
A Case Against the GOTO

William A. Wulf, Carnegie-Mellon University

ABSTRACT

It has been proposed, by E. W. Dijkstra and others,
that the $oto statement in programming language is
a principal culprit in programs which are diffi-
cult to understand, modify, and debug. More cor-
rectly, the argument is that it is possible to
use the sot 0 to synthesize program structures with
these undesirable properties. Not all uses of the
$oto are to be considered harmful; however, it is
further argued that the "good" uses of the $oto
fall into one of a small number of specific cases
which may be handled by specific language con-
structs. This paper summarizes the arguments in
favor of eliminating the $oto statement and some
of the theoretical and practical implications of
the proposal.

KEY WORDS AND PHRASES: programming, programming
languages, goto-less programming, structured pro-
gramming
CR CATEGORIES: 4.2, 4.22, 5.24

INTRODUCTION

It has been suggested that the use of the
$oto construct is undesirable, is bad programming
practice, and that at least one measure of the
'quality' of a program is inversely related to
the number of $oto statements contained in it.
The rationale behind this suggestion is that it
is possible to use the $oto in ways which obscure
the logical structure of a program, thus making
it difficult to understand, modify, debug, and/or
prove its correctness. It is quite clear that not
all uses of the $oto are obscure, but the hypoth-
esis is that these situations fall into one of a
small number of cases and therefore explicit and
inherently well-structured language constructs
may be introduced to handle them. Although the

This work was supported by the Advanced Research
Projects Agency of the Office of the Secretary of
Defense (F44620-70-C-0107) and is monitored by
the Air Force Office of Scientific Research.

suggestion to ban the $oto appears to have been a
part of the computing folklore for several years,
to this author's knowledge the suggestion was
first made in print by Professor E. W. Dijkstra in
a letter to the editor of the Communications of
the ACM in 1968 (I).

In this paper we shall examine the rationale
for the elimination of the $oto in programming
languages, and some of the theoretical and practi-
cal implications of its (total) elimination.

RATIONALE

At one level, the rationale for eliminating
the $oto has already been given in the introduc-
tion. Namely, it is possible to use the $oto in a
manner which obscures the logical structure of a
program to a point where it becomes virtually im-
possible to understand (1,3,4)o It is not claimed
that every use of the $oto obscures the logical
structure of a program; it is only claimed that it
is possible to use the $oto to fabricate a "rat's
nest" of control flow which has the undesirable
properties mentioned above. Hence this argument
addresses the use of the $oto rather than the $o to
itself.

As the basis for a proposal to totally elimi-
nate the goto this argument is somewhat weak. It
might reasonably be argued that the undesirable
consequences of unrestricted branching may be
eliminated by enforcing restrictions on the use of
the $oto rather than eliminating the construct.
However, it will be seen that any rational set of
restrictions is equivalent to eliminating the con-
struct if an adequate set of other control primi-
tives is provided. The strong reasons for elim-
inating the $oto arise in the context of more posi-
tive proposals for a programming methodology which
makes the $oto unnecessary. It is not the purpose
of this paper to explicate these methodologies
(variously called "structured programming", "con-
structive programming", "stepwise refinement",
etc.); however, since the major justification for
eliminating the $oto lies in this work, a few
words are in order.

791

It is, perhaps, pedantic to observe that the
present practice of building large programming
systems is a mess. Most, if not all, of the major
operating systems, compilers~ information systems,
etc. developed in the last decade have been de-
livered late, have performed below expectation
(at least initially), and have been filled with
'bugs'. This situation is intolerable, and has
prompted several researchers ((2,3,4), (5,6), (7),
(8), (9)) to consider whether a programming meth-
odology might be developed to correct this situa-
tion. This work has proceeded from two premises:

i. Dijkstra speaks of our "human inability to
do much" (at one time) to point up the
necessity of decomposing large systems
into smaller, more "human size" chunks.
This observation is hardly startling, and
in fact, most programming languages in-
clude features (modules, subroutines, and
macros, for example) to aid in the mechan-
ical aspects of this decomposition. How-
ever, the further observation that the
particular decomposition chosen makes a
significant difference to the understand-
ability, modifiability, etc., of a pro-
gram and that there is an ~ priori meth-
odology for choosing a "good" decomposi-
tion is less expected.

