
Date: Monday, October 21, 2002
Prof.: Dr Jean-Yves Chouinard

Design of Secure Computer Systems CSI4138/CEG4394

Notes on Public Key Cryptography

Public-key encipherment concept

Each user in a secure communication network has a private key, which he keeps secret, and a public
key which is stored in a directory. The network users use the public keys to communicate with
each other.

Secrecy:

Network user A encrypts message M to user B, by applying B’s public key transformation EKB
(•)

to the plaintext and sends it to recipient B.

C = EKB
(M)

however, only user B can decrypt the ciphertext C, since only him knows the private key transfor-
mation DkB

(•):
DkB

(C) = DkB
[EKB

(M)] =⇒ M

Authentication:

If user A wants to authentify a message M , he uses his own private key transformation, i.e. DkA
(•)

and then sends the authentified message S.

S = DkA
(M)

Everyone in the network can verify the authenticity of the message by performing the inverse
transformation with public key EKA

(•):
EKA

(S) = EKA
[DkA

(M)] =⇒ M

Note that the message is not protected, since every user in the network can recover the message
M .

Secrecy and authentication:

The message M can also be first authentified by A with his private key, and then encrypted using
the recipient own public key transformation:

C = EKB
(S) = EKB

[DkA
(M)]

At this point, only recipient B can retrieve the authentified message since only him can perform the
decryption transformation DkB

(•). He then uses A’s public key to verify the message authenticity.

EKA
[DkB

(C)] = EKA
[DkB

[EKB
[DkA

(M)]]] = EKA
[DkA

(M)] =⇒ M

1

EKB
(M) DkB

(C)� �� �

�
�

��

�
�

���
�

��

�
�

��

����

�������	

���	

M MC C

.

.

.

.

. . .

Encryption Decryption

Communication
Network

Figure 1: Communication link with public key encryption

Exponentiation ciphers

The encryption as well as the decryption transformation consists in a modular exponentiation:

C = EK(M) = M e mod n and
M = DK(C) = Cd mod n

For instance, the fast exponentiation program can be used for encryption (i.e. fastexp(M, e, n))
and decryption (fastexp(C, d, n)). The message stream must be broken into message blocks
M1, M2, If M is relatively prime to n then:

gcd(M, n) = 1 and then
Mφ(n) mod n = 1

Now, if the exponents e and d are such that

(e d) mod φ(n) = 1

then M = Cd mod n is the inverse transformation of C = M e mod n or:

2

DkA
(M) EKA

(S)� �� �

�
�

��

�
�

���
�

��

�
�

��

����

�������	

���	

M MS S

.

.

.

.

. . .

Authentication Authentication
Verification

Communication
Network

Figure 2: Communication link with public key authentication

DkA
(M) EKB

(S) DkB
(C) EKA

(S)� �� �� �

�
���

�
����

���

�
���

����

�������	

���	

M MS SC C

.

.

.

.

. . .

Authentication and
Encryption

Decryption and
Authentication Verification

Communication
Network

Figure 3: Communication link with public key authentication and encryption

M = DK [EK(M)]

3

M = [M e mod n]d mod n and

M = EK [DK(M)]
M = [Md mod n]e mod n

Consider the expression DK [EK(M)]. By the principle of modular arithmetics:

DK [EK(M)] = [M e mod n]d mod n

= {[M e mod n] [M e mod n] . . . [M e mod n]︸ ︷︷ ︸
d times

} mod n

= [M e M e . . . M e] mod n

DK [EK(M)] = M ed mod n

but since (ed) mod φ(n) = 1, we can write that (ed) = kφ(n) + 1, where k is an integer and 1 is
the residue modulo φ(n). Then:

DK [EK(M)] = Mkφ(n)+1 mod n

= [MMkφ(n)] mod n

= [(M mod n) (Mkφ(n) mod n)] mod n

= [M (Mkφ(n) mod n)] mod n

since M ∈ [0, n − 1]

DK [EK(M)] = [M (Mkφ(n) mod n)] mod n

= [M (Mφ(n))k mod n] mod n

= [M Mφ(n) Mφ(n) . . . Mφ(n)︸ ︷︷ ︸
k times

] mod n

= [M Mφ(n) mod n Mφ(n) mod n . . . Mφ(n) mod n] mod n

= [M 1 1 . . . 1] mod n

DK [EK(M)] = M

Rivest, Shamir and Adleman (RSA) cipher

One the most important public key encipherment algorithm is the RSA cipher [RSA78] which has
been proposed by Rivest, Shamir and Adleman in 1978. It also makes use of modular exponentia-
tion.

