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Notes on Classic encipherment methods

1 Simple substitution ciphers

The message encipherment is done by applying the transformation algorithm E(e) with key K to
the plaintext message M:

Encryption transformation:

C = Ex(M)

where C' is the resulting ciphertext.
The decryption operation is performed on the ciphertext, using the same key K in conjunction
with the decryption transformation D (e) on the received ciphertext data.

Decryption transformation:

M = Dg(C) = Dg[Ex(M)]

The message string M consists in a string of single plaintext letters, or symbols, M = mq,

ma, ..., m;, ... taken from a plaintext sample space m; € M, the key string K is also a string
of symbols K = ki, ko, ..., k;, ... from a key sample space k; € K, and the encrypted ciphertext
string C = ¢y, ¢2, ..., ¢;, ... where each ciphertext symbol ¢; € C, the ciphertext sample space.

1.1 Monoalphabetic substitution ciphers

Consider the plaintext alphabet M (or sample space):
M ={ai,...,a,} where n is the alphabet size

The encryption transformation Ex(e) can be viewed as a single mapping function f(e) from
the plaintext alphabet M to the ciphertext alphabet C:

f(o): M —=C
for which C = {f(a1),..., f(an)}. If the message string M is:
M=mi,mo,...,m;,...
then the corresponding ciphertext string C is:

C =FEg(M) = f(my), f(ma),..., f(mi),...



Example (Caesar’s cipher): A very simple monoalphabetic substitution cipher is the Julius Cae-
sar’s cipher. The transformation algorithm E(e) is: “replace each letter in the plaintext by the
third one following it in the standard alphabet”, whereas the key k is simply the amount of “shift”
between the original plaintext letters and the ciphertext letters. It is called a shifted-alphabet cipher.
Assume that k£ = 3, for instance.

Encryption algorithm:

f(i) = (i + k) mod n
where k = 3 and n = 26. f(i) represents the letter index in the ciphertext sample space C.

If Caesar wanted to encipher the plaintext message M:
M = “brutus”
then the ciphertext C' would be:

C = E3(“bTU’tu‘9”) - f(b),f(r),f(u),f(t),f(u),f(s) - f(1)7f(17)7f(20)7f(19)7f(20)7f<18)

in terms of indexes. Since

f(1) =(1+3)mod26 =4
FI7T) =(17+3) mod 26 = 20
£(20) = (20 +3) mod 26 = 23
£(19) = (19+3) mod 26 = 22
£(20) = (20+3) mod 26 = 23
f(18) =(18+3)mod 26 =21

the ciphertext is:

C = 4,20,23,22,23,21 = “EUXWXV"

Decryption algorithm:

The legitimate message recipient, having the encryption key k& and knowing the encryption
transformation (i.e. shifted-alphabet cipher transformation) can perform the decipherment of ci-
phertext C:

f1i) = (i — k) mod n

Ds(C) = Ds[Es(“brutus”)] = Dy(“EUXW X V")
Ds(C) = “brutus”



Cryptanalysis of Caesar’s cipher (2 cases):

1. The cryptanalyst don’t know that the ciphertext C' is a shifted-alphabet cipher. He computes
from C' the relative frequencies of occurrence of the ciphertext letters (see figure 2). If there
is a sufficient amount of ciphertext, the ciphertext letter distribution should approach that
of the plaintext alphabet (i.e. figure 1). By comparing both distributions it is obvious that
C' is a shifted-alphabet cipher and that the amount of “shifting” is 3.

2. The cryptanalyst already suspects that it is a shifted alphabet cipher. He can then try all
the 25 possible keys 1 < k < 25 on the ciphertext until he obtains a meaningful message
(exhaustive key search method).
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Figure 1: Letter distribution of English plaintext.
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Figure 2: Letter distribution of Caesar’s shifted alphabet cipher (k = 3).

This example shows that a simple shifted alphabet cipher is extremely weak in preserving the
secrecy of a message M.




1.2 Other simple substitution ciphers

Multiplication cipher:

For multiplication ciphers, the encryption transformation is given by:
f(@) = (i x k) mod n
where k and n must be relatively prime, that is ged(k,n) = 1. For instance if k = 3 then:

f(i) = (i x3) mod n
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Figure 3: Letter distribution of English plaintext.
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Figure 4: Letter distribution of multiplication cipher (k = 3).