2. Dijkstra has also said that debugging can
show the presence of errors, but never
their absence. Thus ultimately we will
have to be able to prove the correctness
of the programs we construct (rather than
"debug" them) since their sheer size pro-
hibits exhaustive testing. Although some
progress has been made on the automatic
proof of the correctness of programs (c.f.,
(i0), (ii), (12), (23), (24)), this ap-
proach appears to be far from a practical
reality. The methodology proposed by
Dijkstra (and others) proceeds so that the
construction of a program guides a (com-
paratively) simple and intuitive proof of
its correctness.

The methodology of "constructive programming"
is quite simple and, in this context, best de-
scribed by an (partial) examplel Let us consider
the problem of producing a KWIC" index. Construc-
tion of the program proceeds in a series of steps
in which each step is a refinement of some portion
of a previous step. We start with a single state-
ment of the function to be performed:

*For those who may not be familiar with a KWIC
(key word in context) index, the following de-
scription is adequate for this paper.

A KWIC system accepts a set of lines. Each
line is an ordered set of words and each word is
an ordered set of characters. A word may be one
of a set of uninterestin5 words ("a", "the", "of",
etc.), otherwise it is a key word. Any line may
be circularly shifted by removing its first word
and placing it at the end of the line. The KWIC
index system generates an ordered (alphabetically
by the first word) listing of all circular shifts
of the input lines such that no line in the out-
put begins with an uninteresting word.

Step i: PRINTKWIC

We may think of this as being an instruction in a
language (or machine) in which the notion of gen-
erating a KWIC index is primitive. Since this
operation is not primitive in most practical lan-
guages, we proceed to define it:

Step 2: PRINTKWIC: generate and save all
interesting circular
shifts

alphabetize the saved
lines

print alphabetized lines

Again, we may think of each of these lines as be-
ing an instruction in an appropriate language; and
again, since they are not primitive in most exist-
ing languages, we must define them; for example:

Step 3a: generate and save all interesting
circular shifts:

etc.

for each line in the input do
begin
generate and save all inter-

esting shifts of 'this
line'

end

The construction of the program proceeds by small
steps* in this way until ultimately each operation
is expressed in the available primitive operations
of the target language. We shall not carry out the
details since the objective of this paper is not to
be a tutorial on this methodology. However, note
that the methodology achieves the goals set out for
it. Since the context is small at each step it is
relatively easy to understand what is going on; in-
deed, it is easy to prove that the program will
work correctly if the primitives from which it is
constructed are correct. Moreover, proving the
correctness of the primitives used at step ~ is a
small set of proofs (of the same kind) at step ~_+I.
(In the terminology of this methodology, step I is
an abstraction from its implementation in step
~+I.)

Now, the constructive programming methodology
relates to eliminating the goto in the following
way. It is crucial to the constructive philosophy
that it should be possible to define the behavior
of each primitive action at the ~th step indepen-
dent of the context in which it occurs. If this
were not so, it would not be possible to prove the
correctness of these primitives at the 5+ist step
without reference to their context in the Dth step.
In particular, this suggests (using flow chart
terminology) that it should be possible to repre-
sent each primitive at the ~th step by a (sub) flow
chart with a single entry and a single exit path.
Since this must be true at each step of the

*A more complete explication of the methodology
would concern itself with the nature and order of
the decisions made at each step as well as the
fact that they are small. See (22) for an analysis
of two alternative decompositions of a KWIC system
similar to the one defined here.

792

construction, the final flow chart of a program
constructed in this way must consist of a set of
totally nested (sub) flow charts. Such a flow
chart can be constructed without an explicit $oto
if conditional and looping constructs are avail-
able.