4

Secrecy using RSA

Let p and q be two distinct prime numbers and let n be the product of these numbers: n = p × q.
Choose an integer e relatively prime to φ(n) = (p − 1)(q − 1). The encryption transformation is
then computed as:

C = EK(M) = M e mod n

while the decryption transformation is done as:

M = DK(C) = Cd mod n

In the RSA cryptosystem, the private key consists in the triplet (p, q, e) and the public key is
simply the pair (e, n). This public pair (e, n) is stored in a public directory which can be read by
all the users in a communication network.

EB(M)
MEB mod nB

DB(C)
CDB mod nB

� � �
M MC

Figure 4: Block diagram of RSA secure communication link

When user A wants to send a secret message to user B, he uses B’s public key (eB, nB) to
encrypt his message M prior transmission over the communication network.

(eB, nB) =⇒ C = M eB mod nB

Even if user A has the public key (eB, nB), the message M as well as the corresponding ciphertext
C = EK(M), it is extremely difficult to compute the private key (pB, qB, eB). This involves the
factorization of the number nB in two large prime numbers, namely pB and qB.

The legitimate recipient of the message, user B, is the only one in the network to possess the
private key information. Upon receiving the ciphertext C, he can decrypt the original plaintext
using the multiplicative inverse dB of the exponent eB. From the two large prime numbers pB and
qB it is easy to compute this inverse dB; and thus to perform the decryption transformation DK

of the ciphertext:

(eB × dB) mod φ(nB) = 1

where φ(nB) = (pB − 1)(qB − 1). By Euler’s theorem:

5

M eBdB mod nB = M with 1 ≤ M ≤ nB

Example(RSA cipher):
Suppose that the recipient, user B, chooses pB = 19 and qB = 23 as his private key prime

numbers and computes nB:
nB = 19 × 23 = 437

Since pB and qB are primes, the Euler function φ(nB) is given by:

φ(nB) = (pB − 1)(qB − 1)
φ(nB) = 18 × 22
φ(nB) = 396

He then arbitrarily chooses an exponent eB relatively prime with φ(nB) = 396. For instance,
he may take eB = 13 (note: gcd(13, 396) = 1). The multiplicative inverse of eB modulo φ(nB) is
determined as:

dB = e
φ[φ(nB)]−1
B mod φ(nB)

where φ[φ(nB)] = φ(396) = 120. Since

φ(nB) =
∏

i

pei
i = 22 × 32 × 111 = 396

then

φ[φ(nB)] =
∏

i

p
(ei−1)
i (pi − 1)

φ[φ(nB)] = 21(2 − 1) × 31(3 − 1) × 110(11 − 1) = 2 × 6 × 10
φ[φ(nB)] = 120

And

dB = e
φ[φ(nB)]−1
B mod φ(nB)

dB = 13119 mod 396
dB = 61

User B then stores the pair (eB, nB) = (13, 437) in the public network key directory. If another
network user, say user A, wants to encrypt a message M for user B, e.g. M = 123, he then does
so by using the public key (13, 437) of the recipient, user A.

C = M eB mod nB

C = 12313 mod 437
C = 386

6

The recipient, using his secret key information (pB, qB, eB) and thus dB, is the only network
user knowing that dB = 61 and is thus the only one able to perform the decryption transformation
properly on the received ciphertext C:

M = CdB mod nB

M = 38661 mod 437
M = 123

Schroeppel [SS79] has estimated that the number of steps required to factorize an RSA cipher
with the product n to be:

T (n) = exp[
√

ln(n) ln ln(n)] steps.

Rivest, Shamir and Adleman suggested using 100 decimal digits numbers for both p and q,
resulting in a 200 decimal digit number for the product n.

Authentication using RSA

The RSA algorithm can also be used for authentication purposes. User A may prove to user B that
the message M that he is sending is a genuine message by applying his own private key information
(pA, qA, eA) to the message M .

S = MdA mod nA

Every user in the network can decrypt A’s message by using his public key information (eA, nA),
but only user A can produce this authenticated message S.

M = SeA mod nA

M = (MdA mod nA)eA mod nA

M = MdA eA mod nA

Secrecy and authentication using RSA

Finally, both secrecy and authentication can be achieved with RSA by using the public and private
keys of both users. The sender, user A for instance, authenticates his message by using his private
key (pA, qA, eA) and then encrypts it using B’s public key (eB, nB):

C = EB[DA(M)]

C =
[
MdA mod nA

]eB

mod nB

Only user B, having the private key triplet (pB, qB, eB), can decrypt the original message and assess
its authenticity with A’s public key (eA, nA):

7

DA(M)
MDA mod nA

EA(S)
SEA mod nA

� � �
M MS

Figure 5: Message authentication using RSA algorithm

M = EA[DB(C)]
M = EA[DB[EB[DA(M)]]]