Affine transformation:

The encryption transformation combines the shifted-alphabet and the multiplication encryption
transformations:

f(’L) = (Z x k1 + k‘o) mod n



Table 1: Multiplication cipher.
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Again, k1 and n must be relatively prime.

Polynomial transformation:

The encryption transformation is a generalization of the affine transformation:
f@) = (ke + 4" kg1 + -+ + i%ko + ik1 + ko) mod n
t = 1 = Affine transformation cipher

t = 0 = Shifted-alphabet cipher

General case (monoalphabetic substitution ciphers):

fai) # f(ay) for all i # j

For instance,

M :{CL?vaa"'axayaZ}
C ={H,X,N,---,A,D,J}

Note that for the general case, an exhaustive key search over a 26 letter alphabet may prove
computationally infeasible: there are n = 26 possible choices for the first letter, (n—1) = 25 choices
for the second, (n — 2) = 24 the third, and so on... In other words there are n! = 26! ~ 4 x 10%6
choices of alphabet permutations. However, looking at the distribution of ciphertext letters, it is
fairly simple to determine the encryption mapping function f(e) (assuming sufficient amount of
ciphertext). Note that for the above schemes there is a single f(e) function mapping:

M =C
i = f(i)
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2 Polyalphabetic substitution ciphers

For polyalphabetic substitution ciphers, the message sequence M = myq,...,my,... is encrypted
by applying the transformation algorithm E(e) with a key sequence K = ki, ..., ki, ... to the
plaintext message M:

Encryption transformation:

C =FExg(M)
where C' = ¢1,...,¢;, ... is the resulting ciphertext sequence. The ciphertext sequence decryption is
done using the same key sequence ki, ..., k;, ... with the proper decryption transformation D (e)

on the received ciphertext data:

Decryption transformation:

M = Dg(C) = Dg[Ek(M)]
There are three types of polyalphabetic ciphers, these are:
1. Periodic substitution ciphers
2. Running-key ciphers

3. One-time pad ciphers

2.1 Periodic substitution ciphers

For this type of polyalphabetic substitution cipher, the key sequence, or key stream, is repeated
after a period of d plaintext symbols. The encryption transformation can be expressed as a set of
d mapping functions corresponding to the d different keys K = kq, ..., kg:

fi:M—=C;, for1<i<d

M = {a,be,...,z,y, 2} (plaintext set)
¢, = {V.G,D,....C,X,E} (monoalphabetic #1)

¢ = {£Q,S,....,H,V,T} (monoalphabetic #i)

Ca = {TB,N,...,P,G,W} (monoalphabetic #d)
Therefore, for a message sequence M given by:
M =mi,ma,...,Ma—1, Mg, Mgs1,---,M2d—1,M2d, M2d+1, - - -
the corresponding ciphertext sequence C' is derived from the key stream K, with period d, as:

C = Eg(M)

C = filmi),..., fa1(ma-1), fa(ma), fr(mas1), - - -, fa—1(mad—1), fa(maa), fi(madgs1), - - -



2.2 Vigenere ciphers

The Vigenere polyalphabetic cipher is a periodic shifted-alphabet substitution cipher. It was de-
signed by Blaise de Vigeneére in the 16th century. The encryption transformation is based on the
simple shifted-alphabet substitution used for Caesar’s cipher, except that the key is changed for
each plaintext letter over a period of d letters. There are d mapping functions:

film) = (m + k;) mod n fori=1tod

the inverse decryption transformation simply consists in removing the “alphabet shift” from each
ciphertext symbol:
() = (¢ — k;) mod n fori=1tod

(2

Example (Vigenére cipher):

M = 9p e v ¢ o d ¢ ¢ s h i f t e d a Il p h a b e t
K =9v ¢4 g e m e r e v ¢ ¢g € n e T e v i g e m e r
Cc = K M X M B H Z G N P O J GI UADX N A O 1K
M =4 ¢ s w b s t ¢ t w t ¢+ o n ¢ & p h e r
K =¢e v ¢ g e n e r e v & ¢g e n e r e v 1 g
c = M X A A F F X Z X P B O S A G Z T C M X

Here the period of the key stream is d = 8. To encrypt using a Vigenere table, for each plaintext
symbol m;, choose the row k; and find the ciphertext symbol ¢; in the column m;. To decrypt find
the ciphertext symbol ¢; in the row k; and decrypt it as the plaintext character at the top of this
particular column.




