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ABSTRACTThis paper proposes an alternative to ROC representation,in which the expected cost of a classi�er is represented ex-plicitly. This expected cost representation maintains manyof the advantages of ROC representation, but is easier tounderstand. It allows the experimenter to immediately seethe range of costs and class frequencies where a particu-lar classi�er is the best and quantitatively how much betterit is than other classi�ers. This paper demonstrates thereis a point/line duality between the two representations. Apoint in ROC space representing a classi�er becomes a linesegment spanning the full range of costs and class frequen-cies. This duality produces equivalent operations in the twospaces, allowing most techniques used in ROC analysis tobe readily reproduced in the cost space.
Categories and Subject DescriptorsI.2.6 [Arti�cial Intelligence]: Learning|Concept learn-ing,Induction
General TermsROC Analysis, Cost Sensitive Learning
1. INTRODUCTIONProvost and Fawcett [9] have argued persuasively that ac-curacy is often not an appropriate measure of classi�er per-formance. This is certainly apparent in classi�cation prob-lems with heavily imbalanced classes (one class occurs muchmore often than the other). It is also apparent when thereare asymmetric misclassi�cation costs (the cost of misclassi-fying an example from one class is much larger than the costof misclassifying an example from the other class). Class im-balance and asymmetric misclassi�cation costs are related toone another. One way to correct for imbalance is to train acost sensitive classi�er with the misclassi�cation cost of theminority class greater than that of the majority class, and

one way to make an algorithm cost sensitive is to intention-ally imbalance the training set. As an alternative to accu-racy, Provost and Fawcett advocate the use of ROC analysis,which measures classi�er performance over the full range ofpossible costs and class frequencies. They also proposed theconvex hull as a way to determine the best classi�er for aparticular combination of costs and class frequencies.Decision theory can be used to select the best classi�er if thecosts and class frequencies are known ahead of time. But of-ten they are not �xed until the time of application makingROC analysis important. The relationship between deci-sion theory and ROC analysis is discussed in Lusted's book[7]. In Fawcett and Provost's [4, 5] work on cellular frauddetection, they noted that the cost and amount of fraudvaries over time and location. This was one motivation fortheir research into ROC analysis. Our own experience withimbalanced classes [6] dealt with the detection of oil spillsand the number of non-spills far outweighed the number ofspills. Not only were the classes imbalanced, the distribu-tion of spills versus non-spills in our experimental batcheswas unlikely to be the one arising in practice. We also feltthat the trade-o� between detecting spills and false alarmswas better left to each end user of the system. These consid-erations led to our adoption of ROC analysis. Asymmetricmisclassi�cation costs and highly imbalanced classes oftenarise in Knowledge Discovery and Data Mining (KDD) andMachine Learning (ML) and therefore ROC analysis is avaluable tool in these communities.In this paper we focus on the use of ROC analysis for thevisual analysis of results during experimentation, and theinteractive KDD process, and the presentation of those re-sults in reports. For this purpose despite all of the strengthsof the ROC representation, we found the graphs producedwere not always easy to interpret. Although it is easy tosee which curve is better in �gure 1, it is much harder todetermine by how much. It is also not immediately clearfor what costs and class distributions classi�er A is betterthan classi�er B. Nor is it easy to \read-o�" the expectedcost of a classi�er for a �xed cost and class distribution. In�gure 2 one curve is better than the other for some costs andclass distributions, but the range is not determined by thecrossover point of the curves so is not immediately obvious.This information can be extracted as it is implicit in thegraph, but our alternative representation makes it explicit.
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Figure 1: Comparing Performance

Figure 2: Performance Ranges
2. TWO DUAL REPRESENTATIONSIn this section we brie
y review ROC analysis and howit is used in evaluating or comparing a classi�er's perfor-mance. We then introduce our alternative dual represen-tation, which maintains these advantages but by makingexplicit the expected cost is much easier to understand. Inboth representations, the analysis is restricted to two classproblems which are referred to as the positive and negativeclass.

