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ABSTRACT
Anomalies are rare events. For anomaly detection, severe
class imbalance is the norm. Although there has been much
research into imbalanced classes, there are surprisingly few
examples of dealing with severe imbalance. Alternative per-
formance measures have superseded error rate, or accuracy,
for algorithm comparison. But whatever their other mer-
its, they tend to obscure the severe imbalance problem. We
use the relative cost reduction of a classifier over a trivial
classifier that chooses the less costly class. We show that
for applications that are inherently noisy there is a limit to
the cost reduction achievable. Even a Bayes optimal classi-
fier has a vanishingly small reduction in costs as imbalance
increases. If events are rare and not too costly, the unpalat-
able conclusion is that our learning algorithms can do little.
If the events have a higher cost then a large number of false
alarms must be tolerated, even if the end user finds that
undesirable.

1. INTRODUCTION
An anomalous event is, by definition, unusual, but how

unusual is an important question. At last year’s workshop,
Bay [2] equated anomalous to “extremely rare and unusual”,
Fawcett [7] stated that “positive activity is inherently rare”.
This is certainly true of one of the authors’s experience ap-
plying data mining algorithms to the maintenance of com-
plex equipment. With aircraft engines, for instance, com-
ponent failure is fortunately far from common. In anomaly
detection, we should expect an imbalance in excess of 10:1
and often 100:1 or 1000:1 or even larger.

One obvious source of ideas to help with anomaly detec-
tion is the community researching class imbalance, and the
difficulties that result [8, 4]. Unfortunately, the sort of se-
vere imbalance seen in anomaly detection is not common-
place in this research, an issue we return to later in this
paper. On the occasions when imbalance has been severe,
the measures used to verify success have obscured the prob-
lem. One original motivation for this area of research was

that, when classes were imbalanced, many people observed
that learning algorithms often produced classifiers that did
little more than predict the most common class. It seemed
intuitive that a practical classifier must do much better on
the minority class, often the one of greater interest, even
if this meant sacrificing performance on the majority class.
This was our belief as well, earlier work by one of the au-
thors stated [9] “A classifier that labels all regions as [the
majority class] will achieve an accuracy of 96% .... a system
achieving 94% on [the minority class] and 94% on [the ma-
jority class] will have worse accuracy yet be deemed highly
successful”.

Provost and Fawcett [13] introduced ROC curves to the
data mining community, which seemed the solution to such
concerns. ROC curves made clear the inherent trade-off be-
tween performance on the positive and negative examples.
We could choose a point on this curve and make whatever
trade-off we thought appropriate. If costs and class distri-
bution were known, this point could be determined by using
an iso-performance line, but this decision was best left to the
end user of the classifier in the particular application. From
a research prospective then we should focus on developing
algorithms that produce better ROC curves. An attractive
metric for comparing ROC curves that has become popular
recently is area-under the curve (AUROC) [10]. This ap-
proach encourages the development of algorithms that are
effective over a range of costs and class distributions.

For anomaly detection, however, we know that the class
distribution is severely imbalanced, we also know the direc-
tion of imbalance. We are not interested in performance of
the whole curve only its lower left hand corner. Using par-
tial AUROC [12] or DET curves [11] would at least concen-
trate on the important region. But we have found it difficult
to determine the actual performance gains achieved by one
classifier over another using ROC curves and these variants
are unlikely to help. We introduced an alternative represen-
tation called cost curves [6] which makes performance gains
explicit.

In the rest of the paper, we show that even a Bayes opti-
mal classifier does only marginally better than a trivial clas-
sifier with severe imbalance. Real classifiers will do worse
than Bayes optimal and often even worse than the trivial
classifier. If events are rare and not too costly, our learning
algorithms can do little. If the events have a higher cost
then it is better to have a large number of false alarms, even
if the end user finds that undesirable, rather than miss an
occurrence. We then continue by defending this viewpoint
against various arguments we think might be forthcoming.