Table 2: Vigenere table.
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2.3 Cryptanalysis of polyalphabetic substitution ciphers

The ciphertext C' consists of a string of ciphertext elements:

0261,02,...,01‘,...

1. Determine the period d of the polyalphabetic cipher, if it is possible.

2. Form the following d sub-sequences from the ciphertext stream:

S1 = €1, Cd+1, C2d+1,
S2 = C2, Cq42, C2d+2,
Sd = Cd, Cad, C3d,

3. Perform the frequency analysis of each sub-sequence (as for a monoalphabetic cipher), and
try to determine the d different substitution mappings:

M =
M = C2
M = Cd

and recover the plaintext.

2.3.1 Measure of roughness

From an amount of collected ciphertext, the cryptanalyst can evaluate the roughness of the cipher-
text symbol distribution and estimate the period d of the polyalphabetic cipher, if it is periodic at
all. The measure of roughness M R [Den82] is defined as:

n—1 1 2
MR=) (pi— n)

1=0

where p; is the probability that a ciphertext symbol is the symbol a; in the alphabet (e.g. po:
probability that ciphertext letter is a). M R is in fact the variance of the distribution.

If the source is equiprobable, then p; = % for all ¢ and then the measure of roughness is:

1 1)\?
MR = ———] =0
> ()
=0
which indicates that the distribution is flat or uniform and its variance equals zero.
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If the source is not equiprobable, then M R # 0. For English text the measure of roughness can
be computed as:

25 1 2 25 1 1 2
ik = 3 () =3 -2+ ()]

i=0 =0
25 1 25 25 1 2 25
_ 2 . - — 2 _
MR = Zpi - ngpz +Z (26> = Zpi 0.0769 + 0.0385
=0 =0 =0 =0
25
MR = ) p}—0.0385 = 0.0680 — 0.0385
=0
MR = 0.0295
or equivalently:
25
MR+0.0385 = ) _ p} = 0.0680
=0

for English text. The probability p% = p; X p; represents in fact the probability that 2 letters from
the ciphertext C' are a; and the sum:

gives the probability that 2 letters from the ciphertext are the same (for any value of 7).
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2.3.2 Index of coincidence

Consider a ciphertext stream of length L:

CZCl,CQ,...,CL

1. The total number of possible ciphertext pairs (¢;, ¢;) is:

(§> (L —Lzl)! 2l - (L2_ .

2. The number of pairs containing only the letter ¢;, that is (¢;, ¢;) is:

F; (F; —1)
2

where F; is the number of occurrences (i.e. an integer number) of ciphertext letter ¢; in the
block of L ciphertext symbols, in other words,

3. The total number of identical ciphertext pairs (¢;, ¢;), i.e. for all i, equals:

I F (Fi—1)
L

4. The index of coincidence IC' of the ciphertext C' provides an estimate of the measure of
roughness M R by considering the probability that two letters chosen at random in a ciphertext
are identical, = (¢;, ¢;):

number of identical pairs

I =
total number of possible pairs
Ty B0
¢ = =7am —
2
n—1
B (F -1
L(L-1)

By computing the index of coincidence of a sufficient amount of ciphertext, the cryptanalyst can
determine approximately the period of the polyalphabetic cipher, as long as d is relatively small.
Table 3 (from [SJP89]) indicates the index of coincidence as a function of the cipher period d (and
also for different languages when d = 1), while figure 7 provides a computer program to compute
the index of coincidence of a ciphertext.

12



Table 3: Indices of coincidence (from Seberry).

Period | Index
d 1C Language Index
1 | 0.0669 IC
2 1 0.0520 Arabic 0.075889
3 10.0473 Danish 0.070731
4 | 0.0450 Dutch 0.079805
5 | 0.0436 English 0.066895
6 | 0.0427 Finnish 0.073796
7 1 0.0420 French 0.074604
8 | 0.0415 German 0.076667
9| 0.0411 Greek 0.069165
10 | 0.0408 Hebrew 0.076844
11 | 0.0405 Ttalian 0.073294
12 | 0.0403 Japanese 0.077236
13 | 0.0402 Malay 0.085286
14 | 0.0400 Norwegian 0.069428
15 | 0.0399 Portuguese 0.074528
16 | 0.0397 Russian 0.056074
17 | 0.0396 Serbo Croatian | 0.064363
18 | 0.0396 Spanish 0.076613
19 | 0.0395 Swedish 0.064489
20 | 0.0394
program IC (input,
output); const
N = 100000;
high = 0.066;
low = 0.038;
var
d : integer;
ic: real;
begin
writeln(¢ d ICY);
writeln(‘ s
for d := 1 to 20 do
begin

ic := (1/d)*(N-d)/(N-1)*high+((d-1)/d)*(N/(N-1))*low;

writeln(d:6, ¢
end
end

‘,ic:1:4);

Figure 7: Program to compute the index of coincidence (from Seberry [SJP89]).
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Example (Cryptanalysis for a polyalphabetic substitution cipher):

The ciphertext C' on figure 8 consists of L = 346 ciphertext symbols [Den82].

