
 Introducing QoS to Electronic Commerce Applications

Gregor v. Bochmann1, Brigitte Kerhervé2, Hanan Lutfiyya3, Mohamed-Vall M.
Salem4 and Haiwei Ye4

1 University of Ottawa
2 University of Quebec at Montreal

3 University of Western Ontario
4 University of Montreal

Abstract. Business to consumer is expected to be one of the fastest growing
segments of electronic commerce. One important and challenging problem in
such context, is the satisfaction of user expectations about the Quality of
Service (QoS) provided when applications are deployed on a large scale. In this
paper, we will examine the use of dynamic QoS management techniques in
combination with replication at the various architectural levels of an electronic
commerce application.

1. Introduction

It is expected that business to consumer commerce as well as other forms of
electronic commerce will grow at a breakneck pace during the next four years. The
value of goods and services traded between companies is expected to skyrocket from
$8 billion (U.S.) this year to $327 billion (U.S.) in 2002, according to Sizing Inter-
company Commerce, the inaugural report from Forrester Research's Business Trade
& Technology Strategies service.

The business to consumer is expected to be the fastest growing segment of
electronic commerce. However, there are several impediments that may have an affect
on this growth. The most commonly cited problem is that of the lack of trust between
businesses and consumers. Thus there is much research in security and payment
protocols. Secure payment is only one aspect of concern about doing business on-
line. Another, but less discussed problem, is user expectations about the Quality of
Service (QoS) provided. By QoS, we are referring to non-functional requirements
such as performance, availability and cost of using computing resources. For
example, a user is bound to worry if there is a long wait during credit card processing.
The user may even perceive the long wait to be a security problem. The time it takes
for credit card processing should not exceed a certain threshold where that threshold
is determined to be the average amount of time that a consumer is willing to wait on-
line before hitting the “panic button”. Satisfying the quality of service expectations of
users for electronic commerce sites is becoming a considerable challenge that has not
been addressed adequately.

QoS management refers to the allocation and deallocation of computing resources.
Static QoS management techniques provide a guarantee that resources will be
available when needed. Applying static QoS management techniques for electronic
commerce sites typically involves adding additional resources e.g., adding additional

servers or buying faster processors, faster bandwidth connections or more memory. It
has been shown that this approach wastes approximately 20% of resource capacity
and fails to satisfy quality of service needs in 90% of cases. This suggests that just
adding resources is inadequate. In this paper, we will examine the use of dynamic
QoS management techniques in combination with replicating web and application
servers.

The outline of this paper is as follows. In Section 2 we introduce some typical Web
server architectures in order to accommodate a large number of users. We also review
the basic QoS parameters, which describe the user’s perception of the provided service
and the internal performance parameters of the distributed system components. We
also consider differentiated service for different classes of users and some policies for
managing QoS in this context. We note the importance of monitoring the actual QoS
parameters while the system is running in order to provide for dynamic QoS
management which automatically adapts to unforeseen situations, such as unexpected
bottlenecks, partial system failures or unexpected user demands. In Section 3, we
consider system architecture with a single Web server and e-commerce application
and partially replicated database servers. We discuss the issues related QoS-aware
distributed query processing which is feasible in this context. We consider different
optimization criteria that may be related to different user preferences or the trade-off
with the preferences of the system administrator. In particular, the network QoS
parameters, available throughput and transmission delay, are taken into account. In
Section 4, another replicated architecture is considered where the whole e-commerce
application are replicated and a so-called broker process distributes the user requests
between servers according to some QoS policies. Because of space limitations, only
an overview of this approach is given. Section 5 contains the conclusions.

2. Systems Architectures and QoS Parameters

2.1. Basic System Architectures

The simplest form of an electronic commerce application as shown in Figure 1
consists of a web server as the interface for clients, an application server that has the
program logic needed for implementation and a database server needed for storage of
information.

Fig. 1. Simple form of an electronic commerce application

 A more complex electronic commerce application has its information reside on
databases at different sites. For example, a virtual mall brings together services and
inventories of various vendors and allows users to navigate through these vendors,
adding items into a virtual shopping cart. The catalogue of services and inventories
will often be on the databases at the vendor’s site. If the information to be accessed is
standardized, the DB query process can provides a uniform interface to the
application process that hides the differences of the various catalogs and their access

Web
Server

DatastoreAppl.
Process

DB query
Process

differences. This would allow the straightforward processing of a query involving
several vendors of the same mall, such as the following example query: Find all sofas
which price is less than $1000 and where a matching loveseat, recliner and coffee
table can also be found.