2. SEVERE IMBALANCE
To be useful, a classifier must appreciably outperform a

trivial solution, such as choosing the majority class. Many
people have observed that for extreme imbalances the ma-
jority classifier’s error rate is so small that it seems little
can be done to improve on it. Even classifiers with good
performance when classes are balanced fare badly for severe
imbalance [1]. Here, we make the stronger claim that a “rel-
ative reduction” in the majority classifier’s error rate is often
unachievable. We focus on “relative reduction” because we
think it important to consider what success means when a
trivial classifier gets only say 1% wrong. Error rate reduc-
tion is the fraction of the majority classifier’s error rate that
the new classifier removes. The classifier could, in principle,
achieve a value of one, removing all existing error. If the
majority classifier’s error rate is 1%, a classifier with a 0.4%
error rate would have an error rate reduction of 0.6, still a
respectable value. This would be equivalent to achieving a
20% error rate when the classes are balanced and the major-
ity classifier has an error rate of 50%. This idea seems even
more intuitive when considering misclassification costs. The
success of a classifier is how much it reduces the costs that
occur when using a trivial classifier. We will use the phrase
“relative cost reduction” to indicate this and a decrease in
error rate if misclassification costs are not used.

Figure 1 shows cost curves for the Bayes optimal classifier
for two univariate normal distributions, one representing the
positive class, the other the negative. Drummond and Holte
[6] discuss cost curves in detail, here we give a very brief
sketch hopefully sufficient for the reader to understand the
argument. The bold continuous curves are cost curves for
3 different values of distance between the means of the two
normal distributions. The curves give the error rate (the y-
axis, ignore the axes’ labels in parentheses for the moment)
for each possible prior probability of an instance belonging
to the positive class (the x-axis). The dashed triangle is the
majority classifier. It has an error rate of zero when the
instances are all positive or all negative, x = 0 or x = 1,
and an error rate of 0.5 when there are an equal number of
positives and negatives, x = 0.5.

We can include costs simply by relabeling the axes, as
shown by the text in parentheses. The curves are unchanged,
but now give the expected cost, normalized between zero and
one, (the y-axis) and the probability times the cost, normal-
ized between zero and one, (the x-axis). There is still a
triangular trivial classifier, but it now represents the classi-
fier that labels instances according to which class produces
the smaller expected cost (for simplicity we will still call it
the majority classifier).

The distances between the means of the normal distribu-
tions were chosen to make the relative cost reduction when
the classes are balanced 0.2, 0.5 and 0.8 (from top to bot-
tom). The series of progressively smaller triangles in Figure
1, made of dotted lines, we call cost reduction contours.
Each cost reduction contour indicates a specific fraction of
the cost of using the majority classifier. The continuous
curves cross multiple contours indicating a decreasing rela-
tive cost reduction as imbalance increases.

If we focus on the lower left hand corner of Figure 1,
where the negative instances are much more common than
the positives, or more costly to misclassify. The upper two
curves have become nearly indistinguishable from the ma-
jority classifier for ratios about 20:1. The lowest cost curve
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Figure 1: Different Distances

has crossed the 0.5 cost reduction contour at an imbalance
of about 10:1 and crossed the 0.25 cost reduction contour
at about 50:1. So even a Bayes optimal classifier with good
performance, say a normalized expected cost of 0.1 with no
imbalance, fares a lot worse when imbalance is severe. With
imbalances as low as 10:1, and certainly for imbalances of
100:1 and greater, the performance gain over the majority
classifier is minimal.

Figure 2 shows examples using non-normal distributions.
The problem is made worse when distributions have heavier
tails than the normal, the top two curves. With lighter tails
the problem is reduced. But only in the case of two overlap-
ping uniform distributions, the lower continuous triangle, is
the relative cost reduction, when balanced, maintained for
all degrees of imbalance. These results are for Bayes optimal
classifiers. For practical algorithms any gain will be reduced
and possibly disappear altogether.