ZHYMEZVELK
QZCGRNNCAW
TFRTRYEJZS
JWMIKQKUBP
YTHGVVCKHC
NRZOLCYUZS
XRCRLGQARZ

OJUBWCEY IN
JALUHGJPLR
RVNCIHYJNM
SAYOJRRQY I
JEQGOLKALV
FKOQRYRYAR
OLKHYKSNFN

CUSMLRAVSR
YGEGQFULUS
ZDCRODKHCR
NRNYCY QZSY
OSJEDWE AKS
ZFGKIQKRSV
RRNCZTWUOC

Y ARNHCEARI
QFFPVEYEDQ
MMLNRFFLFN
EDNCALEILX
GJHYCLLFTY
I RCEYUSKVT
JNMKCMDEZP

UJPGPVARDU
GOLKALVOSQ
QGOLKALVOS
RCHUG I EBKO
IGSVT FVPMZ
MKHCRMYQIL
IRJEJW

Figure 8: Example of a polyalphabetic substitution cipher (from Denning).

To estimate the period d, the relative frequencies {F;} of ciphertext symbols are computed

(figure 9):
0,1
0,075
8
o
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g
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— | [0 Ciphertext
L =346
IC =0.043378

=

Figure 9: Ciphertext symbol distribution: sequence length L = 346 and the index of coincidence
IC = 0.043378.
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Fy =14— 2% ~4.04% occurrences of “A”

16
i =3—35 =08™% occurrences of “B”
Fy =13 — % ~ 3.76% occurrences of “Z"

The index of coincidence IC is then:

S F (F—1)
Ic = ==
L(L-1)
S F (F—1)
346 x 345
0.0434

e

Q

From table 3 the cryptanalyst determines that the period d of the cipher C' is about d &~ 5, and
then does the frequency analysis with the 5 sub-sequences.

The exact period can also be determined with the Kasiski method (Kasiski, 1863, prussian
military officer). By finding identical ciphertext blocks in C', resulting from the substitution of
identical plaintext with identical key, the period d is deducted.

For instance, the sequence “QGOLKALVOS” appears three times in the ciphertext, that is at
location 90, 141 and 213. The offsets between these chunks of identical ciphertext are:

141-90 =51 = divisors of 51: (3,17)
213-141 =72 = divisors of 72: (2,3,4,6,8,9,12,18, 24, 36)

The cryptanalyst finds out that 3 is the only common divisor of both offsets, i.e. 51 and 72,
and then estimates safely the cipher period d = 3 (instead of 5 from the index of coincidence IC).
He then proceeds by forming 3 sub-sequences (figure 10) and analyzing the distributions in each
sub-sequence:

s1 = G, &, Cr,
S = (2, C5, Cg,
s3 = (3, Cg, Cog,

The indices of coincidence IC1, ICs, and IC3 are close to the index of coincidence of a monoal-
phabetic cipher (IC & 0.0669). He can then decrypt the three sub-sequences by comparing their
distributions to that of English text.
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Figure 10: Ciphertext symbol distribution in the three sub-sequences (from Denning): L,

115 and IC3 = 0.075973.

and IC7 = 0.067466, Ly = 115 and 1Cy = 0.064989, L3
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3 Non-periodic substitution ciphers

3.1 Running-key ciphers

Running-key ciphers are polyalphabetic substitution ciphers which are non-periodic (i.e. non-
repetitive), or for which the key stream period d is longer than the plaintext message. Historically,
to make the use of such ciphers relatively simple, the elements of the key stream were typically
taken from a text in a given book at a given page starting at a given line and character; the security
depending on the secrecy of the text.

Example (Running-key cipher):
The following running-key cipher is based on shifted-alphabet substitutions [Den82].

