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Abstract
Distributed systems are difficult to design because (1) message exchanges between the different 

system components must be foreseen in order to coordinate the actions at the different locations, 
and (2) the varying speed of execution of the different system components, and the varying speed 
of message transmission through the different networks through which the components are 
connected make it very hard to predict in which order these messages could be received. This 
presentation deals with the development of distributed applications, such as communication 
systems, service compositions or workflow applications. It is assumed that first a global 
requirements model is established that makes abstraction from the physical distribution of the 
different system functions. Once the architectural (distributed) structure of the system has been 
selected, this global requirement model must be transformed into a set of local behavior models, 
one for each of the components involved. Each local behavior model is then implemented on a 
separate device, and realizes part of the system functions. It  includes local actions and the 
exchange of messages necessary to coordinate the overall system behavior. 

The presentation will first review several methods for describing global requirements and local 
component behaviors, such as state machines, activity diagrams, Petri nets, BPEL, sequence 
diagrams, etc. Then a new description paradigm based on the concept of collaborations will be 
presented, together with some examples. The second part of the presentation will explain how 
local component behaviors can be derived automatically from a given global requirements model. 
Also the implementation of these behaviors using BPEL software environments for Web Services 
will be discussed. Finally, some novel approach to testing behaviors defined as collaborations will 
be presented and an outlook at possible applications in the context of service compositions, 
workflow modeling, Web Services and Cloud Computing will be discussed. 
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Historical notes (some of my papers)

 1978: meaning of 
“a protocol P provides a service S” 

(Finite State Description of Communication Protocols)

 1980: submodule construction 
(with Philip Merlin)

 1986: protocol derivation (with 
Reinhard Gotzhein)

 2006: service modeling with 
collaborations (with Rolv Braek 
and Humberto Castejon)
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underlying service
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The problem – a figure
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Type of applications
 Communication services

 telephony features (e.g. call waiting)
 teleconference involving many parties 
 Social networking

 Workflows 
 Intra-organization, e.g. banking application, 

manufacturing
 inter-organisations, e.g. supply-chain management
 Different underlying technologies:

 Web Services
 GRID computing - Cloud computing
 multi-core architectures

 Dynamic partner selection: negotiation of QoS – possibly 
involving several exchanges
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The problem 
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices 
 Identify system components
 Define underlying communication service

 Define behavior of system components: 
 Locally performed functions 
 Communication protocol 

 Required messages to be exchanged and order of exchanges
 Coding of message types and parameters
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Issues
 Define

 Global functional 
requirements

 Non-functional 
requirements

 Make high-level 
architectural choices 
 Identify system 

components
 Define underlying 

communication service

 Define behavior of 
system components
 Local functions
 Protocol:

 Required messages 
to be exchanged and 
order of exchanges

 Coding of message 
types and 
parameters

What language / notation to use for 
defining global requirements (dynamic 
behavior)

Architectural choices have strong impact 
on performance

Automatic derivation of component 
behaviors ?   e.g. [Bochmann 2008]

Performance prediction – based on 
component behavior

 Response time, Throughput, Reliability

Choice of middleware platform for inter-
process communication
 E.g. Java RMI, Web Services, etc.
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Different system architectures
 Distributed architectures

 Advantages: concurrency, failure resilience, 
scalability

 Difficulties: communication delays, coordination 
difficulties

 Distribution-concurrency at different levels:
 Several organizations
 Different types of computers (e.g. servers, desk-

tops, hand-held devices, etc.)
 Several CPUs in multi-core computers
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Proposed notations 
for global requirements

 UML Sequence diagrams
 UML Activity diagrams
 UML hierarchical State diagrams
 Use Case Maps
 XPDL (workflow) - BPMN (business process)
 BPEL (Web Services) – Note: defines centralized behavior

 WS-CDL (“choreography”)
 Collaborations – a variant of Activity diagrams (joint 

work with university of Trondheim, Norway) [Castejon 2011]

Question: 
How do they fit with the above issues ?
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Overview of this talk
1. Introduction
2. Formalisms for describing global 

dynamic behaviors
3. Deriving component behaviors

3.1 Distributed workflows
3.2 Strong sequencing between sub-collaborations
3.3 Weak sequencing between sub-collaborations 
3.4 Summary

4. Conclusions
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2.  Describing  
functional requirements

 The functional requirements are usually defined 
through a number of use cases.

