/

)1(

even is                ,0

)2/(sinc
2/

2
sin

2

2
4sin

                                             

2
sin

2
sin

2
sin

2
sin

2

1
                                             

2
sin

2
sin

2
sin

2

1
                                             

2
cos

2
cos

2
cos

4

1

2
cos)(

2

1

2/)1(

2

1

1

1

1

2

2

1

1

1

1

2

2

2

n
n

n

n
n

n

n

n

nnnn

n

ntntnt

n

dt
nt

dt
nt

dt
nt

dt
nt

txa

n

en




















 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: The signals x(t), x(-t), xe(t) and xo(t). 
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We see that the coefficients are the same as those obtained in Example 3.4 
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 3.6 The Fourier Transform 

 

Consider a periodic signal 
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(3.19).  Therefore x(t) is given by: 
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If x(t) is aperiodic, its “period” T → ∞ and therefore f0 → 0.  Thus 1/T becomes df, nfo becomes f and the 

sums become integrals.  Thus (3.39) becomes: 
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X(f) is called the Fourier transform of x(t).  It describes the spectral content of the signal x(t).  It is given 

by:  

)( fX F{x(t)} 




 dtetx ftj 2)(                                            (3.41) 

The inverse Fourier transform can be found from (3.40).  With it, we can determine the time domain 

signal from its Fourier transform.  It is given by:  

x(t) = F -1
{X(f)}= 
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Example 3.6 

 

Find the Fourier transform of x(t) = (t). 

 

Solution 

 

The Fourier transform of x(t) is: 
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Example 3.7 

 

Find the Fourier transform of x(t) = (t). 

 

Solution 
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Example 3.8 

 

Find the Fourier transform of x(t) = (t). 

 

Solution 
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 3.7 Properties of the Fourier Transform 

 

  3.7.1 Linearity 

 

The Fourier transform is a linear function.  This means that for x3(t) = x1(t) + x2(t), X3(f) = F 

{x3(t)}=X1(f) + X2(f), where X1(f) = F {x1(t)} and X2(f) = F {x2(t)}. 

 

Proof 
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Example 3.9 

 

Find the Fourier transform of the signal x(t) = 2(t) + 3(t). 

 

Solution 

 

X(f) = F {2(t) + 3(t)} = 2 F {(t)} + 3 F {(t)} = 2(1) + 3(sinc(f)) = 2 + 3sinc(f). 

 

F {2(t) + 3(t)} = 2 + 3sinc(f) 

______________________________________________________________________________ 

 

 

 

 

 



  3.7.2 Time Delay 

 

Suppose that the Fourier transform of x1(t) is X1(f).  Then the Fourier transform of x2(t) = x1(t-to) is: 

)(2 fX  F {x1(t-to)}
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Proof 
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Let u = t-to and du = dt.  Equation (3.44) becomes 
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Example 3.10 

 

Find the Fourier transform of x(t) = (t-to). 

 

Solution 

 

X(f) = F {(t-to)} = F {(t)} oftj
e

2  

X(f) = (1) oftj
e

2  = oftj
e

2  

 

F {(t-to)} = oftj
e

2                                         (3.45) 
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Example 3.11 

 

Find the Fourier transform of x(t) shown in Figure 3.8 using the Fourier transform of 

(t) and the properties of linearity and time delay. 

 

 

 

 

 

 

 

 

 

Figure 3.8: The signal x(t) of example 3.11. 
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Solution 

 

Although there are many ways to determine the Fourier transform of the signal shown in 

Figure 3.8, we have been limited to using the linearity and time delay properties.  It is 

easily shown that x(t) = (t + ½) + (t - ½).  Donc X(f) = F{(t + ½) + (t - ½)} = 

F{(t + ½)} + F{(t - ½)} = fje  F{(t)} + fje  F{(t)}. 
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  3.7.3 Time Scaling 

 

Given that the Fourier transform of x1(t) is X1(f), and x2(t) = x1(at) where a is a constant, Then the Fourier 

transform of x2(t) is X2(f) =  
a

f

a
X1||

1 . 

 

Proof 

 

1) For a > 0. 
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Let  u = at and du = adt.  Equation (3.46) becomes: 
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2) For a < 0 (a = -|a|) 

 

Let u = -|a|t and du = -|a|dt.  Equation (3.46) becomes: 
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F{x(at)} 
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Example 3.12 

 

Repeat example 3.11 using the time scaling property. 

 

Solution 

 

The signal x(t) is a time scaled version of (t) where we have spread the function over 

time by a factor of 2, thus x(t) = (t/2).  Therefore a = ½ and X(f) = 2F{(t)}|f = 2f.  

Therefore X(f)=2sinc(2f). 

______________________________________________________________________________ 

 

  3.7.4 Duality 

 

If the Fourier transform of x(t) is X(f), then the Fourier transform of X(t) is x(-f). 

