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Abstract

In 1988, Langley wrote an influential editorial in the jour-
nal Machine Learning titled “Machine Learning as an Exper-
imental Science”, arguing persuasively for a greater focus on
performance testing. Since that time the emphasis has be-
come progressively stronger. Nowadays, to be accepted to
one of our major conferences or journals, a paper must typ-
ically contain a large experimental section with many tables
of results, concluding with a statistical test. In revisiting this
paper, I claim that we have ignored most of its advice. We
have focused largely on only one aspect, hypothesis testing,
and a narrow version at that. This version provides us with
evidence that is much more impoverished than many people
realize. I argue that such tests are of limited utility either for
comparing algorithms or for promoting progress in our field.
As such they should not play such a prominent role in our
work and publications.

Introduction
In the early days of Machine Learning research, testing was
not a priority but over time this attitude changed. A report on
the AAAI 1987 conference noted “the ML community has
become increasingly concerned about validating claims and
demonstrating solid research results” (Greiner et al. 1988).
In 1988, Langley wrote an editorial for the journal Machine
Learning, quickly expanded, in the same year, into a work-
shop paper with co-author Kibler, arguing persuasively for
greater focus on performance testing. With this sort of ac-
cord in the community, performance testing took on greater
prominence. With the appearance, soon after, of the UCI
collection of data sets (Blake & Merz 1998), performance
comparisons between algorithms became commonplace.

Since that time the emphasis on testing has become pro-
gressively stronger. Nowadays, to be accepted to one of our
major conferences or journals, a paper often needs a large
experimental section with many tables of results, concluding
with a statistical test. Some may see this is as a sign of matu-
rity, the improving rigor and objectivity of our field. I would
argue that this emphasis on testing is overly strong. Rather

∗I would like to thank Peter Turney for many lively discussions
on aspects of this paper. I would also like to thank Robert Holte,
particularly for his insights into the origins of machine learning as
a distinct research program.
Copyright of the National Research Council of Canada

than leading to progress in the field, by filtering out dubi-
ous theories, it discourages an important dialogue within the
community of interesting, even if unproven and sometimes
flawed, ideas.

Kibler and Langley 1988 used the metaphor of “generate
and test” to describe scientific practice. In machine learning
research, the question is where we should we spend most of
our time. Should we generate or test? I contend that ex-
isting reviewing practices pressure us to spend a great deal
of our time testing in order to publish. This might be time
well spent if the conclusions we could draw from our tests
told us which theories were worth pursuing and which were
not. Unfortunately, the testing procedure we use does little
in distinguishing good theories from bad. There are, I claim,
three components of this procedure that undercut its value:
the measures used, the reliance of null hypothesis testing and
the use of benchmark data sets. Our measures do not mea-
sure all that we care about. Null hypothesis statistical tests
are widely misinterpreted and when correctly interpreted say
little. The data in our data sets is unlikely to have been ran-
domly chosen and the data sets, themselves, are not a sample
of any “real” world.

What I am not arguing for is the complete elimination
of any sort of evaluation of machine leaning algorithms.
My concern is that evaluation has become equated to the
sort of null hypothesis statistical testing based on bench-
mark data sets we currently use. Papers which show only
marginal improvements over existing algorithms are pub-
lished seemingly because the results are “statistically signif-
icant”. Those without such tests but containing novel ideas
are rejected for insufficient evaluation. I would argue that
null hypothesis statistical tests are of dubious value. This ar-
gument has been made by many others in many fields: psy-
chology (Schmidt 1996), education (Nix & Barnette 1998),
political science (Gill & Meier 1999) and wildlife research
(Johnson 1999). At the very least, they should be replaced
by confidence intervals so that we can judge if the perfor-
mance gains reported are of practical importance.

Kibler and Langley 1988 argued “experiments are worth-
while only to the extent that they illuminate the nature of
learning mechanisms and the reasons for their success or
failure”. Even within the statistics community there are
some who would downplay the role of hypothesis testing
in favor of exploration (Tukey 1977). Exploration, rather



than hypothesis testing, would give us a much broader un-
derstanding of where, when and why our algorithms work.