A typical architecture with a distributed data store is shown in Figure 2. Such
distribution accommodates the distributed responsibility for the data, which is shared
among the different vendors within the shopping mall. The distribution also increases
the overall processing capacity since the different local query processes will run in on
separate computers with their own data store; this will therefore increase the overall
query processing capacity. The problem of QoS optimization in this context will be
discussed in more details in Section 3.

Fig. 2. Distributed data store Architecture

In the case of a very large number of users, a single server is not powerful enough
to run the Web server and the application processes for all the users. In order to
increase the processing power, one may distribute the Web server, application
processes and query processes over different computers. Or one may go one step
further and duplicate the whole system architecture, introducing a certain number of
independent systems, all providing the same service, as shown in Figure 3. In order to
distribute the user requests to different servers, we consider the introduction of a load
distribution engine, which we call broker. The broker receives the initial user requests
and determines, based on performance management information received from the
Web servers, which server should be allocated to serve the given user request and the
following interactions occurring within this new shopping session. Some of the issues
related to the load sharing and QoS management for this replicated architecture will
be discussed in Section 4.

Web
Server

Appl.
Process Datastore

Local
Query
Process

Local
Query
Process

Local
Query
Process

Datastore

Datastore

Fig. 3. Full replicated architecture

2.2. Quality of Service Parameters

With respect to performance, a primary user expectation about the QoS is specified in
terms of the response time. The response time is affected by the transmission delay of
the access network through which the client’s workstation accesses the Web server,
by the processing times in the Web server, the application process and the DB query
process, and possibly the network latency between the Web server, application and
database server if they are implemented on separate computers. In order to discuss
QoS management in this context, we have to distinguish between the high-level QoS
parameters relevant at the user level and the internal QoS parameters pertaining to the
different system resources, which are used by the application. The goal of QoS
management is to assure the controlled sharing of these resources among the different
users according to certain management policies.

2.2.1. User-Level QoS Parameters
The following QoS parameters are important from the user’s perspective:
1. Response time: This is the most important QoS parameter from the user’s

perspective. It is the time between the moment a request is sent to the time that the
response has been provided to the user.

2. Availability: Availability is simply a measure of the system’s effective “up-time”.
It represents the percentage of time the server is available during an observation
period.

3. Servability: We call servability the percentage of time the server is available and
can accept the user request. We assume that, in order to guarantee a certain quality
of response time to the active users, the system will refuse new requests when the
response time of the system exceeds a certain limit, which we call Rmax.

4. System throughput: This parameter is important from the perspective of the system
owner, and it measures the number of user requests that are handled by the system.
It is a measure of the amount of service that is provided. It is well known that the
response time of a given system increases as the system throughput increases.
When the maximum throughput of the system is attained, the response time
becomes infinite since the internal queuing delays become arbitrary big. It is
interesting to note that different query processing algorithms in distributed
databases may lead to different maximum throughput and different response times
(at less than maximum throughput). Therefore a compromise must be found

Appl.
Process

Web
Server

Appl.
Process

Datastore

Local
Query
Process

Local
query
process

Local
query
process

Datastore

Datastore
Appl.

Process

Web
Server

Web
Server

broker

between maximizing the throughput and minimizing the response time. This is an
important QoS policy decision to be made by the owner of the e-commerce system.
In the context of databases, the parameters of interest are database server

availability, database management throughput and query response time. The
throughput is usually measured in transactions per second [TPCW]. We consider the
response time as a function of several parameters including the database server load
(CPU usage, database connections, disk I/O activities), the network load (the
available TCP throughput and delay), as well as the power of client machine.

2.2.2. Internal QoS Parameters
The internal QoS parameters pertain to the performance of the different system
components within the considered architecture. They include the following
parameters:
1. Network propagation delay: The time between the sending of a packet to its

reception by the destination computer.
2. Network access capacity: This is the maximum throughput by which a given

computer can send data over the network. It is determined by the network access
link, which is relatively limiting in the case of modem access over telephone lines.

3. Effective network maximum throughput: This is the maximum throughput that can
be effectively obtained between two computers over a given network. Even if the
network access links allow for large throughputs, the effective throughput will be
limited in most cases by the flow control mechanism of the TCP protocol since
most Web applications and distributed databases use TCP for the transmission of
data.