M =t h et r e a s u r e 1 s b u r i e d
K =t h e s e ¢c o n d c¢c i p h e r &t s a n
¢c = M O1 LV GO F XTMX Z F L Z A F Q

This is a polyalphabetic (shifted-alphabet substitution) cipher for which there are as many keys
elements k; as there are plaintext symbols.

The key source is English text which as a non-zero redundancy. However, since the key source
(taken from the K sample space) is not an equiprobable source, the cipher is breakable: some
ciphertexts symbols will be more likely to happen than others.

Friedman [Den82] (circa 1918) proposed a cryptanalysis method based on the relative frequen-
cies. Many ciphertext symbols {c;} are the result of enciphering a high frequency plaintext letter
m; with another high frequency key letter k; (which is not random if English text is used as the
running-key) (see figure 11 and table 4 below).

Out of the 19 (my, k;) plaintext-key pairs there are 12 such pairs of high frequency letters:

{mi} =t h et rea s uredisbur i e d

{ki} =t h e s e ¢c ondocipher i s a n
TT 1T T 1 T T T 1 1
=12 3 4 5 6 7 8 9 10 11 12

Since it is a shifted-alphabet cipher, the Vigenere table can be used. What are the high frequency
pairs (m;, k;) that produces the ciphertext symbol ¢;?
For the ciphertext beginning with C' = “MOI...”,

caq = M = e 1 i e t ot
o = O — a o o a h h
cg = 1 = a 1 i a e e roor
T 1 T 1 T 1 T 1
m;  k; m;  k; m; ki m; K

Now let’s consider the likely trigram combinations that have been used to produce the ciphertext
C=“MOI...":

17



cryptanalyst keeps the likely trigram “the” as the text (m;,

(ki7

0,11
ol r [0 English
0,09 -
0,08 |- —
8 L
g 007 -
g 0,06 | ] - T
B 0,05 ] i
oy High
& 004 ffo-----1 -----Ft-F------- -H-|----FtFH-[F----------
=2
g 003 Medium
0,02
e« [t L LI
o LA T TT 1T ] o e i B
LN e B D O Y B Y B D B B |
abcdef ghi jk Il mnopgrstuvwHXxyz
L etter
Figure 11: Frequency partitioning of English letters.
Table 4: Frequency partitioning of English letters.
Probability Letters
High e t a o n it r s h
Medium d Il u c m
Low p fy w g b v
Rare 7 k q = =z
M O I M O I M O I M O I M O I
e a a e a 1 e o0 a t h e t h r
i o0 1 it o0 a T a 1 t h e t h r

Compare all these trigrams with the meaningful and likely trigrams in English. From these the

i=1,...,3).

i =1,...,3) and also for the key
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Table 5: Frequency of digrams in English text (from Denning [Den82]).

N R ESEE +n IRAVWO S I TN >R QA0 >R

abcde fgh ijklmnopgr s tuvwzyz
o0 o ° ° ®o®~o R X °
.- ° . ° ° °
& - - - ® & ® - - o - o @
° - S ® - - ® ° .. e e e -
RERXRR e ° ° RRIR e QR X -e0ee
° - . e ° R - - - - e
° - . e - ° A TS
®® ° ° .
o - R e X e o o o (9 e X ® °
PR
° * R - R - e - - o o °
® S ® - e - e® o - -
" - ROV o R® ®®®
eee o - Re e e LR e e ee
° ° ° e - - @ X o o
®...®. R ® - R -
ReRY - X e o X - X e o®o °
®® ®® ® - R e e °
e -0 - o - L. e - o - - o o
& °
° Y o o °
° ° ° o o

High (more than 1.15% of the digrams)
Medium (more than 0.46% of the digrams)
Low (more than 0.12% of the digrams)
Rare (more than 0.10% of the digrams)

O : No occurrences

o ®
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3.2 Vernam cipher

Vernam ciphers, or one time pad cipher, is another running-key cipher, which has the property of
being unconditionally secure. The key stream K is purely random and is never repeated, or used

again, hence the name “one time pad”.

M = ma mo
K = Kk ko
C = fk1 (ml) sz(mQ)

where the key sequence is a non-repeating random sequence. For instance, as shown on figure 12,

mnp
kn,

and

the plaintext C, the key stream K and the ciphertext can be binary strings defined as:

Non-repeating, random
sequence of numbers
... 84657298 ..

ci =m; Dk;

M Combining function ¢ Combining function M
—_— > - EEE—
(e.g., exclusive-OR) (e.g., exclusive-OR)

A A
Source Cryptogram Sink
(plaintext) (ciphertext) (plaintext)

Same sequence of
random numbers

... 84657298 . ..