Consider, now, programs which can be built
from only simple conditional and loop constructs.
To do this we will use a flow chart representation
because of the explicit way in which it manifests
control. We assume two basic flow chart elements,
a "process" box and a "binary decision" box:

These boxes are connected by directed line seg-
ments in the usual way. We are interested in two
special "goto-less" constructions fabricated from
these primitives: a simple loop and an n-way con-
ditional, or "case", construct. We consider these
forms "goto-less" since they contain single entry
and exit points and hence might reasonable be pro-
vided in a language by explicit syntactic con-
structs. (The loop considered here obviously does
not correspond to all variants of initialization,
test before or after the loop body, etc. These
variants would not change the arguments to follow
and have been omitted.) -d>

o,,

simple loop case

Consider the following three transformations (TI,
T2, T3) defined on arbitrary flow charts:

TI. any linear sequence of process boxes may be
mapped into a single process box

T2. any simple loop may be mapped into a process
box

I
T3. any n-way "case" construct may be mapped into

a process box

Any graph (flow chart) which may be derived
by a sequence of these transformations we shall
call a "reduced" form of the original. We shall
say that a graph which may be reduced to a single
node by some sequence of transformations is "goto-
less" (independent of whether actual $oto state-
ments are used in its encoding) and that the se-
quence of transformations defines a set of nested
"control environments". The sequence of trans-
formations applied in order to reduce a graph to a
single node may be used as a guide to both under-
standing and proving the correctness of the pro-
gram (2,4,6,7,19).

The property of being "goto-less" in the sense
defined above is a necessary condition for the pro-
gram to have been designed by the constructive
methodology. Moreover, the property depends only
upon the topology of the program and not on the
primitives from which it is synthesized; in par-
ticular, a $oto statement might have been used.
However, not only can such programs be constructed
without a $oto if conditionals and loops are avail-
able, but any use of a $oto which is not equivalent
to one of these will destroy the requisite topology.
Hence any set of restrictions (on the use of the
$oto) which is intended to achieve this topology is
equivalent to eliminating the $oto.

THE THEORETICAL POSSIBILITY OF ELIMINATING THE GOTO

It is possible to express the evaluation of an
arbitrary computable function in a notation which
does not have an explicit $oto. This is not par-
ticularly surprising since: (I) several formal
systems of computability theory, e.g., recursive
functions, do not use the concept; (2) (pure) LISP
does not use it; and (3) Van Wijgaarden (13), in
defining the semantics of Algol, eliminated labels

793

and goto's by systematic substitution of proce-
dures. However, this does not say that an algor-
ithm for the evaluation of these functions is
especially convenient or transparent in goto-less
form. Alan Perlis has referred to similar situa-
tions as the 'Turing Tarpit' in which everything
is possible, but nothing is easy.

Knuth and Floyd (14) and Ashcroft and Manna
(15) have shown that given an arbitrary flow chart
it is not possible to construct another flow chart
(using the same primitives and no additional vari-
ables) which performs the same algorithm and uses
only simple conditional and loop constructs; of
course other algorithms exist that compute the
same function and which can be expressed with only
simple conditionals and loops. The example given
in Ashcroft and Manna of an algorithm which cannot
be written in goto-less form without adding addi-
tional variables is:

5

8

B1

I
I
J

I

IB2

I

I

I

I
I

I

I
I
I

By enclosing some of the regions of the flow
chart in dotted lines and labeling them (BI and
B2) as shown above, and further abstracting from
the details of the process and decision struc-
ture, the abstract structure of this example is:

The reader is referred to (15) for a proof that
such programs cannot be constructed from simple
looping and conditional constructs unless an addi-
tional variable is added• Intuitively, however,
it should be clear from the abstraction of the ex-
ample that neither B1 nor B2 is inherently nested
within the other. Moreover, the existence of mul-
tiple exit paths from BI and B2 make it impossible
to impose a superior (simple) loop (which inherent-
ly has a single exit path) to control the itera-
tion between them unless some mechanism for path
selection (e.g., an additional variable) is intro-
duced.

In (21) Bohm and Jacopini show that an arbi-
trary flow chart program may be translated into an
equivalent one with a single "while statement" by
introducing new boolean variables, predicates to
test them, and assignment statements to set them.
A variant of this scheme involving the addition of
a single integer variable, call it '~', which
serves as a 'program counter' is given below.