2.1 The ROC RepresentationProvost and Fawcett [9] are largely responsible for introduc-ing ROC analysis to the KDD and ML communities. It hadbeen used extensively in signal detection, where it earnedits name \Receiver Operating Characteristics" abbreviatedto ROC. Swets [12] showed that it had a much broader ap-plicability, by demonstrating its advantages in evaluatingdiagnostic systems. In ROC analysis instead of just a singlevalue of accuracy, a pair of values is recorded for di�erentcosts and class frequencies. In signal detection these werecalled the hit rate and false alarm rate. In the KDD andML communities they are called the true positive rate (thefraction of positives correctly classi�ed) and false positiverate (the fraction of negatives misclassi�ed). This pair ofvalues produces a point in ROC space: the false positiverate being the x-coordinate, the true positive rate being they-coordinate.Some classi�ers have parameters for which di�erent settingsproduce di�erent ROC points. For example, a classi�er thatproduces probabilities of an example being in each class,such as a Naive Bayes classi�er, can have a threshold param-eter biasing the �nal class selection [3, 8]. Plotting all theROC points that can be produced by varying these param-eters produces an ROC curve for the classi�er. Typicallythis is a discrete set of points, including (0,0) and (1,1),which are connected by line segments. If such a parame-ter does not exist, algorithms such as decision trees can bemodi�ed to include costs to produce the di�erent points [2].Alternatively the class frequencies in the training set can bechanged by under or over sampling to simulate a change inclass priors or misclassi�cation costs [3].One point in an ROC diagram dominates another if it isabove and to the left, i.e. has a higher true positive rate(TP ) and a lower false positive rate (FP ). If point A dom-inates point B, A it will have a lower expected cost than Bfor all possible cost ratios and class distributions. One set ofpoints A is dominated by another B when each point in A isdominated by some point B and no point in B is dominatedby a point in A. The normal assumption in ROC analy-sis is that these points are samples of a continuous curveand therefore normal curve �tting techniques can be used.In Swets's work [12] smooth curves are �tted to typicallya small number of points, say four or �ve. Alternatively anon-parametric approach is to use a piece-wise linear func-tion, joining adjacent points by straight lines. Dominance isthen de�ned for all points on the curve.Traditional ROC analysis has as its primary focus determin-ing which diagnostic system or classi�er has the best perfor-mance independent of cost or class frequency. But there isalso an important secondary role of selecting the set of sys-tem parameters (or individual classi�er) that gives the bestperformance for a particular cost or class frequency. Thiscan be done by means of the upper convex hull of the points,which has been shown to dominate all points under the hull[9]. It has further been shown that dominance implies su-perior performance for a variety of commonly-used perfor-mance measures [10]. The dashed line in �gure 3 is a typicalROC convex hull. The slope of a segment of the convex hullconnecting the two vertices (FP1; TP1) and (FP2; TP2) isgiven by equation 1.
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Figure 3: Comparing Two ROC curvesTP1 � TP2FP1 � FP2 = p(�)C(+j�)p(+)C(�j+) (1)where p(a) is the probability of a given example being inclass a, and C(ajb) is the cost incurred if an example in classb is misclassi�ed as being in class a. Equation 1 de�nes thegradient of an iso-performance line [9]. Classi�ers sharing aline have the same expected cost for the ratio of priors andmisclassi�cation costs given by the gradient.Even a single classi�er can form an ROC curve. The solidline in �gure 3 is produced by simply combining classi�er Bwith the trivial classi�ers: point (0,0) represents classifyingall examples as negative; point (1,1) represents classifyingall points as positive. The slopes of the lines connectingclassi�er B to (0,0) and to (1,1) de�ne the range of the ratioof priors and misclassi�cation costs for which classi�er B ispotentially useful, its operating range. For probability-costratios outside this range, classi�er B will be outperformed bya trivial classi�er. As with the single classi�er, the operatingrange of any vertex on an ROC convex hull is de�ned by theslopes of the two line segments connected to it.Thus the ROC representation allows an experimenter to seequickly if one classi�er dominates another. Using the con-vex hull, potentially optimal classi�ers and their operatingranges can be identi�ed.
2.2 The Dual RepresentationOne of the questions posed in the introduction is how todetermine the di�erence in performance of two ROC curves.For instance, in �gure 3 the dashed curve is certainly betterthan the solid one. To measure how much better, one mightbe tempted to take the Euclidean distance normal to thelower curve. But this would be wrong on two counts. Firstly,