Problems with the Current Testing Procedure
The most common experiment, carried out by machine
learning researchers, is to train and test two algorithms on
some subset of the UCI datasets (Blake & Merz 1998). Their
performance is measured with a simple scalar function. A
one sided statistical test is then applied to the difference in
measured values, where the null hypothesis is no difference.
If there is statistically significant difference in favor of one
algorithm, on more UCI data sets than the other, it is de-
clared the winner.

This has often been called a “bake-off”. Some like Lan-
gley 2000 suggest they do not tell the whole story, “we en-
courage authors to move beyond simple ‘bake offs’ to stud-
ies that give readers a deeper understanding of the reasons
behind behavioral differences”. But they are used exten-
sively in machine learning. Even a subfield such as rein-
forcement learning, where the practice had not caught hold,
seems now to be embracing it wholeheartedly, as evidenced
by a couple of recent NIPS workshops (Sutton & Littman
2004; Riedmiller & Littman 2005). In this section, I in-
vestigate three parts of such experiments whose weaknesses
bring it into question.

Performance Measures
The main advantage of a simple scalar measure is that it is
objective. It gives a clear, and seemingly definitive answer,
to which algorithm is the best. If the algorithm being tested
is well described, and the experimental set up is well spec-
ified, then the experimental results could be reproduced by
another researcher. As scalars are totally ordered, the same
conclusions would be drawn.

The property of objectivity is unquestionably desirable
but only if “all other things are equal”, an essential caveat.
There is another property of equal, or perhaps greater, im-
portance. The measured value must represent something
we care about. One difficulty is the diversity of the peo-
ple who must be considered in this judgment: the particular
researcher, the research community as a whole, end users
of applications and, of course, referees for conferences and
journals. It is unreasonable to expect to capture all these
concerns in a single scalar measure.

Error rate, or accuracy, is a good example of a simple
scalar measure. Surely everybody would agree that mak-
ing the fewest mistakes is a good property for any classifier.
But there are many other factors we would consider when
deciding the usefulness of a classifier. We would consider
its error rate on each class separately (Provost, Fawcett, &
Kohavi 1998). We would consider misclassification costs
(Pazzani et al. 1994). We would consider the stability of
the error rate, small changes in the data should not cause
a large changes in classification (Evgeniou, Pontil, & Elis-
seeff 2004). In application oriented research, the measure
should reflect the concerns of the end users which are typi-
cally hard to model precisely (Thearling & Stein 1998). A
classifier is also likely just a small part of a larger system, a

topic of another NIPS workshop (Margineantu, Schumann,
& Drumheller 2004), whose overall performance is impor-
tant. Translating all these concerns into a scalar function is
likely to be far from exact.

My claim is not that using error rate as a performance
measure did not originally benefit research. Large gains in
accuracy unquestionably represented progress. But early on
the gains achieved over very simple systems were shown to
be quite small (Holte 1993). As time has gone on these gains
have become smaller, so it is less clear that they represent
worthwhile progress.

Scalar measures also over-simplify complex questions,
combining things together which should be kept separate.
Any advantage indicated by a simple scalar measure may be
illusory if it hides situation dependent performance differ-
ences. As this author has discussed elsewhere (Drummond
& Holte 2005), that some algorithms fail to do better than
trivial classifiers for extreme class skews is a concern that
was largely hidden by the standard practice. I would contend
that graphical, multi-objective representations better capture
the inherent complexity of the situation. ROC curves are
one good example of this (Provost & Fawcett 2001). But it
seems that the lure of simple scalar measures is too strong.
As seen at an ROC workshop (Ferri et al. 2004) many re-
searchers are now using the scalar measure “Area under the
ROC curve”, even though this measure is ineffective when
classes are highly skewed.