Suppose some flow chart program contains a
set of process boxes assigned arbitrary integer
labels il,i2,ooo,i , and decision boxes assigned
arbitrary integer ~abelst___..n ~i ~-,in.2,...,i m. (By

assume the ~TO~ 5ox ~s assigned the convention
label zero, and the entry~'box is assigned the label
one°) For each process box, i., create a new box,
i~, identical to the focmer except for the addi-
tion of the assignment '~ ~ i~ where i k is the
label of the successor of i. in the orlginal pro-
gram. For each decision bo~, i%, create the macro
box, i~,

where i and i- are the labels of the successors
of the ~rue an~ false branches of the decision box,
i , in the original program. Now create the fol-
l & i n g flow char t :

!n

794

Thus, for example, the Ashcroft and Manna example
given earlier (the labels are given on the earlier
diagram) becomes :

N

N

N

• q?

N

t

Constructions such as the one given above are
undesirable not only because of their inefficiency,
but because they destroy the topology (loop struc-
ture) and locality of the original program and
thus make it extremely difficult to understand.
Nevertheless, the construction serves to illustrate
the point that adding (at least one) control vari-
able is an effective device for eliminating the
$oto. Ashcroft and Manna have given algorithms for
translating arbitrary programs into goto-less form
(with additional variables) which preserve the ef-
ficiency and topology of the original program.

THE PRACTICAL POSSIBILITY OF ELIMINATING THE GOTO

As discussed in the previous section, it is
theoretically possible to eliminate the $oto. More-
over, there can be little quarrel with the objec-
tives of the constructive programming methodology.
A consequence of the particular methodology pre-
sented above is that it produces $oto-less pro-
grams, thus the $oto is unnecessary in programs
produced according to this methodology. A key,
perhaps the key, issue, then, is whether it is
practical to remove the ~oto. In particular there
is an appropriate suspicion among practicing pro-
grammers that coding without the $oto is both in-
convenient and inefficient. In this section we
shall investigate these two issues, for, if it is
inconvenient or grossly inefficient to program
without the $oto then the practicality of the meth-
odology is in question.

Convenience:

Programming without the $oto is no___~t (neces-
sarily) inconvenient. The author is one of the
designers, implementors, and users of a 'systems
implementation language', Bliss (16,17,18); Bliss
does not have $oto. The language has been in ac-
tive use for three years; we have thus gained con-
siderable practical experience programming without
the $oto. This experience spans many people and
includes several compilers, a conversational pro-
gramming system (APL), an operating system, as well
as numerous applications programs.

The inescapable conclusion from the Bliss ex-
perience is that the purported inconvenience of
programming without a $oto is a myth: Programmers
familiar with languages in which the $oto is pre-
sent go through a rather brief and painless adapta-
tion period. Once passed this adaptation period
they find that the lack of a $oto is not a handi-
cap; on the contrary, the invarient reaction is
that the enforced discipline of programming without
a $oto structures and simplifies the task.

Bliss is not, however, a simple goto-less
language; that is, it contains more than simple
while-do and if-then-else (or case) constructs.
There are natural forms of control flow that occur
in real programs which, if not explicitly provided
for in the language~ either require a ~oto so that
the programmer may synthesize them, or else will
cause the programmer to contort himself to mold
them into a goto-less form (e.g., in terms of the
construction in the previous section). Contortion
obscures and is therefore antipathetic with the

*Including this author when he first read Dijkstra's
letter in 1968.

795

constructive philosophy; hence the approach in
Bliss has been to provide explicit forms of these
natural constructs which are also inherently well-
structured. In (19) the author analyzes the forms
of control flow which are not easily realized in a
simple goto-less language and uses this analysis to
motivate the facilities in Bliss. Here we shall
merely list some of the results of that analysis as
they manifest themselves in Bliss (and might mani-
fest themselves in any 8oto-less language):

i. A collection of 'conventional' control
structures: Many of the inconveniences
of a simple goto-less language are elim-
inated by simply providing a fairly large
collection of more-or-less 'conventional'
control structures. In particular, for
example, Bliss includes: control 'scopes'
(blocks and compounds), conditionals (both
if-then-else and case forms), several
looping constructs (including while-do,
do-while, and stepping forms), potentially
recursive procedures, and co-routines.