4. Response time of the query process; also its throughput (number of queries
processed per second).

5. Processing delay and queuing time in Web server and application process; also
their throughput.

6. Availability of the different servers and system components implemented on these
servers.

7. Low-level performance parameters, such as CPU and memory utilization of the
different servers that are part of the system architecture, as well as statistics related
to data transmission over the network access links, etc.

2.3. Differentiated Classes of Users

We think that many future e-commerce systems will be able to provide different
levels of service to different classes of users. For instance, the system may distinguish
between a casual user (which is not known to the shop’s organization) and a
registered user who is a regular client of the shop. Some of the registered users may
be known to buy many goods in the shop; they may obtain the “Elite” service, while
the normal registered user obtains the “Premium” service and the casual user the
“Normal” service. These different classes of service may differ in several aspects,
such as the following:
• A higher class of service will have a shorter response time.
• A higher class of service may provide facilities, which are not available at the basic

level, such as for instance a teleconference chat with a sales person.

• A higher class of service implies higher availability and servability.

2.4. QoS Policies

In the case of a single class of users, the general policy for QoS management may be
the following:
Policy 1: At any given point in time, all active users should experience the same
average response time. If the average response time reaches the value Rmax, the
system should not accept any new user sessions. Note: Rmax may be infinite in the
case that no user will be refused. It is clear that the size of the active user population
(which varies over time), the system’s processing capacity and Rmax determine the
servability parameter of the provided service.

In the case of two classes of users A and B (where A is a higher class than B) there
are different ways the priority of A over B may be specified. Assuming that all users
of a given class should experience the same average response time and servability,
and that the average response time for class A is smaller than for class B, we may
consider the following policy alternatives:
Policy 2:

1. If the response time for class A reaches RmaxA then no new users of class A
will be accepted.

2. If the response time for class B reaches RmaxB then no new users of class B
will be accepted.

3. RmaxA < RmaxB

Policy 3:
1. If the response time for class A reaches RmaxA then no new users of class A

nor class B will be accepted.
2. As above
3. As above

Note that policy (3) implies absolute priority of class A users over class B users. If
there are enough class A users requesting service, no class B users may enter the
system and eventually only class A users will be served. In the case of policy (2), the
amount of processing capacity for each of the two classes of service is not specified
and may be determined by the system administrator in an arbitrary manner, thus
allowing in the case of general overload condition a somehow balanced number of
class A and class B users. We note that giving higher CPU priority to the processing
of the class A requests as compared with class B requests, may be used to implement
both of these policies. However, the policies leave some freedom to the
implementation about the amount of resources to be allocated to the different user
classes, therefore strict priority may not always be appropriate.

2.5. Fault Management

In any dynamic approach to QoS management, a key problem is detecting why a QoS
requirement is not being satisfied. For example, assume that under normal operating
conditions the performance requirement for a Web server is as follows: “If the
number of requests is less than 100 per second, the time it takes to service an HTTP
request should be less than 1.5 seconds”. If this requirement is not satisfied, this is a

symptom of a problem. The reason that this requirement may not be satisfied could be
due to a number of problems including the following. The host machine that the Web
server is running on has a high CPU load, the network between the Web server and
the application / database server may be congested or the host that the database server
is running on may have a high CPU load or be down. Determining that a QoS
requirement is not satisfied is referred to as fault detection. Fault diagnosis techniques
hypothesize as to a probable cause of the degradation, with subsequent testing used to
determine the validity of the hypothesis.

Support of fault detection and diagnosis requires that the architecture supports the
following: (1) Resource monitors for the network and the host machines that run the
components of the application as well as monitors that measure application behavior
that can be compared to the QoS requirements. (2) Management applications that can
analyze the monitored information to determine if a QoS requirement has been
violated and diagnose the cause.

2.6. Monitoring Application and Resource Behavior

The subsections above illustrate the need for performance monitoring. The broker of
Figure 3, the global query process in Figure 2, and the management application
described in Section 2.5 all need information about application and system run-time
behavior. Thus, for application and system components we need an associated
performance monitor. For example, a Web server would have instrumentation for
monitoring its behavior and there would be a daemon process monitoring CPU load,
incoming network traffic and outgoing network traffic for the computer on which the
Web server is running. The monitored information used by the broker, query
processor, and the management application all intersect, but are not necessarily the
same. In addition, the frequency of the need for information will vary. This suggests
that each process be able to register with a resource or application monitor for the
timely and periodic sending of information. Alternatively, if a process does not want
to register for timely and periodic information, the resource must provide an interface
that allows for request of the monitored information when needed.