 Use cases may be complex and need to be defined 
precisely.

 We consider the following notations for this purpose
 For structural aspects: 

 UML Component diagrams
 UML Collaboration diagrams 

 For the dynamic behavior:
 dynamic collaboration diagrams - a variant of UML Activity or 

State diagrams (formalization: Petri nets)
 Sequence diagrams (only for simple cases)
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Example of an Activity Diagram
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Concepts
 Each Use Case is a scenario

 Actions (Activities) done by actors in some given order
 Actor: Swimlane - we call it component or role
 Order of execution:

 sequence, alternatives, concurrency, arbitrary control flows (can 
be modeled by Petri nets)

 Interruption through priority events (not modeled by Petri nets)

 Abstraction: refinement of activity 
 Data-Flow: Object flow - Question: what type of data is 

exchanged (an extension of control flow)
 Input assertions for input data flow
 Output assertions for output data flow
 Conditions for alternatives
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Petri nets
Defined by Petri in 1960. A net contains 

 places:     , may hold tokens 
 Transitions:   , represent actions that consume 

tokens from their input places and produce 
tokens for their output places. 

 Tokens may contain data.
This diagram shows what happens when one transition is executed (fired):
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Activity Diagram: 
the corresponding Petri net
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Free-choice nets – local choice
no choice

non-free choice

free choice

Component A

Component A

Component B

local choice

Non-local
choice

with conflict place
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Sequence diagrams
 Sequence diagram (or Message Sequence 

Chart - MSC) is a well-known modeling 
paradigm showing a scenario of messages 
exchanged between a certain number of 
system components in some given order.

 Limitation: Normally, only a few of all the 
possible scenarios are shown.

 High-Level MSC can be used to describe the 
composition of MSCs (with weak sequencing 
– see below) 
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Example : a Taxi system
 Three roles (components):

 User
 Taxi
 Manager

 Two use cases:
 Normal: user requests a taxi from the manager, taxi 

assigned, meet, drive, pay
 Street pick-up: user sees a taxi and the taxi stops and 

picks up the user, drive, pay
 Note: We assume that the three parties communicate 

through a specific application running on mobile devices.
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Example: Taxi system (an activity diagram - each activity is a 
collaboration between several roles: Client, Taxi, Manager)

new client C

Request Free

Assign

Meet

Pick-up

Drive

Pay

FreeWithdraw

new taxi T
taxi leaves

client leaves

client 
leaves

T

T

T

T
T
T T

T

T

C

C

C C

M

C

M

M

M

M

M

M : taxi manager

initiating role

terminating 
roles

Off-duty
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Taxi System
Detailed definitions of collaborations

req
C M

Request

meet

Drive

OK

CM

Meet

T
drive

OK

C T

assign

C

Assign

T

assign

M

assign

C T

assign

req free

meet

OK

drivepay

OK

off-duty

Example scenario
(sequence diagram)
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Taxi System : Problematic scenarios

M

assign

C T

assign

req
free

non-local
choice

[Gouda 84] suggests: 
define different priorities

for different roles

M

assign

C T

assign

req free

meet
with-
draw

race
condition

M

assign

C1 T

assign

req
free

C2

pick-up

non-local
Choice

(conflict over taxi)
“implied scenario”:

[Alur 2000] component behaviors 
that realize the normal scenario 

will also give rise to implied scenarios
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Partial order of events
 Lamport [1978] pointed out that in a 

distributed system, there is in general no 
total order of events, only a partial order.
 The events taking place at a given component can be 

totally ordered (assuming sequential execution).
 The reception of a message is after its sending.
 The after-relation is transitive.

a b
c

j

a

e

f

d

i

k

h
g

For example, we have b after a
and c after b; but d and e are 
unrelated (no order defined -
concurrent), also j and i are 
concurrent. d after a by 
transitivity.
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Strong and Weak sequencing
 Normal (strong) sequencing: C1 ; C2

 all actions of C1 must be completed before any 
action of C2 may start.

Weak sequencing (introduced for the High-
Level MSCs) is based on partial order. 