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Figure 4: Comparing Misclassi�cation Coststhe di�erence in expected cost is the weighted Manhattandistance between two classi�ers, given by equation 2, notthe Euclidean distance.E[C1]�E[C2] = (TP1 � TP2) p(+)C(�j+)| {z }w+ (2)+ (FP1 � FP2) p(�)C(+j�)| {z }w�Secondly, the performance di�erence should be measured be-tween the appropriate classi�ers on each ROC curve. Whenusing the convex hull these are the best classi�ers for theparticular cost and class frequency de�ned by the weightsw+ and w� in equation 2. In �gure 3 for a probability-costratio of say 2.1 the classi�er marked A on the dashed curveshould be compared to the one marked B on the solid curve.But if the ratio was 2.3, it should be compared to the trivialclassi�er marked C on the dashed curve at the origin. Thisis the classi�er that always labels instances negative.To directly compare the performance of two classi�ers wetransform an ROC curve into a cost curve. Figure 4 showsthe cost curves corresponding to the ROC curves in �gure3. The x-axis in a cost curve is the probability-cost func-tion for positive examples, PCF (+) = w+=(w++w�) wherew+ and w� are the weights in equation 2. This is simplyp(+), the probability of a positive example, when the costsare equal. The y-axis is expected cost normalised with re-spect to the cost incurred when every example is incorrectlyclassi�ed. The dashed and solid cost curves in �gure 4 corre-spond to the dashed and solid ROC curves in �gure 3. Thehorizontal line atop the solid cost curve corresponds to theclassi�er marked B. The end points of the line indicate theclassi�er's operating range (0:3 � PCF (+) � 0:7), where it
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Figure 5: ROC Space Crossoveroutperforms the trivial classi�ers. It is horizontal becauseFP = 1� TP for this classi�er (see below). At the limit ofits operating range this classi�er's cost curve joins the costcurve for the majority classi�er. Each line segment in thedashed cost curve corresponds to one of the points (vertices)de�ning the dashed ROC curve.The distance between cost curves for two classi�ers directlyindicates the performance di�erence between them. Thedashed classi�er outperforms the solid one { has a loweror equal expected cost { for all values of PCF (+). Themaximum di�erence is about 20% (0.25 compared to 0.3),which occurs when PCF (+) is about 0:3 (or 0:7). Theirperformance di�erence is negligible when PCF (+) is near0:5, less than 0:2 or greater than 0:8.It is certainly possible to get all this information from theROC curves, but it is not trivial. The gradients of lines inci-dent to a point must be determined to establish its operatingrange. To calculate the di�erence in expected cost, an iso-performance line must be brought into contact with eachconvex hull to determine which points must be compared.To �nd the actual costs the weighted Manhattan distancebetween them must be calculated. All this information isexplicit in the alternative representation.The second question posed in the introduction was for whatrange of cost and class distribution is one classi�er betterthan another. Suppose we have the two hulls in ROC space,the dotted and dashed curves of �gure 5. The solid lines in-dicate iso-performance lines. The line designated A touchesthe convex hull indicated by the dotted curve. A line withthe same slope touching the other hull would be lower andto the right and therefore of higher expected cost. If we rollthis line around the hulls until it touches both of them we�nd points on each hull of equal expected cost, for a par-ticular cost or class frequency. Continuing to roll the line
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Figure 6: Cost Space Crossovershows that the hull indicated by the dashed line becomes thebetter classi�er. It is noteworthy that the crossover pointof the two hulls says little about where one curve outper-forms the other. It only denotes where both curves havea classi�cation performance that is the same but subopti-mal for any costs or class frequencies. Figure 6 shows thecost graph that is the dual of the ROC graph of �gure 5.Here it can immediately be seen that the dotted line has alower expected cost and therefore outperforms the dashedline to the left of the crossover point and vice versa. Thiscrossover point when converted to ROC space becomes theline touching both hulls shown in �gure 5.
2.2.1 Constructing the Dual RepresentationTo construct the alternative representation we use the nor-malised expected cost. The expected cost of a classi�er isgiven by equation 3.E[C] = (1� TP )p(+)C(�j+)+ FPp(�)C(+j�) (3)The worst possible classi�er is one that labels all instancesincorrectly so TP = 0 and FP = 1 and its expected cost isgiven by equation 4.E[C] = p(+)C(�j+)+ p(�)C(+j�) (4)The normalised expected cost is then produced by dividingthe right hand side of equation 3 by that of equation 4 givingequation 5.