If experiments using a quantitative measure are needed
before a paper will be accepted for publication, then things
which cannot be measured are a lot less likely to be studied.
In the early days of machine learning, how easily the clas-
sifier could be understood by a human was considered very
important (Michalski 1983). Although there is still some in-
terest, notably found at a general artificial intelligence work-
shop (Oblinger et al. 2005) rather than a machine learn-
ing one, it has declined over the years. This is at least par-
tially attributable to the inability to measure it. As Kodratoff
1994 says “This attitude can be explained by the fact that we
have no precise definition of what an explanation really is,
that we have no way of measuring or even analyzing what a
’good’ explanation is ...”. Further, I would argue that some
measures are inherently qualitative, but that does not mean
they are unimportant. Forcing them into a quantitative form
would include a large degree of uncertainty and do little to
improve objectivity.

In summary, a measure may capture something of impor-
tance but not everything of importance. When we spend all
our time improving on a single scalar measure the gains in-
evitably get progressively smaller. As that measure captures
only part of what we care about, progress in our field must
suffer. Part of the research effort is in refining what is im-
portant and how it should be evaluated. But we should be
careful not to just replace an old orthodoxy with a new one,
we should adopt a much more varied approach to evaluation.

Statistical Tests
The main advantage of null hypothesis statistical tests is the
apparent rigor and objectivity they bring to our field. The
results we publish are not just wishful thinking, they have



been empirically evaluated. Although only briefly men-
tioned by Kibler and Langley 1988, statistical tests have be-
come firmly entrenched in our field. They are part of the
experimental section of any paper that has a reasonable ex-
pectation of publication. Many feel that careful evaluation
is what makes our research an “experimental science”.

Yet, the value of the null hypothesis statistical tests
(NHST) that we use has become increasingly controversial
in many fields. There is an enormous amount of literature
on this issue, stretching back more than sixty years (Hagood
1941). The controversy is particularly evident in psychol-
ogy as seen in the response from critics that accompanied a
paper (Chow 1998) in the journal Behavioral and Brain Sci-
ences. One particularly strong view was voiced by Gigeren-
zer (Chow 1998, p199) “NHSTP is an inconsistent hybrid
of Fisherian and Neyman-Pearsonian ideas. In psychology
it has been practiced like ritualistic handwashing and sus-
tained by wishful thinking about its utility.”

That it is a hybrid of two quite disparate views is part of
the reason that statistical tests are frequently misinterpreted
(Gill & Meier 1999). Notably, the misinterpretations seem
to invariably mean that the results are over-valued. Cohen
1994 points out some of the problems: “near-universal mis-
interpretation of p as the probability that Ho is false, the
misinterpretation that its complement is the probability of
successful replication, and the mistaken assumption that if
one rejects Ho one thereby affirms the theory that led to the
test”. To arrive at the probability that Ho is false one needs
Bayesian reasoning something Fisher, Neyman and Pearson
all categorically rejected. Replication has more to do with
the power of the test, a Neyman and Pearson concept, rather
than the p-value.

Exactly what can be concluded from a successful outcome
of this hybrid test is unclear. In Fisher’s view there was
only the null hypothesis and no alternative. Fisher’s 1955
interpretation was “either an exceptionally rare chance has
occurred or the theory [null hypothesis] is not true”. It is
common nowadays to talk about rejecting the null hypoth-
esis or failing to do so. In Neyman’s and Pearson’s view,
there was always a choice between two hypotheses, although
it is debated whether or not they allowed for “accepting”
the alternate hypothesis. In the end, “tests of significance,
as reported in journals, would appear to follow Neyman-
Pearson ’formally’ but Fisher ’philosophically’ and practi-
cally” (Moran & Solomon 2004).

Certainly the version used today, where the null hypoth-
esis is one of no difference and the alternate is everything
else, was something neither Fisher nor Neyman and Pearson
conceived. This null hypothesis is sometimes called “The
Nil Hypothesis” (Cohen 1994). The idea that any differ-
ence, however small, is a reasonable baseline hypothesis is
considered by some as untenable. Many would claim that
there is always a difference in practice. If sufficient data
is used, a statistically significant difference can always be
found. Even if a one sided test is used, testing for a positive
difference, the difference may be arbitrarily small.