 Weak sequencing: C1 ;w C2
 for each component c, all actions of C1 at c must be 

completed before any action of C2 at c may start.
(only local sequencing is enforced by each component, no 

global sequencing – this often leads to race conditions)



24Gregor v. Bochmann, University of Ottawa

Example of 
strong and weak sequencing

strongly sequenced
(blue after red)

can be enforce by

weakly sequenced
(blue afterw red)

how to enforce ?
(there are often race conditions)

Coordination message
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3. Deriving component behaviors

Do you remember the problem ?
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The problem 
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices 
 Identify system components
 Define underlying communication service

 Define behavior of system components: 
 Locally performed functions 
 Communication protocol 

 Required messages to be exchanged and order of 
exchanges

 Coding of message types and parameters
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3.1 Distributed workflows
 We consider the following situation:

 The global dynamic behavior is defined by an 
Activity diagram (or a similar notation) where 
each activity either represent a local action at a 
single component or a collaboration among 
several components. 

 Each explicit flow relations defines a partial 
order between a terminating actions of one 
activity and an initiating action of other activity.

 Initially: No weak sequencing



28Gregor v. Bochmann, University of Ottawa

An example collaboration
Petri nets are a more simple formalism than Activity Diagrams. 
Therefore it is useful to first look for a general algorithm to derive
component behaviors from global behavior specifications in the form of 
a Petri net. 
There are three components: A, B and C

sub-collab. SA sub-collab. SB

A A

A

A A
B

B

B C

C

CB
B
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Component derivation rule
A B Global view

Component view
A B

send fm(x) to B receive fm(x) from A

x

A B



30Gregor v. Bochmann, University of Ottawa

Example Activity Diagram
Ware-

house

Client

Office

Here all activities are local 
to some component
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Office component

Office
Send

to wareh.

Receive from

wareh.

to Client

Payment 

from Client

If a partial order relation goes from one component to another, then it 
should give rise to a send and receive operation in the respective 
components. 
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Client component

Sent to
office
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3.2. Strong sequencing
between abstract sub-collaborations

Collab. SA Collab. SBs

This strong sequence means: 
all actions of SA must be 
completed before actions of 
SB can start.

The diagram below does not give strong sequencing: e.g. the transition of 
C of collaboration SA may occur after or during collaboration SB.

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C

C

B
B
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Initiating and terminating actions

 initiating action - no action is earlier (according to the 
partial order)

 terminating actions - no action is later 
Strong sequencing SA ;s SB can be enforced 

by ensuring that all terminating actions of 
SA occur before all initiating actions of SB.

Transition C in SA 
is a terminating 
action.

Only after a, b and 
c have a token 
should tokens arrive 
in d and e. 

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C
C

B
B

a

b

c

d

e
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Realizing strong sequence

Collab. 
SA

A

B

C

Collab. 
SB

A

B B

located at some 
given component

centralized
realization

Collab. 
SA

A

B

C

Collab. 
SB

A

B B

Distributed Realization 
(first described in [Bochmann 86])

then apply derivation rule

A

B

B

A

C

Two ways to coordinate 
the terminating and 
initiating actions: 
centralized
and distributed

B

B
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Choice propagation

Collab. SC

A

AA B

B

C

Component B should know which alternative 
was chosen 
(include parameter xi in flow message) 

x1

x2

Here the choice is done by 
component A (local choice)
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3.3. Component design 
for weak sequencing

 The component design approach described 
above was proposed in 1986 (see [Boch 86, Gotz 90])

 This was extended in 2008 to deal with 
weak sequencing [Bochmann 2008].   

This new approach uses the ideas above 
and adds the following:

 Selective consumption of received messages
 Received message enter a pool. The component fetches (or 

waits for) a given message when it is ready to consume it (like 
the Petri net models, see also [Mooij 2005])

 An additional type of message: choice indication 
message

 Additional message parameters, e.g. loop counters 
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Need for 
choice indication message (cim)

With weak sequencing, each component must know when the current sub-
collaboration is locally complete in order to be ready to participate (or 
initiate) the next sub-collaboration.
• This is difficult for component C at the end of sub-collaboration B (above) 
if the upper branch was chosen (no message received). 