Figure 12: Vernam (one time pad) cipher.
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Example (Vernam cipher):
Encrypt the message M = 0011010111 ... with the key K = 1010110101.. .:

M = 0011010111

K =1010110101

¢c =1001100010 ...

At the receiving end, the legitimate user, having a replica of the key stream K can decrypt
properly the ciphertext C.

m; = ¢ Dk;
m; = (Tm D ]C,) @ k;
m; = My

Without this key K, all messages M are equally probable, hence making the cipher uncondi-
tionally secure.

The Vernam cipher is unbreakable if:

1. It is a one time pad (never repeated)

2. All the keys are chosen with equal probability

The Vernam cipher thus requires a long random key sequence which must somehow be made
available to the legitimate user at the receiving end. A random noise source (e.g. noise from a
diode) must be used to generate the key stream which can be recorded on a magnetic tape, for
instance. This requires also secure transportation of the magnetic tape. If the key is repeated,
then the cipher is no longer unbreakable. Let’s assume that two plaintext messages, M and M’ are
encrypted with the same random key sequence K:

G = midk; and ¢ =m,®k;

A cryptanalyst having intercepted the two ciphertexts C' and C' may add them together to
form a third ciphertext C”:

¢ = ®c=(m@k)®(m; @ ki) =m; ®m; ki ©k;) =m; m;

This ciphertext C” is no longer the result of a random running key cipher and thus may be
cryptanalyzed as a running-key cipher (e.g. using the Friedman method for instance). Once the
plaintext messages M and M’ are decrypted the key string K is easily recovered.

/ /
kk = m;®cg or ki=m; ®c;

It may even be used to decrypt future messages encrypted by the same sequence K of random
sequence!
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4 Transposition ciphers

Transposition ciphers, also called permutation ciphers, rearrange the plaintext message symbols in
a different order. Often, the permutation of the characters will be done over a fixed period of d
symbols:

M = my,mo,...,Mq, MJg4+1,Mdg+2,--.,1M2d, TM2d+1, - - -
C = Exg(M)
C = my)sMy(@)s -+ Mp(d)ys Mp(d41), Mf(d42)s -+ 5 T(2d)s TV (2d41)5 -
C = Myp1), Mf(2)s -5 TUE(d)s Thd-f (1) Thd4-£(2)5 - <+ » Thd-f(d)> TV2d+ (1) - -

where the function f(i) is the permutation of the ith input symbol index.

Example (Transposition cipher):
For instance, let the permutation function f(i) be:

1 =1, 2, 3, 4, 5, 6
f@) = 3,1, 6, 5 2, 4
Then if the original message M is “.. mobile channel is ...”:
M = m o b i l e c h a n n e l

mp m2 M3 M4y M5 Me My Mg Mg Mio MTMi1 N12 MM13

the periodic transposition cipher C' is obtained by the following periodic permutation, (period

d=6):

C = mypay mypa) Mg Mgy Mpe) Mpe) Mpry Mps) Tp9)
= Mgy Mgy MpE) Mgy Mpe) MpE) Merf(l) Merf2)  Me+f(3)
- ms3 mi me ms ma my me+3 me41 me+6
= ms3 my me ms ma my Mg mr mi2

C = B M E L 0) I A C E

That is C'is “.. BMELOIACENHN ...”7 after the transposition transformation.
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The unicity distance Ny of a periodic transposition cipher is obtained by determining the
number of possible permutations, or keys, of d different characters. Since there are d! arrangements
of keys, and assuming that for maximum security, these keys are chosen with equal probability,
that is:

p(ki) = = for 1 <i <dl,

and the key entropy H(K) is

H(K) = —gp(ki)l‘)gbp(ki) = - i (;) log, (;) = —log, <;'>
H(K) = log,d!

therefore the unicity distance Ny is:

H(K) log,d!
D D

Ny =

For instance if, as above, a transposition cipher of period d = 6 is employed to encrypt English
language plaintext (D = 3.2 Sh), a cryptanalyst would need theoretically Ny = 3 characters to
break the code.