2. Expression Language: As noted in an ear-
lier section, one mechanism for expressing
algorithms in goto-less form is through
the introduction of at least one addition-
al variable. The value of this variable
serves to encode the state of the computa-
tion and direct subsequent flow. This is
a common programming practice used even
in languages in which the goto is present
(e.g., the FORTRAN 'computed $oto'). Bliss
is an 'expression language' in the sense
that every construct, including those which
manifest control, is an expression and com-
putes a value. The value of an expression
(e.g., a block or loop) forms a natural
and convenient implicit state variable.

3. Escape Mechanism: Analysis of real pro-
grams strongly suggests that one of the
most common 'good' uses of a $oto is to
prematurely terminate execution of a con-
trol environment--for example, to exit
from the middle of a loop before the
usual termination condition is satisfied.,
To accommodate this form of control Bliss
allows any expression (control environ-
ment) to be labeled; an expression of the
form "leave <label>with <expression>"
may be executed within the scope of this
labeled environment. When a leave ex-
pression is executed two things happen:
(I) control immediately passes to the end
of the control environment (expression)
named in the leav____~e, and (2) the value of
the named environment is set to that of
the <expression> following the with. Note
that the leave expression is a restricted
form of forward branch just as the vari-
ous forms of loop constructs are restrict-
ed backward jumps. In both cases the con-
structs are less general, and less danger-
ous, than the general $oto.

*A somewhat different form of the Bliss escape is
described in (19); the form described in (19) has
been replaced by that described above.

In summary, then, our experience with Bliss
supports the notion that programming without the
$oto is no less convenient than with it. This
conclusion rests heavily on the assumption that the
$oto was not merely removed from some existing lan-
guage, but that a coherent selection of well-struc-
tured constructs were assemhled as the basis of the
control component of the new language. It would be
unreasonable to expect that merely removing the
$oto from an existing language, say FORTRAN or PL/I,
would result in a convenient notation. On the
other hand, it is not unreasonable to expect that a
relatively small set of additions to an existing
language, especially the better structured ones
such as Algol or PL/I, could reintroduce the requi-
site convenience. While not a unique set of solu-
tions, the control mechanisms in Bliss are one
model on which such a set of additions might be
based.

Efficiency:

More computing sins are committed in the name
of efficiency (without necessarily achieving it)
than for any other single reason--including blind
stupidity. One of these sins is the construction
of a "rat's nest" of control flow which exploits a
few common instruction sequences. This is precise-
ly the form of programming which must be eliminat-
ed if we are ever to build correct, understandable,
and modifiable systems.

There are applications (e.g., 'real time' pro-
cessing) and there are (a few) portions of every
program where efficiency is crucial. This is a
real issue. However, the appropriate mechanism
for achieving this efficiency is a highly optimiz-
ing compiler, not incomprehensible source code.
In this context it is worth noting another benefit
of removing the 8oto--a benefit which the author
did not fully appreciate until the Bliss compiler
was designed--namely, that of global optimization.
The presence of ~oto in a block-structured lan-
guage with dynamic storage allocation forces run-
time overhead for jumping out of blocks and pro-
cedures and may imply a distributed overhead to
support the possibility of usch jumps. Eliminating
the $oto removes both of these forms of overhead.
More important~ however, is that: (i) the scope of
a control environment is statically defined, and
(2) all control appears as one of a small set of
explicit control constructs. A consequence of (i)
is that the Fortran-H compiler (20), for example,
expends a considerable amount of effort in order to
achieve roughly the same picture of overall control
as that implicit in the text of a Bliss program.
The consequence of (2) is that the compiler need
only deal with a small number of well defined con-
trol forms; thus failure to optimize a peculiarly
constructed variant of a common control structure
is impossible. Since flow analysis is pre-requi-
site to global optimization, this benefit of elim-
inating the $oto must not be underestimated.