NE[C] = (1 � TP )p(+)C(�j+)+ FPp(�)C(+j�)p(+)C(�j+)+ p(�)C(+j�) (5)Then replacing the normalised probability-cost terms withthe probability-cost function PCF (a) as in equation 6 re-sults in equation 7.PCF (a) = p(a)C(aja)p(+)C(�j+) + p(�)C(+j�) (6)NE[C] = (1� TP ) � PCF (+) + FP � PCF (�) (7)Because PCF (+)+PCF (�) = 1, we can rewrite equation 7to produce equation 8 which is the straight line representingthe classi�er.NE[C] = (1� TP � FP ) � PCF (+) + FP (8)A point (TP; FP ) representing a classi�er in ROC space isconverted by equation 8 into a line in cost space. A linein ROC space is converted to a point in cost space, usingequation 9, where S is the slope and TPo the intersectionwith the true positive rate axis. Both these operations areinvertible. So there is also a mapping from points (lines) incost space to lines (points) in ROC space. Therefore thereis a bidirectional point/line duality between the ROC andcost representations.PCF (+) = 11 + S (9)NE[C] = (1� TPo)PCF (+)Figure 7 shows lines representing four extreme classi�ers inthe cost space. At the top is the worst classi�er, it is alwayswrong and has a constant normalised expected cost of 1.At the bottom is the best classi�er, it is always right andhas a constant cost of 0. The classi�er that always choosesnegative has zero cost when PCF (+) = 0 and a cost of 1when PCF (+) = 1. The classi�er that always chooses pos-itive has cost of 1 when PCF (+) = 0 and a zero cost whenPCF (+) = 1. Within this framework it is apparent that weshould never use a classi�er outside the shaded region of �g-ure 7 as a lower expected cost can be achieved by using themajority classi�er which chooses one or other of the trivialclassi�ers depending on PCF (+).At the limits of the normal range of the probability-costfunction equation 8 simpli�es to equation 10. To plot aclassi�er on the cost graph, we set the point on the left handside y-axis to FP and the point on the right hand side y-axisto (1 � TP ) and connect them by a straight line. Figure 8shows a classi�er with FP = 0:09 and TP = 0:36. The linerepresents the expected cost of the classi�er over the fullrange of possible costs and class frequencies.
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Figure 7: Extreme Classi�ers
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Figure 8: A Single Classi�erNE[C] = (FP; when PCF (+) = 0(1� TP ); when PCF (+) = 1 (10)This procedure can be repeated for a set of classi�ers, asshown in �gure 9. We can now compare the di�erence inexpected cost between any two classi�ers. There is no needfor the calculations required in the ROC space, we can di-rectly measure the vertical height di�erence at some par-ticular probability-cost value. Dominance is explicit in the
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Probability Cost FunctionFigure 9: A Set of Classi�erscost space. If one classi�er is lower in expected cost acrossthe whole range of the probability-cost function, it domi-nates the other. Each classi�er delimits a half-space. Theintersection of the half-spaces of the set of classi�ers givesthe lower envelope indicated by the dashed line in �gure 9.This e�ectively chooses the classi�er that has the minimumcost for a particular operating range. This is equivalent tothe upper convex hull in the ROC space. This equivalencearises from the duality of the two representations.
2.2.2 Representing Other Performance CriteriaIn this section we look at how the other performance criteriadiscussed by Provost and Fawcett [10] are dealt with in costspace. They are as follows: error rate, area under the curve,Neyman-Pearson criterion and workforce utilisation.As error rate is produced by setting all the costs in equa-tion 5 to one, the cost graph is easily turned into an ac-curacy graph. The vertical distance between curves wouldthen represent the di�erence in accuracy. There is no di-rect mapping of area under the curve in ROC space to costspace. But we can measure area under the curve in costspace and it has an intuitive meaning. Let us assume wedo not know the probability-cost value used in practice, butwe will use the appropriate classi�er on the lower envelopewhen it is known. The area under the curve is the expectedcost, assuming a uniform distribution p(x) where x is theprobability-cost value (the x-axis in the cost graph). Indeedif the probability distribution p(x) is known the expectedcost can be determined using equation 11. This also allowsa comparison of two classi�ers, or lower envelopes, whereone does not strictly dominate the other. The di�erence inarea under the two curves gives the expected advantage ofusing one classi�er over another.