N = logy 6! log, 720
YT 32 T 32
Ny = 2.922 symbols

For transposititon ciphers, the cryptanalysis can be done by:

1. Trial and error, in rearranging the letters (e.g. anagrams, crosswords)
2. Finding symbols or letters of suspected words

3. By analyzing the digram and trigram distributions (as on figures ?? and 5)
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5 Product ciphers

By combining both substitution and transposition transformations, it is possible to increase the
security of cryptosystems.

e When transposition, or permutation, is applied to substitution ciphers, digrams, trigrams etc.
are broken by the permutation of characters and therefore methods such as Friedman method
cannot be used (at least without additional processing) to break the codes.

e On the other hand, when substitution transformation is used on top of transposition; ci-
pher symbols cannot be easily arranged into rows and columns by simple inspection to form
anagrams that can then be easily decrypted.

myp —» > > — —> > — C1
Mo — > > — —> - — C2
ms —» > > —> —> - — C3
my —» > > —> —> > —» C4
mys — > > —> —> > — Cj
me —» > > — —> - — Co
my —» > - —> —> - — C7
mg —» > > — —> > — Cg
mg —» > > —> —> > — C9
mi10 —» > > — —> - — C10
mi1 —» > - —> —> - — Ci11
192 —» > > —> —> > — C12

Figure 13: Product (substitutions and transpositions) cipher.

However, there are also disadvantages into using product ciphers; mistakes or errors are frequent
since the encryption and decryption process are more difficult to perform by the legitimate parties.
For this purpose, mechanical cipher machines, such as the Jefferson Wheel Cipher machine, have
been used in the past to facilitate the encipherment and decipherment of product ciphers. The
encryption process can be represented as follows:

C = Eg(M)=StoP,_10...0Py0550P 051(M),

while the decryption in done in the reverse order of the transformations:

M = Dg(C)=S;'oPlo...0oP Y08 o P 0571(C).

A common example of a product encryption scheme is the Data Encryption Standard for which a
sequence of 16 rounds of substitution and permutation transformations is done on a 64-bit plaintext
vector.
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6 Rotor cryptographic machines

With the advent of electric typewriters, electromechanical devices were introduced to facilitate the
encryption and decryption processes. The use of rotors and stators wheels allowed for multiple
substitution transformations on the plaintext to create ciphertexts.

During the World War II, such encryption machines were used by Germany (the ENIGMA
machine) and by Japan (the Purple machine). For those, each rotor performed a substitution
transformation while the stator was used a refiector to further improve the cryptosystem by reflect-
ing back the ciphertext in the rotors resulting in additionnal substitution transformations.

The basic ENIGMA cryptosystem with three rotors was broken by the British Intelligence during
the World War II: Alan Turing developed a machine called the Bomb which basically attacked the
ENIGMA by exhaustive search (i.e., brute force attack). A fourth and fifth rotor wheels were added
at the end of the war making its cryptanalysis even more difficult.

initial rotor settings rotor settings after 5 keystrokes
¥ ¥ ¥ ¥ 4 ¥
mi +»a-q EpPHa Q-»a WP C1 mi »aq Epa Q—»a TP C1
m2 »b+H ZHb LpPHb Cph C2 mo »b4H ZHb LPHb VP C2
Tn3—>c—1_1—>c SpHc NP> C3 m3—>c—LI—>c SpHc Hp ¢3
my4 »d [FCHdqy TPHd I ¢4 my »d [FCHdq TPHd Mp- ¢4
ms e || HHe | MPHe Kp G5 ms e || He | MpPHe Up- C5
me »f A fH JP{ Dp= Ce me »f A JP L WP Ce
mr g [ Qe || XPHE L~ Cr m7 g [ Qg || X8 Cp- cr
mg »h | Jh| GPh rYP|lcs=F(ms)]| ms—+»h | Jh | GHh Np- ¢s
mg i | M>i || Ci | X €9 mg i | Mi|| Ci I ¢
mio»j | GPHJ lIFNpPHja| AP c10 mio»j | GPHJ lIFNPHj 7 K> c10
mit»=k [ Rk ||| Uk || Sp- 11 mit»=k [ Rk ||| Uk | D C11
miz2-»1] PP 1 71 EpP C12 mio—-»1 PPl 7P 1 L Cc12
mis+m | Thm ||| YPHm || B~ c13 mig—»m | Tr-m || YPm |- YP~[ci3 = E{m3)]
Mmig+»n “Bp-n4 VpHn || PP~ Ci4 mig+»n LBn{ Vpn || X C14
mis+»o UpHo || EpHo FJ[cis = E(mo)| mis»o TUpHo || EpHo || AP~ cis
mie+»P FPP || KPP |[fZP|ci6 = £(my1)] Mie+»P FP | KPP | SpP Ci6
mir»d4 VP4a | A4 || Fp- ¢ mir»4d V4a | Apa || Ep- e
mig—»r XpHr || BpHTr || QP C1s mig»r X1 || BPr || B c18
mi19—»S LPHs || OpHs || G C19 mig—S LPHs || OpHs || PP C19
moo»{t YPHt || RPHt || O 20 mao»t YRt || Rt FJIP[coq = E(mo)
mao1»{u DpHu || HPHu || R ¢21 mao1+u  DpHu || HHu |[rZP~[co1 = E(my)
ma2—+»u  SPHu | We-u || TP €22 moz+»lu  Sh{u || Wu || Fp ¢22
maog—+»w  QPF-w || PPHW || VP>~ ¢23 maz—+w  Opw || PPHW || QP c23
mog—»x WhHX IPHx || HP c24 maog+»x WX || ITPHX || G~ C24
mas+»y NPHY +DpPHY -| M- €25 mas+»y NPY +DPHY-| Op €25
moe»z Kz LFpz- U c26 Moz Kz “Fpz— R C26
rotor 1 rotor 2 rotor 3 rotor 1 rotor 2 rotor 3