Introducing misclassification costs will improve the situ-
ation, but they should not simply be used as a device to
correct class imbalance. They must exist in the application.
In some situations, such as safety critical operations, miss-
ing a true alarm may have major consequences. Adding a
large misclassification cost to represent this would, at least
somewhat, offset the severe imbalance. But the inclusion of
such a cost inevitably produces a high rate of false alarms
which users often find unacceptable.

3. ARGUMENTS AGAINST THE CONCLU-
SIONS

In this section, we try to anticipate the arguments that
might be raised against the conclusions we have drawn in
this paper.

A small performance gain is worth having. In some
situations a small performance gain is the difference between
success and failure. But we believe this is by no means
the norm. One might argue that if a company’s costs are
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Figure 2: Different Distributions

very large even a small percentage represents a large sum
of money and therefore well worth saving. Our response is
that effort spent on the cost reduction must equate to the
savings and this must be viewed in terms of a percentage of
total cost to have any meaning to the company.

Some performance measures don’t have this prob-
lem. Costs are a very general way of measuring perfor-
mance. So if alternative measures don’t exhibit this problem
one might ask why not. We have, however, assumed that
costs are linear (3 errors costs 3 times as much as 1 error).
In information retrieval, where precision-recall is the pre-
ferred measure, often one is only interested in retrieving a
small sample with high precision. This sample may contain
only a very small percentage of the total number of docu-
ments on a particular topic. This is an example of highly
non-linear costs, which we have not addressed in this paper.
For anomaly detection, it is unlikely to be of much value if
only a very small percentage of anomalies are found, so the
simple linear model is relevant.

An extremely imbalanced application was a suc-
cess. One often cited paper, from high energy physics [5],
had an imbalance of 1000,000:1. If one can cope with such an
extreme imbalance, more modest imbalances such 10,000:1
should be easy. But in this application, as in the above
paragraph, precision for a small number of positives was all
that was required, the vast majority of positives were ig-
nored. In many other examples in the literature imbalance
was not severe, less than 10:1. Of the few examples of se-
vere imbalance, tables of true positives and false alarms,
or ROC curves, were typically used to compare algorithms.
These did not address any possible performance advantage
the majority classifier.

Real data sets don’t suffer from this problem. Our
argument would be weakened if real data sets typically had
very low noise. We can only speculate on how much noise is
intrinsic. Figure 3 shows cost curves for C4.5 (with the de-
faults settings) applied to three UCI data sets [3]. All three

curves cross the lines for the majority classifiers for some
degree of imbalance. For the hepatitis data, the topmost
curve, this occurs when the positive class has a probability
of about 0.2 very close to the actual class frequency in the
data set. The middle curve for glass2 fares little better. Its
expected cost when everything is balanced is lower, about
0.2. But at quite moderate imbalances of less than 10:1, it
is also worse than the majority classifier. The lowest curve
for the vote data fares the best, with better than 0.05 nor-
malized expected cost when balanced. But even in this case
with imbalances greater than 100:1 the majority classifier is
better. Some of this might, of course, be due to algorith-
mic deficiencies but we suggest that some is due to noise
inherent to the problem.
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Figure 3: Three UCI Data Sets

Improving the algorithm will eliminate noise. Our
analysis used a Bayes optimal classifier, real algorithms will
fare worse. But better algorithms would be effective if the
problem we have with existing algorithms are due to repre-
sentational or search issues rather than inherent noise. Then
a Bayes optimal classifier might achieve almost perfect clas-
sification, allowing much room for algorithmic improvement.
But for this problem to disappear, extremely large regions
of instance space without any noise are needed. Whether or
not this is likely in practice we leave this to the intuitions
of the reader.

4. CONCLUSIONS
The point of this paper is to raise awareness of the diffi-

culty of dealing with rare events. If events are rare and not
too costly, the unfortunate conclusion is that our learning
algorithms can do little. We should just wait for the event
to occur. If the events have a much higher cost then a large
number of false alarms should be tolerated. If the end user
is unhappy with the number of false alarms the only real
answer may be to demonstrate that cost calculations show
that capturing a real event is worth any costs assciated with
false alarms.
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