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Probability Cost FunctionFigure 10: The Weighted Sum of Two Classi�ersTEC = Z 1o NE[C(x)]p(x)dx (11)A point on an edge of the ROC convex hull is not one ofthe original classi�ers, but it can be realised by combiningthe two classi�ers incident to it in a probabilistic way [10].The probabilistic weighting is determined by the distanceof the point to each classi�er. As the cost graph is a dualrepresentation to the ROC graph, there are also duals tooperations, such as averaging two classi�ers. In the costgraph, the combined classi�er is a line, shown as the dottedline in �gure 10. This is just the weighted sum of the twoclassi�ers on the lower envelope, indicated by the solid lines,that intersect at a given vertex.This becomes important when considering criteria such asNeyman-Pearson and workforce utilisation. The Neyman-Pearson criterion comes from statistical hypothesis testingand minimises the probability of a type two error for a max-imum allowable probability of a type one error. For ourpurposes, this determines the maximum false positive rateand the aim is then to �nd the classi�er with the largesttrue positive rate. This can be readily found on an ROChull by drawing a vertical line for the particular value ofFP , as shown by the dashed line in �gure 11. The maxi-mum value of TP (the minimum probability of a type twoerror) is where the line intersects the hull.The procedure is very similar in the cost space. Remem-bering that the intersection of a classi�er with the y-axisgives the false positive rate, then a point can be placed onthe axis representing the criterion. This is marked FP in�gure 12. Immediately on either side of this point are theequivalent points of two of the classi�ers forming sides of thelower envelope. Connecting the new point to where the two
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False Positive RateFigure 11: ROC Curve: Neyman-Pearson Criterion
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Figure 12: Cost Curve: Neyman-Pearson Criterionclassi�ers intersect automatically gives the classi�er meetingthe Neyman-Pearson criterion.Unfortunately, although the workforce utilisation criterioncan be dealt with in cost space, it does not have the simplevisual impact apparent in ROC space. The workforce util-isation criterion is based on the idea that a workforce canhandle a �xed number of cases, factor C in equation 12. Tokeep the workforce maximally busy we want to select thebest C cases, achieved by maximising the true positive rate.This is realised by the equality condition of equation 12 and
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Figure 13: ROC Curve: Workforce Utilisationis the line given by equation 13, such as the dashed line in�gure 13. This line will be transformed to a point in the costgraph using equation 9 and is shown as the small circle onthe left hand side of �gure 14. The line's slope is negative,resulting in a PCF (+) outside the normal interval of zeroto one. We might consider it a virtual point, but strictlythere is no constraint PCF (a) � 0 and so this represents avalid point on the line representing the classi�er.TP � P + FP �N � C (12)TP = �NP � FP + CP (13)The Neyman-Pearson criterion can be considered a specialcase of workforce utilisation, when the constraint only in-volves false positives. So for workforce utilisation a similarprocedure to the one discussed above could be used for �nd-ing the appropriate classi�er. All that would be requiredis to extend the original classi�ers out until they have thesame PCF (+) value as the virtual point. Unfortunatelythis point may be arbitrarily far outside the normal range,which militates against easy visualisation. So instead belowwe give a simple algorithmic solution.To solve the problem algorithmically in ROC space, a walkalong the sides A, B, C of the convex hull, shown in �gure13, would be used to �nd the intersection point with theconstraint. At each step, the edge is extended into a lineand its intersection point with the constraint is tested tosee if is between the two vertices, representing classi�ers,that de�ne the side. Equivalently in cost space we walk aline connected to the virtual point along the vertices A, B,
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Probability Cost FunctionFigure 14: Cost Curve: Workforce UtilisationC of the lower envelope, shown in �gure 14. At each step,the slope of the line is tested to see if is between the twolines, representing classi�ers, sharing the same vertex. Inboth spaces the appropriate classi�er is found when the testis successful. In cost space, virtual points can be avoidedif we rearrange the terms of equation 13 and substitute forthe gradient of equation 8 resulting in equation 14. Thiscan be solved for each point on the lower envelope. So awalk along vertices A, B, C of the lower envelope wouldproduce the classi�ers represented by the solid lines in �gure14, spanning just the normal probability-cost values.NE[C] = �1� CP + (NP � 1)FP�PCF (+) + FP (14)In this section we have shown that the cost graph, can rep-resent most of the alternative metrics discussed by Provostand Fawcett [10]. This is not surprising given the dualitybetween the two spaces. But the di�erent representationshave di�erent intuitive appeal. Certainly for the direct rep-resentation of costs, the cost graph seems the most intu-itive. However we have also seen that for some metrics likethe workforce utilisation criterion the ROC graph providesbetter visualisation.
2.2.3 Averaging Multiple CurvesFigure 15 shows two ROC curves, in fact convex hulls, rep-resented by the dashed lines. If these are the result of train-ing a classi�er on di�erent random samples, or some othercause of random 
uctuation in the performance of a singleclassi�er, their average can be used as an estimate of theclassi�er's expected performance. There is no universallyagreed-upon method of averaging ROC curves. Swets andPickett [13] suggest two methods, pooling and \averaging",and Provost et al. [11] propose an alternative averaging
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Figure 15: Average ROC Curves