3. QoS Aware Distributed Query Processing

As shown in Figure 2, a typical real-world back-end database configuration for e-
commerce systems consists of multiple database servers for providing stability, load
balancing and better performance. In such configurations, the database content can be
allocated to different database servers. For example, tables storing product catalog are
less likely to be updated as compared to those tables used for order processing, thus
these two types of tables can be distributed to different servers to get some
performance gain. However, such kind of data distribution requires connecting the
two tables when processing queries that need to access information from both tables.
This requires the database management system (DBMS), or more specifically the
query optimizer, to be aware of the data distribution. The new challenge, as compared
to the context for traditional DBMS, consists here on how to take into account the
dynamic nature of the underlying network and database server load. In addition, since
users may have different expectations from the e-commerce server, while passing
down to the database server, these expectations have to be mapped to different

optimization criteria. Therefore, the traditional query optimizer lacks the flexibility to
configure to different optimization criteria. In this new context, we revisit distributed
database query processing in the presence of information about the network quality of
service (delay and available throughput) and user preferences concerning query
optimization criteria [Ye99]. We consider such optimization criteria as minimizing
the overall resource utilization, lowest response time or lowest cost (based on some
tariff structure for network and database utilization) [Ye00]. We work in the context
of federated and distributed databases communicating either over a local area network
or over the Internet. Accordingly, our distributed query processing strategies can be
described as “Quality of Service aware”. The QoS aspect here refers to the dynamic
nature of network, the server load and the user’s preference.

Global query optimization is generally implemented in three steps [Daya85,
Meng95, Ozsu99]. After parsing, a global query is first decomposed into query units
(subqueries) such that the data needed by each subquery is available from a single
local database. Second, an optimized query plan is generated based on the
decomposition results. Finally, each subquery of the query plan is dispatched to the
related local database server to be executed and the result for each subquery is
collected to compute the final answer. In our study, we focus on the first two steps
and map them to the problem of global query decomposition, inter-site join ordering
and join site selection [Corn88, Du95, Evre97, Urha98].

Global query decomposition is usually complicated by duplication. Therefore this
step is usually guided by heuristics. Two alternative heuristics [Ozsu99] can be
employed during this step. The first alternative is to decompose a global query into
the smallest possible subqueries and the second alternative is to decompose a global
query into the largest possible subqueries. In our work, we assume the subqueries are
generated based on the second heuristic. The reason is that we wish to push as much
processing as possible to the component DBMS so that we could simplify the
optimization at the global level and hopefully could reduce the data transmission
among different sites. Therefore, the objectives of this step are 1) to reduce the
number of subqueries and 2) to reduce the response time of each subquery. The first
thing that needs to be done, when a query is given to the optimizer, is to split it into
subqueries based on data distribution across multiple nodes. Thus the main task of
global query decomposition is to decompose a global query into subqueries so that the
tables involved in each subquery target on one local site.

Then in the join-ordering step, the optimizer tries to come up with a good ordering
of how to combine those joins between subqueries. The join ordering can be
represented as a binary tree, where leaf nodes are the base tables and internal nodes
are join operations. Because we want to utilize the distributed nature of multi-
database system, we try to make this tree as low as possible, which means we hope
the join can be done in parallel as much as possible. In our work, we first build a left-
deep tree using dynamic programming. And then, use some transformation rules to
balance the linear tree to a bushy tree. In both steps, we consider both server
performance and network performance captured by QoS monitor.

Last, we have to decide where to perform the inter-site join – this is referred as join
site selection. In our approach, we implement this step by annotating the binary tree
generated from join ordering step. Each node is annotated by a location of where this

join should be performed. The problem is how to integrate QoS information into these
phases. Table 1 identifies the related QoS parameters factored into each step.

Global query optimization Relevant QoS parameters

Decomposition Server availability
Server load

Inter-site join ordering
Server load
TCP throughput
Network delay

Join site selection
Server load
TCP throughput
Network delay

Table 1. QoS information relevant to global query optimization

We are presently working on enhancing these algorithms by considering the user
preference to provide a differentiate service. For example, for higher priority user, the
algorithm could generate a different plan by accessing different set of data nodes so
that the result set of the query could have more interesting content such as multimedia
data. We could also propose data distribution rules for locating data accessed by
higher priority user to high performance database servers. In addition, the issue of
how to corporate with other server replication, such as the one introduced in the
following section, deserves a careful study.