Therefore we propose a choice indication message
( from A to C in this case ) 

A

B

sub-collab. SA sub-collab. SB

A

A

A
B

B C
C

B
B

a

b

c

d

e

C

;w

;w
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Need for loop counters
With weak sequencing, a message referring to the 

termination of a loop may arrive before a message 
referring to the last loop execution. See example:

R1 R2 R3

b(u2)

a(u1)

a(u2)
b(u1)

c(v2)

R1
a

R2 R3

b

U
R1 R2 R3

V

c
d

e f

Note: Nakata [1998] proposed to include in each coordination message
an abbreviation of the complete execution history.
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3.4 Summary
1. Define requirements in the 

form of a collaboration model
2. Architectural choices: allocate 

collaboration roles to different 
system components

3. Derive component behavior 
specifications (automated)

4. Evaluate performance and 
other non-functional 
requirements (revise 
architectural choices, if 
necessary)

5. Use automated tools to derive 
implementations of 
component behaviors.

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation
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Algorithm 
for deriving component behaviors

 Step 1: Calculate starting, terminating and 
participating roles for each sub-collaboration 

 Step 2: Use architectural choices to 
determine starting, terminating and 
participating components.

 Step 3: For each component, use a 
recursively defined transformation function
to derive the behavior of the component 
from the global requirements

 Projection onto the given component
 Additional flow and choice indication messages [Bochmann 

2008]



42Gregor v. Bochmann, University of Ottawa

Historical comments
 Initially, only strong sequencing, choice and 

concurrency operators, plus sub-behaviors 
[Bochmann and Gotzhein, 1986 and Gotzhein and Bochmann 1990]

 Main conclusions:
 Strong sequencing requires flow messages; need to identify 

initiating and terminating roles
 Choice propagation: need for unique message parameters

 More powerful languages
 LOTOS [Kant 1996]

 recursive process call:  >> ; disruption operator:  [>      
(impossibility of distributed implementation)

 Language with recursion and concurrency [Nakata 1998]
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… for Petri nets

 Restriction: free-choice PN and “local choice”
(as discussed above) [Kahlouche et al. 1996]

 general Petri nets [Yamaguchi et al. 2007]

 It is quite complex (distributed choice of transition to be executed, 
depending on tokens in places associated with different sites)

 Note: These methods can be easily extended to Colored Petri 
nets (or Predicate Transition nets): exchanged messages now contain 
tokens with data parameters

 Petri nets with registers (see next slide) 
[Yamaguchi et al. 2003]
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… for Petri net with registers
The Petri net has
 Local registers (e.g. R, R’)

A transition has
 External input or output 

interaction (e.g. G)
 Enabling predicate
 Update operations on 

registers

• The component behavior includes messages to exchange register 
values for evaluating predicates and updating registers. 
• The number of required messages depends strongly on the 
distribution of the registers over the different components. –
Optimization problem.
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Remaining problems
 Support complex temporal order relationships 

with weak sequencing
 Example: 

 Data flow from non-terminating components

 Concurrent sessions and dynamic selection of 
collaboration partners

 Proof of correctness of derivation algorithm
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Conclusions (i)
 Distributed system design in several steps:

1. Requirements model: global behavior in terms of certain activities 
(collaborations) and their temporal ordering.

2. Architectural choices: Based on architectural and non-functional 
requirements, allocate collaboration roles to system components

3. Deriving component behavior (can be automated)
 Proposed modeling language for requirements: 

 Activity diagrams where an activity may be a collaboration between 
several roles

 Identify roles for each activity (participating, starting, terminating)
 Hierarchical description of requirements in terms of sub-activities 

(sub-collaborations)
 Can be applied to other modeling languages:

 Hierachical State diagrams (UML)
 Use Case Maps (standardized  by ITU)
 BPEL (business process execution language – for Web Services)
 XPDL (Workflow Management Coalition) and BPMN (OMG)



47Gregor v. Bochmann, University of Ottawa

Conclusions (ii)

 Many fields of application:
 service composition for communication services
 workflows
 e-commerce applications - Web Services
 Grid and Cloud computing
 Multi-core computer architectures

 Further work:
 proving correctness of derivation algorithm
 tools for deriving component behavior specifications
 performance modeling for composed collaborations
 “agile dynamic architectures”
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Thanks !

Any questions ??

For copy of slides, see

http://www.site.uottawa.ca/~bochmann/talks/Deriving.ppt 