 

Proof 

 

The inverse Fourier transform of X(f) is: 

)()( 2 txdfefX ftj 





                                                   (3.48) 

If we exchange f and t in (3.48) we obtain 
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The Fourier transform of X(t) is: 
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Example 3.13 

 

Find the Fourier transform of sinc(2t). 

 

Solution 

 

F{½(t/2}} = sinc(2f).  Thus the Fourier transform of sinc(2t) is F{sinc(2t)} = ½(-

f/2) = ½(f/2). 

 

______________________________________________________________________________ 

 

Example 3.14 

 

Find the Fourier transform of x(t) = A. 

 

Solution 

 

We know that F{(t)} = 1, therefore F{A(t)} = A.  Using the duality property of the 

Fourier transform, F{A} = A(-f) = A(f). 

______________________________________________________________________________ 

 

 

  3.7.5 Frequency Shifting 

 

If x2(t) = x1(t)
tfj oe

2 and X1(f) = F{x1(t)}, then X2(f) = F{x2(t)} = X1(f-fo). 

 

Proof 
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Therefore 

F{x(t) tfj oe
2 }=  offX                                                (3.50) 
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Example 3.15 

 

Find F{cos(2fot)}. 

 

 



 

Solution 

 

We can express cos(2fot) as tfjtfj oo ee
 2

2
12

2
1 

 . Therefore F{cos(2fot)} = F{

tfjtfj oo ee
 2

2
12

2
1 

 } = ½ (f-fo) + ½ (f+fo). 
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  3.7.6 Convolution 

 

If X(f) = F{x(t)} and Y(f) = F{y(t)}, then for z(t) = x(t)*y(t), the Fourier transform is Z(f) = X(f)Y(f). 

 

Proof 
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Therefore x(t)*y(t)=F-1
{X(f)Y(f)}.  Therefore 

 

F{x(t)*y(t)} = X(f)Y(f)                                                   (3.51) 

 

______________________________________________________________________________ 

 

Example 3.16 

 

Find the Fourier transform of x(t+to) + x(t-to). 

 

 

 

 

 

Solution  



 

It can be shown that x(t+to) + x(t-to) = x(t) * [(t-to) + (t+to)].  F{[(t-to) + (t+to)]} = 

o
ftjftj

ftee oo 
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22


 .  Therefore F{x(t+to) + x(t-to)} = 2X(f) oft2cos . 
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  3.7.7 Multiplication in time 

 

The Fourier transform of z(t) = x(t)y(t) is Z(f) = X(f)*Y(f). 

 

Proof 
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     =F{x(t)y(t)}                                                                                              (3.52) 
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Example 3.17 

 

Find the Fourier transform of x(t) = (t)cos20t. 

 

Solution 

 

F{(t)} = sinc(f) and F{cos20t} = ½(f-10) + ½(f-10).  Then, from (3.52), 

F{(t)cos20t} = sinc(f)*[½(f-10) + ½(f-10)] = ½sinc(f-10) + ½sinc(f+10).  The 

Fourier transform of (t)cos20t is shown in Figure 3.9. 

 



 
 

 

Figure 3.9: F{(t)cos20t} 

______________________________________________________________________________ 

  3.7.8 Time Derivatives 

 

If F{x(t)} = X(f), then F{
dt

tdx )(
} = 2fX(f). 

 

Proof 
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We must solve the integral in (3.53) by parts.  Let u = e
-j2ft

 and dv = 
dt

tdx )(
dt.  Therefore du =  

-j2fe
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 and v = x(t).  Equation (3.53) becomes: 

F{
dt

tdx )(
} 










  dtetxfjetx ftjftj   22 )(2)(                                (3.54) 

 

The existence of the Fourier transform of x(t) implies x(±∞) = 0, therefore the first term in (3.54) is 0.  

Equation (3.54) becomes: 
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Example 3.18 

 

Find the Fourier transform of sin2fot. 

 



Solution 

 

F{cos2fot} = ½(f-fo) + ½(f+fo).  The function sin2fot = 
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  3.7.9 Integration in time 

 

The function 
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Proof 

 

The Fourier transform of u(t) is U(f).  The derivative of u(t), 
dt

tdu )(
= (t).  Therefore j2fU(f) = 1. Also, 

u(t)+u(-t) = 1.  Therefore U(f)+U(-f) = (f).  The latter identity indicates that U(f) = -U(-f), except for f = 

0, where U(0) = U(-0) = ½(f).  Therefore, from the two identities, the Fourier transform of u(t) is U(f) = 
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Example 3.19 

 

Find the Fourier transform of y(t) = (1-e
-t
) u(t).   

 

Solution 

 

Let x(t) = e
-t
u(t) which has Fourier transform X(f) = 1/(j2f+1).  

)()1()( tuedue t

t





  
.  Therefore Y(f) = (1/j2f)X(f) + ½X(0)(f) = 1/(j2f-

(2f)
2
) + ½(f). 
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  3.7.10 Complex Conjugate 

 

If X(f) = F{x(t)}, then F{x
*
(t)} = X

*
(-f). 

 

Proof 
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