0 0.5 1
0

0.25

0.5

Probability Cost Function

N
or

m
al

is
ed

 E
xp

ec
te

d 
C

os
t 

Figure 16: Average Cost Curvesmethod.The Provost et al. method is to regard y, here the true posi-tive rate, as a function x, here the false positive rate, and tocompute the average y value for each x value. This averageis shown as a solid line in �gure 15, with each vertex corre-sponding to a vertex from one or other of the dashed curves.Figure 16 shows the equivalent two cost curves, lower en-velopes, represented by the dashed lines. The solid line isthe result of the same averaging procedure but y and x arenow the cost space axes. If the average curve in ROC space



is transformed to cost space the dotted line results. Simi-larly, the dotted line in �gure 15 is the result of transformingthe average cost curve into ROC space. The curves are notthe same.The reason these averaging methods do not produce thesame result is that they di�er in how points on one curveare put into correspondence with points on the other curve.For the ROC curves points correspond if they have the sameFP value. For the cost curves points correspond if they havethe same PCF (+) value, i.e. when PCF (+) is in both theiroperating ranges. It is illuminating to look at the dottedline in the top right hand corner of �gure 15. The vertexlabelled \A" is the result of averaging a non-trivial classi�eron the upper curve with a trivial classi�er on the lower curve.This average takes into account the operating ranges of theclassi�ers and is signi�cantly di�erent from a simple averageof the curves.The cost graph average has a very clear meaning, it is theaverage normalised expected cost assuming that the clas-si�er used for a given PCF (+) value is the best availableone. Notably the Provost et al. ROC averaging method,indicated by the dotted curve in �gure 16, gives higher nor-malised expected costs for many PCF (+) values. This isdue to the average including at least some suboptimal clas-si�ers. Pooling, or other methods of averaging ROC curves(e.g. choosing classi�ers based on TP ), will all produce dif-ferent results, and all give higher normalised expected costscompared to the cost graph averaging method.When estimating the expected performance of a classi�erthe average should be based on the selection procedure i.e.how the curve will ultimately be used to select an individ-ual classi�er. So far, we have compared curves without ex-plicitly mentioning a selection procedure, but implicitly weare assuming the selection procedure inherent in using thelower envelope of the cost graph and the ROC convex hull:the point selected is the one that is optimal for the givenPCF (+) value. In this case the average based on the nor-malised expected cost is appropriate. This does not meanhowever that other averages are incorrect. Each is basedon a di�erent selection procedure which will be appropriatefor di�erent performance criteria. Provost et al.'s averagingmethod is appropriate when the performance criterion callsfor classi�er selection based on FP , such as the Neyman-Pearson criterion.
2.3 A Suboptimal Selection ProcedureWe have just seen that di�erent averages of two curves re-sult from di�erent selection procedures, due to the di�erentways of deciding which point on one curve will correspond towhich point on another curve. A selection procedure is alsonecessary to compare two curves quantitatively, since by itsvery nature quantitative comparison involves summing thedi�erence in performance of corresponding points.The selection method that is most commonly used in com-paring learning algorithms is parameter-based. For example,suppose one wishes to compare two learning algorithms andthat an ROC curve is generated for each algorithm by under-sampling or oversampling to create various class ratios in thetraining set. Typically, one would compare the performance