SUMMARY

One goal of our profession must be to produce
large programs of predictable reliability. To do
this requires a methodology of program construction.
Whatever the precise shape of this methodology,
whether the one sketched earlier or not, one prop-
erty of that methodology must be to isolate (sub)

796

components of a program in such a way that the
proof of the correctness of an abstraction from
these components can be made independent of both
their implementation and the context in which they
occur. In particular this implies that unrestrict-
ed branching between components cannot be allowed.

Whether or not a language contains a got o and
whether or not a programmer uses a goto in some
context is related, in part, to the variety and
extent of the other control features of the lan-
guage. If the language fails to provide important
control constructs, then the goto is a crutch from
which the prograr~mer may synthesize them. The
danger in the goto is that the programmer may do
this in obscure ways. The advantage in eliminat-
ing the $oto is that these same control structures
will appear in regular and well-defined ways. In
the latter case, both the human and the compiler
will do a better job of interpreting them.

REFERENCES

I. Dijkstra, E. W., "Goto Statement Considered
Harmful", Letter to the Editor, CACM, Ii, 3,
March 1968.

2. Dijkstra, E. W., "A constructive approach to
the problem of program correctness", BIT 8,
1968.

3. Dijkstra, E. W., "Structured programming",
Software Engineering, October 1969, Rome.

4. Dijkstra, E. W., "Notes on Structured Pro-
gramming", August 1969.

5. Naur, P., "Proof of algorithms by general
snapshots", BIT 6, 1966.

6. Naur, P., "Programming by action clusters",
BIT 9, 1969.

7. Hoare, C. A. R., "Proof of a program FIND",
CACM 14, i, June 1971.

8. Wirth, N., "Program development by stepwise
refinement", CACM, April 1971.

9. Parnas, D. L., "Information distribution
aspects of design methodology", IFIP, 1971.

i0. King, J., A Program Verifier, Ph.D. Thesis,
Carnegie-Mellon University, 1969.

ii. Manna, Z., Termination of Algorithms, Ph.D.
Thesis, Carnegie-Mellon University, April
1968o

12. Manna, Z., "The correctness problem of com-
puter programs", Computer Science Research
Review, 1968.

13. Van Wijngaarden, A., "Recursive Definition of
Syntax and Semantics", in Formal Language De-
scription Languages, (T. B. Steel, ed.),
North-Holland Publishing Col, Amsterdam, 1966.

14. Knuth, Floyd, Notes on Avoiding 'GOTO' State-
ments, Technical Report CS 148, Stanford Uni-
versity, January 1970o

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Ashcroft, E. and Manna, Z.~ "The translation of
"goto" programs into "while" programs, IFIP,
1971.

Wulf, et al., Bliss Reference Manual, Computer
Science Department Report, Carnegie-Mellon
University.

Wulf, et al., "Bliss: a language for systems
programming", CACM, December 1971.

Wulf, et al., "Reflections on a systems pro-
gra~ning language"~ Proceedings of the SIGPLAN
Symposium on Systems Implementation Languages,
October 1971.

Wulf, W. A., "Programming without the goto",
IFIP, 1971.

Lowery and Medlock, "Object code optimization",
CACM, 12, i, January 1969.

B~hm and Jacopini, "Flow diagrams, Turing
machines, and languages with only two forma-
tion rules", CACM, 9, 5, May 1966.

Parnas, Do, On the Criteria to be Used in De-
composing Systems into Modules, Computer Sci-
ence Department Report, Carnegie-Mellon Uni-
versity, 1971.

Manna, Z., Ness, S., and Vaillemin, J., "Induc-
tive methods for proving properties of pro-
grams", SIGPLAN/SIGACT Conference on Proving
Assertions about Programs, January 1972.

Burstall, R., "An algebraic description of
programs with assertions, verification and
simulation", SIGPLAN/SIGACT Conference on
Proving Assertions about Programs~ January
1972.

797