With only the outcome of a significance test, we have no
idea of the size of the actual difference between our mea-
sured values, however small the p-value. We need additional

information. We can study the tables of results produced in a
paper and make our own estimate of the difference, but this
is not a statistically justified procedure. The problem can be
addressed by the use of confidence intervals. From these we
can judge not statistical significance but also the size of the
effect. Each researcher can then decide what effect is suf-
ficiently large to make the approach of interest (Gardner &
Altman 1986), a more subjective judgment.

Experiments are seldom carried out with such care that
minor unaccounted for effects cannot creep in. Lykken and
Meehl (Meehl 1997) call this the “crud factor”. It is true
that, as the objects of our experiment are programs, we have
much finer control on our experiments than psychology. But
this fine control is almost never exercised. In what Keogh
(Keogh 2005) called “crippling the strawman”, it is typi-
cal in published experimental results that the baseline algo-
rithm used default parameter settings. The authors’ own al-
gorithm, on the other hand, was tuned carefully to perform
well. It is clear that we do not make a concerted effort to
exclude all other possible ways of explaining the reported
difference.

Another problem of requiring statistically significant re-
sults before a paper is published is that we do not see the
whole picture. A survey of the literature would give an
impression that there is stronger support for a particular al-
gorithm than there actual is. In psychology, they are suffi-
ciently concerned about this problem to have started a jour-
nal for papers that did not reject the null hypothesis (Nal-
bone 2006). The random assumptions behind such tests
means that the statistical significance reported in some pa-
pers in machine learning will be due to chance. What would
be worrisome is if our own publishing practices encouraged
more than our fair share of such papers.

In summary, the use of a statistical test does not give the
degree of evidence that many people believe. Perhaps, in
the end, all such tests can offer is as Shafto (Chow 1998,
p199) says “may be most clearly and directly useful .... as
a safeguard against over-interpretation of subjectively large
effects in small samples”. But this is a far cry from the cur-
rent role they play in machine learning research.

Benchmark Data sets
The main advantage of benchmark data sets is our familiar-
ity with them. When we read a paper discussing experiments
using some subset of the UCI collection, we have natural in-
tuitions about the results. In all probability, we have used
most of the data sets ourselves, or read about their use else-
where. We can therefore easily compare the results with our
own experience or the results from other papers.

This also has a downside, the very familiarity with these
data sets leads to over-fitting (Bay et al. 2000; Salzberg
1997). Our knowledge encourages the writing of algorithms
that are tuned to them. This is part of a larger concern
about how well experimental results will generalize to other
yet unseen problems. More than 10 years ago, Holte 1993
raised this concern saying “one may doubt if the [bench-
mark] datasets used in this study are ’representative’ of the
datasets that actually arise in practice”. Other researchers
are clearly convinced they are not (Saitta & Neri 1998). It



seems a fair assumption that the UCI data sets are not a ran-
dom sample of the world.

The instances in the data sets are also likely not random
samples of the application domain. Certainly, the class dis-
tribution in some data sets does not reflect reality. An ex-
ample, considered elsewhere (Drummond & Holte 2005), is
the two UCI credit application datasets. These contained
very different numbers of credit approvals. It might be a
difference in local practice but more likely it represents a
difference in how the data was collected. The Splice dataset
in the UCI repository has an equal number of positive and
negative examples, whereas in actual DNA sequences the
ratio is more like 1:20 (Saitta & Neri 1998). We should also
question whether or not the distribution of instances over the
attribute space reflects reality or is more likely an artifact of
how the data set was constructed. Not knowing how these
data sets were put together undercuts the value of statistical
tests when the basic assumption on which they are founded,
that the sample is random, is in all probability not met.