4. Web Server Replication

A typical approach to improving response time is replication of a service. Replicating
the database servers requires a good deal of synchronization of the copies of the data
and thus it is not always feasible to replicate the databases. Replication of the web
server and associated application servers do not have this overhead and thus this work
focuses on web server replication. Client processes connect through a virtual server
address to an intermediate host that forwards their requests to a replicated web server.
The intermediate host is referred to as a Broker (see Figure 3). The Broker is used to
direct Web traffic to one of a number of web servers. The selection is based on
monitored information from the Web servers and administrative policies on how to
use the monitored information to select a server. Examples of administrative policies
include the following:
• Balanced server performance. Requests are assigned equally to the replicated

Web servers in a round-robin manner or in a weighted manner based on the
measured performance of the different servers. Different kinds of such policies are
described and evaluated in [Salem 00].

• Content. Requests are assigned to Web servers based on the type of request. For
example, a request for dynamic content pages may be assigned to one server and a
request for static content may be assigned to another server. Another example is
that video clips are retrieved from one server while text information is retrieved
from another one. Yet another example is using client host information (e.g., host
load, connection type) to determine the type of Web page that gets sent to the
client.

• User. Requests are assigned to a web server based on the user class as discussed in
Section 2.3. Users who have paid a fee may be designated as premium users and be
assigned to their own server. If the server is in danger of being overloaded, then
premium users may also be assigned to a second server, etc; while non-premium
(i.e., non-paying users) get assigned to other servers.

5. Conclusion

The discussion in this paper shows that different architectures with server duplication
may be adopted for e-commerce applications if the system is designed for a very large
user population. In order to provide a service quality and allowing for different
classes of users with different expectations, it is important to introduce dynamic QoS
management for allocating available resources in the best possible manner. The QoS
management decisions should be made dynamically based on measurements of the
actually available service qualities from the network and the different server
components of the distributed systems. This implies dynamic performance monitoring
and making these measurements available to the QoS management processes.

Two distributed system architectures are considered in the paper. The case of
distributed query processing in an architecture containing a single Web server and e-
commerce application front-end together with a partially replicated database is
considered. Another replicated architecture in which the whole e-commerce
application (including Web server and database back-end) is replicated on different
sites is only discussed without much detail. In our ongoing work, we evaluated the
performance of different architectures and the optimization algorithms that can be
used in these different contexts.

References
[Corn88] D. W. Cornell, P. S. Yu: Site Assignment for Relations and Join Operations in the

Distributed Transaction Processing Environment. ICDE 1988: 100-108
[Daya85] U. Dayal, Query Processing in a Multidatabase System, In Query Processing in

Database Systems 1985: 81-108
[Du95] W. Du, M.-C. Shan, U. Dayal, Reducing Multidatabase Query Response Time by

Tree Balancing. SIGMOD Conference 1995: 293-303
[Evre97] C. Evrendilek, A. Dogac, S. Nural, F. Ozcan, Multidatabase Query Optimization.

Distributed and Parallel Databases 5(1): 77-114 (1997)
[Meng95] W. Meng, and C. Yu, Query Processing in Multidatabase Systems, In Modern

Database Systems: The Object Model, Interoperability, and Beyond, edited by W. Kim,
Addison-Wesley/ACM Press, 1995:551-572

[Ozsu99] M. T. Ozsu, P. Valduriez, Principles of Distributed Database Systems, second
edition, Chapter 15, Prentice-Hall, 1999

[Salem00] M. Mohamed Salem, G.v.Bochmann and J. Wong: "A Scalable Architecture for
QoS Provision in Electronic Commerce Applications, submitted for publication.

[TPCW] TPC-W Benchmark Specification, http://www.tpc.org/wspec.html
[Urha98] T. Urhan, M. J. Franklin, L. Amsaleg: Cost Based Query Scrambling for Initial

Delays. SIGMOD Conference 1998: 130-141
[Ye99] H. Ye, B. Kerhervé and G. v. Bochmann, Quality of service aware distributed query

processing, 10th Intern. Workshop on Database & Expert Systems Applications, Florence,
Italy, 1-3 Sept. 1999, Proc. published by IEEE Computer Society, 1999.

[Ye00] H. Ye, G.v. Bochmann, B. Kerherv, An adaptive cost model for distributed query
processing, UQAM Technical Report 2000-06, May 2000