Figure 14: Original rotor settings and settings after 5 keystrokes for the three-rotor machine.
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initial rotor settings rotor settings after 55 keystrokes

¥ ¥ ¥ ¥ ¥ ¥
mi»a- EpHa Qpba W a1 m1 »aq EPa —DPaq HP> €1
mo »bh4 ZPHb LPb Cp C2 mo »b+4 ZPHb FHbn M- C2
mg—»c—ll—»C Skc NP~ ¢3 mg—»c—LI—»C QpHc || Up- ¢3
mg +»d |*CPHdq TPHd I ¢ my +»d ||-CPHd-| LPHd || W ¢4
ms»e || He | MpPHe Kp C5 ms »e || HPHe SpHe || Ch ¢5
me »{ A ff JPHI Dp- C6 me > A f- TP || NP~ C6
m7»8 | QP8 || XPHE L <1 m7 »8g | QP8 MPHE || TP ¢r
mg—+»h | Jh || G h rYP[cs = FE(m3)] ™ms—>h | Jh JpPh || Kb cs
m9 »i | Mi || CPHi | Xp- €9 mg-»i | M1 XpHi || D> €9
mio-»=j | G |[[NPHJ 9| AP cio mio»j | GPj  GPi [fLp-leo = E(ma)]
mii»k [ Rk ||| Uk || Sp- c11 mii»k [ Rk CHk ||| YP 11
mi2+»1 | Pl (|| ZPH1 || EP- €12 mp-+1 [ P11 NP1 XpP-Ci2
miz—»m | Th-mll| YPm || B c13 mi3—»m T->IHJU->HI —AP- ]
mis—-+»n “Bpn4 VPHn || PP C14 mis—-»n “BpP+n 7, n S Ci14
mis+»o UpHo || EPHo “-JP-[cis = E(ms)| mis+»lo TUpPHo YpPHo | EPC15
mie»P FpP || KPP |rZP-[cie = E(mi)| mie»~P FRP VP LBb-[cig = E(mq)]
miz»=d VPad | A4 || F- a7 miz»~4 VP4 EP4d PP ar
mig—»r XpHr || BpHr || QP cis mig»r XpHr Kpr Jp-cis
mig»s LpPHs || OPHs || G C19 mig»s LPHs ApPHs ZpPCi9
mao»t Yt || Rt || O 20 mao»t Yt Bt TFp-<¢20
mo1-»u DpPHu || HPHu || R ¢21 ma1»u Dp-u  Op-u QP c21
maoo—+»u  SpPHu || Wu || TP C22 mo+»u SpPHu RpHu Gp= C22
mas—»w QOQpPHW || PPHW || VP C23 maz+»w QOQpHw HpHw QOp> C23
mog—+»x  WHHX IpPHx || HP C24 moga+»x WHHX WX Rp €24
mas»y NpHY +DY -| M C25 mas»y NpHY PPy TpC25
mog+»z Kz “Fp{z— U C26 mog»z KHHZ Iz VP C26

rotor 1 rotor 2 rotor 3 rotor 1 rotor 2 rotor 3

Figure 15: Original rotor settings and settings after 55 keystrokes for the three-rotor machine.
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