M =
[[[

MdA mod nA

]eB

mod nB

]dB

mod nB

]eA

mod nA

=
[
CdB mod nB

]eA

mod nA

DA(M)
MDA mod nA

EB(S)
SEB mod nB

DB(C)
CDB mod nB

EA(S)
SEA mod nA

� � � � �M MS SC

Figure 6: Message secrecy and authentication using RSA

Security of the RSA cryptosystem

1. Computation of e and d: polynomial time:

O(nt)

2. Encryption: polynomial time:
C = M e mod n

8

3. Decryption: polynomial time:
M = Cd mod n

4. Computation of the secret decryption key d from the public key e and the modulus value n:
non-polynomial time (computationally infeasible)

5. Computation of the plaintext message M from the ciphertext C, the public key e, and n:
non-polynomial time (computationally infeasible)

Hence the name asymmetric algorithm cryptosystems.

Storage and time requirements

Storage requirements:

As mentioned before, it is suggested to choose a 200 decimal digits number for n; this corresponds
to a 664-bits binary word. Each user has to store a 664-bits binary vector for n as well as two more
664-bits vectors for e and d. Therefore, the amount of private key information that each user has to
store is approximately 2 kbits. The network directory must contain the public key information of
each network user, that is a 664-bits vector for n and another 664-bits vector for the public key e,
i.e. ≈ 1, 3 kbits per network user. By comparison, the storage requirement for a Data Encryption
Standard key is only 56 bits.

Time requirements:

The computation time requirements for RSA are 1 to 2 multiplications per bit (modular arithmetics)
or roughly 1000 operations for a 664-bit number n. With special purpose chips, a few thousands bits
can be processed per second, while for DES processing rates of up to 100 Mbits/s are achievable
today.

Diffie-Hellman Key Exchange Algorithm

In 1976, Diffie and Hellman [DH76] published the first public key based algorithm which was
designed to provided a means to exchange securely a key K over a public network. That key K
can later be used as a session key. Note however that this algorithm applies only to the exchange
of keys.

Before the key exchange actually begins, two global public values are generated and made public
to everyone: a prime number q and α, a primitive root of q, where α < q.

A primitive root a of a prime number p is an integer for which the successive powers modulo p:

a mod p, a2 mod p, a3 mod p, . . . , ai mod p, . . . , a(p−1) mod p

generates (p − 1) distinct integers, without repetition. The sequence {ai mod p}i=0,...,(p−1) is thus
a permutation of the integers from i = 1 to (p − 1).

For any integer b = ai mod p, the exponent i is refered to as the discrete logarithm (or index)
of b in base a modulo p.

9

Suppose that Alice, A, and Bob, B, want to exchange a key K. Alice selects a secret random
number XA < q, compute the public value YA = αXA mod q and makes it public. Bob does the
same, that is, he generates his private random number XB < q, calculate YB = αXB mod q and
publishes YB. Then Alice computes the key K as follows:

K = (YB)XA mod q

K =
(
αXB mod q

)XA mod q

K =
(
αXB

)XA mod q (principle of modular arithmetics)

K = αXBXA mod q

Similarly, Bob computes K using the public information and his own private random number:

K = (YA)XB mod q

K =
(
αXA mod q

)XB mod q

K =
(
αXA

)XB mod q

K = αXAXB mod q = αXBXA mod q (same key K)

The security of the algorithm is based on the difficulty to compute discrete logarithms. While
it is easy to compute the modular exponentials Y = αX mod q knowing the secret number X, it is
difficult for an attacker to compute X from Y and the global public values α and q:

Y = αX mod q (modular exponentiation: easy)
X = logα Y mod q (discrete logarithm: difficult)

Hybrid cryptosystems (public key)

RSA: Slow to communicate information

DES: Impossible to use in a public key context or may not be sufficiently secure

In a hybrid cryptosystem, the public key cryptosystem (e.g. RSA) may be used to exchange
a limited amount of secret information which, for instance, may be used then as a secret key for
encryption and decryption for a symmetric algorithm (e.g. DES). Then the symmetric cryptosystem
can encrypt the message data itself at a much higher rate.

Note 1: Keys can also be updated frequently using this type of hybrid cryptosystem approach.
A cryptanalyst, succeeding in breaking the symmetric cryptosystem secret key will decrypt
only the corresponding part of the plaintext message before the key is updated.

Note 2: The information transmission rate, in such an hybrid cryptosystem, won’t be much slowed
down by the use of the public key cryptosystem.

10

References

[DH76] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Information
Theory, 22:644–654, November 1976.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Communin. Ass. Comput. Mach. (ACM), 21(2):120–126, February 1978.

[SS79] R. Schroeppel and A. Shamir. A TS2 = O(2n) Time/Space Tradeoff for Certain NP-Complete
Problems. In Proceedings of the IEEE 20th Annual Symposium on the Foundations of Computer
Science, Washington, D.C, October 1979.

11