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Figure 17: ROC for Sonar Dataof the classi�ers produced on the same training sets: thisis choosing which points on each curve correspond based onthe underlying parameter that generated them rather thanon their operating range. It might happen that algorithm Atrained with a 5:1 ratio produces a classi�er with the sameoperating range as the classi�er produced by algorithm Bwith a 10:1 ratio. This could only be determined by lookingat the convex hull or the lower envelope in their respectivespaces.The fact that the optimal classi�er for a particular PCF (+)value is not necessarily the one produced by a training setwith the same PCF (+) characteristics is illustrated in �gure17, which shows ROC curves for the sonar data set from theUCI collection [1]. The points represented by circles, andconnected by solid lines, were generated using C4.5 (release7 using information gain) modi�ed to account for costs (byaltering the values inside C4.5 representing priors). Eachpoint is marked with the probability-cost ratio used to pro-duce it. If the probability-cost ratio is 11 at the time ofapplication, for example, parameter-based selection wouldselect classi�er A, since it was produced by a training setwith a 11:1 ratio.Using the convex hull selection method, the dashed line in�gure 17, classi�ers would be selected according to the slopeof its sides. This would result in the expected cost shown bythe lower envelope, the dashed line in �gure 18. If instead,the classi�ers are chosen according to the probability-costratio input to the classi�er, the solid line is produced. Aprobability-cost ratio R is converted to a PCF (+) valueusing the PCF (+) = 1=(1 + R). In cost space, classi�erA will be chosen when PCF (+) = 1=(1 + 11) and classi-�er B when PCF (+) = 1=(1 + 5:1), as shown in �gure 18.Changing from classi�er A to classi�er B we assume occursat the mid-point of these two probability-cost values. Thearea between this curve and the lower envelope is a measure
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Figure 18: Cost for Sonar Dataof the additional cost of using this selection procedure overthe optimal one. The large di�erence at the left hand andright hand sides is due to not using the majority classi�erat the appropriate time. This shows the clear disadvantageof using a classi�er outside its operating range.
3. LIMITATIONS AND FUTURE WORKOne limitation of this work, which is common to that ofROC analysis, is that we have not investigated the situationof more than two classes. Although the ideas should read-ily extend to three or more classes, the main advantage ofthis approach is it ease of human understandability. Higherdimensional functions are notoriously di�cult to visualiseand the number of dimensions increases quadratically withthe number of classes. Due to the duality between the tworepresentations there might be little merit in using one overthe other in this situation. However, if the high dimensionalspace can be projected into a two dimensional space, theimproved understandability would again be an advantage.Another limitation is that we have not investigated othercommonly used metrics for evaluating classi�er performancesuch as lift. One interesting avenue of future research iswhether or not there are alternative dualities based on suchmetrics.
4. CONCLUSIONSThis paper has demonstrated an alternative to ROC analy-sis, which represents the cost explicitly. It has shown there isa point/line duality between the two representations. Thisallows the cost representation to maintain many of the ROCrepresentation's advantages, while making notions such asoperating range visually clearer. It also allows the easy cal-culation of the quantitative di�erence between classi�ers.The fact that the two representations are dual representa-tions makes it unnecessary to choose one over the other, aswe have shown it is easy to switch between the two.
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