In summary, I contend that we should not place too much
weight on results from experiments on such data sets. We
should not be very surprised when they do not generalize
well to more practical problems. We should also question
the value of doing a simple experiment over a large num-
ber of UCI data sets. “More is better” is a questionable
adage in this case. Experiments with a limited number of
well known data sets are certainly useful as intuition pumps
but any greater reliance on the results is in all probability
misplaced.

Discussion
Even when an experimental study has been carried out with
great care, the conclusions that can be drawn from it are of-
ten very weak. I have pointed to three components of the
standard testing procedure which are problematic: the mea-
sures used, the reliance on null hypothesis statistical testing
and the use of benchmark data sets.

Other researchers have identified other problems with our
evaluation process. Difficulties can arise when comparing
many classifiers in a single experiment (Jensen & Cohen
2000). Less obviously, this can also occur when different
researchers produce experimental results based on the same
data. If the various results are subject to a selection process,
such as in a KDD CUP competition, there is a surprisingly
large likelihood that the null hypothesis of no difference
could produce an apparently worthwhile difference (Forman
& Cohen 2005). Even if these problems are avoided, a re-
cently identified concern is that, at least, some previous ex-
perimental results reported in major conferences and jour-
nals can not be reproduced (Keogh 2005). This further re-
duces the weight that be can put on reported results.

We can look at evaluation from two different perspectives.
From the local perspective, we would like to know how well
our testing procedure predicts performance on future appli-
cations. From the global perspective, we would like to know
how well our testing procedure encourages progress in our
field. In this paper, I have argued that our present testing
procedure is not as effective, from the local perspective, as
people imagine. I would also argue that it does not do well

from the global perspective. Not only is it ineffective at fil-
tering out dubious theories, I would also suggest that the
overly strong emphasis on testing discourages a broad, dy-
namic, and ultimately more fruitful dialogue within the ma-
chine learning community.

One attraction of an objective, mathematically sophisti-
cated, statistical test is that it clearly separates our field from
the pseudo-sciences. But I contend that the application of
such a test is not the defining characteristic of an “experi-
mental science”. The empirical study of alternative theories
is important (Thagard 1988), but that does not automatically
imply statistical hypothesis testing. From the global per-
spective, our experiments must do more than decide between
two algorithms, they should give us a deeper insight into
what is going on. Kibler and Langley 1988 discuss such ex-
ploratory experiments saying “Ideally, this will lead to em-
pirical laws that can aid the process of theory formulation
and theory evaluation.” We should recognize that null hy-
pothesis statistical testing is but a small part of hypothesis
testing. We should recognize that hypothesis testing is not
the only valid tool of science and view research as a broader
exploratory exercise.

In summary, I suggest we should be clear that our present
evaluation procedure has only heuristic value. We should
therefore rate the results produced in this way less highly
when judging our own, or other people’s, research. To ad-
dress its failings, I am not in favor of replacing the present
procedure with a prescribed alternative. Rather, I believe,
the community would be better served by leaving the choice
of experimental evaluation, given that it is well justified, to
the individual experimenter.

In the short term, we should encourage the use of confi-
dence intervals in place of null hypothesis statistical tests.
If this practice was adopted, it would give a clear numerical
value to the improvement in performance gained when using
one algorithm instead of another. I suspect, then, that the
small gains achieved would become readily apparent. This
should make researchers much more willing to explore dif-
ferent aspects of their algorithms and different ways of ana-
lyzing and evaluating their experimental results.

Conclusions
I have revisited “Machine Learning as an Experimental Sci-
ence”, an important paper that marked a shift in attitude in
the machine learning community towards more careful eval-
uation. I have argued that the broad exploratory aims of this
paper have largely been ignored in favor of a very narrow
view of hypothesis testing. Such tests are of limited utility
to both the short term and long term goals of the machine
learning community and should not play such a prominent
role in our work and publications. Overall, I contend we
should encourage a much more open, and varied, approach
to evaluation.
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