
1Gregor v. Bochmann, University of Ottawa

Plenary talk at CCECE 2012
Montréal, May 1st, 2012

Gregor v. Bochmann
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa
Canada

http://www.site.uottawa.ca/~bochmann/talks/Deriving.ppt

Distributed System Design from
Global Requirements

2Gregor v. Bochmann, University of Ottawa

Abstract
Distributed systems are difficult to design because (1) message exchanges between the different

system components must be foreseen in order to coordinate the actions at the different locations,
and (2) the varying speed of execution of the different system components, and the varying speed
of message transmission through the different networks through which the components are
connected make it very hard to predict in which order these messages could be received. This
presentation deals with the development of distributed applications, such as communication
systems, service compositions or workflow applications. It is assumed that first a global
requirements model is established that makes abstraction from the physical distribution of the
different system functions. Once the architectural (distributed) structure of the system has been
selected, this global requirement model must be transformed into a set of local behavior models,
one for each of the components involved. Each local behavior model is then implemented on a
separate device, and realizes part of the system functions. It includes local actions and the
exchange of messages necessary to coordinate the overall system behavior.

The presentation will first review several methods for describing global requirements and local
component behaviors, such as state machines, activity diagrams, Petri nets, BPEL, sequence
diagrams, etc. Then a new description paradigm based on the concept of collaborations will be
presented, together with some examples. The second part of the presentation will explain how
local component behaviors can be derived automatically from a given global requirements model.
Also the implementation of these behaviors using BPEL software environments for Web Services
will be discussed. Finally, some novel approach to testing behaviors defined as collaborations will
be presented and an outlook at possible applications in the context of service compositions,
workflow modeling, Web Services and Cloud Computing will be discussed.

3Gregor v. Bochmann, University of Ottawa

Historical notes (some of my papers)

 1978: meaning of
“a protocol P provides a service S”

(Finite State Description of Communication Protocols)

 1980: submodule construction
(with Philip Merlin)

 1986: protocol derivation (with
Reinhard Gotzhein)

 2006: service modeling with
collaborations (with Rolv Braek
and Humberto Castejon)

communication
service

Site A Site B

underlying service

protoc.
entity

protoc.
entity

Site A Site B

S

P P

4Gregor v. Bochmann, University of Ottawa

The problem – a figure
 Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

5Gregor v. Bochmann, University of Ottawa

Type of applications
 Communication services

 telephony features (e.g. call waiting)
 teleconference involving many parties
 Social networking

 Workflows
 Intra-organization, e.g. banking application,

manufacturing
 inter-organisations, e.g. supply-chain management
 Different underlying technologies:

 Web Services
 GRID computing - Cloud computing
 multi-core architectures

 Dynamic partner selection: negotiation of QoS – possibly
involving several exchanges

6Gregor v. Bochmann, University of Ottawa

The problem
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices
 Identify system components
 Define underlying communication service

 Define behavior of system components:
 Locally performed functions
 Communication protocol

 Required messages to be exchanged and order of exchanges
 Coding of message types and parameters

7Gregor v. Bochmann, University of Ottawa

Issues
 Define

 Global functional
requirements

 Non-functional
requirements

 Make high-level
architectural choices
 Identify system

components
 Define underlying

communication service

 Define behavior of
system components
 Local functions
 Protocol:

 Required messages
to be exchanged and
order of exchanges

 Coding of message
types and
parameters

What language / notation to use for
defining global requirements (dynamic
behavior)

Architectural choices have strong impact
on performance

Automatic derivation of component
behaviors ? e.g. [Bochmann 2008]

Performance prediction – based on
component behavior

 Response time, Throughput, Reliability

Choice of middleware platform for inter-
process communication
 E.g. Java RMI, Web Services, etc.

8Gregor v. Bochmann, University of Ottawa

Different system architectures
 Distributed architectures

 Advantages: concurrency, failure resilience,
scalability

 Difficulties: communication delays, coordination
difficulties

 Distribution-concurrency at different levels:
 Several organizations
 Different types of computers (e.g. servers, desk-

tops, hand-held devices, etc.)
 Several CPUs in multi-core computers

9Gregor v. Bochmann, University of Ottawa

Proposed notations
for global requirements

 UML Sequence diagrams
 UML Activity diagrams
 UML hierarchical State diagrams
 Use Case Maps
 XPDL (workflow) - BPMN (business process)
 BPEL (Web Services) – Note: defines centralized behavior

 WS-CDL (“choreography”)
 Collaborations – a variant of Activity diagrams (joint

work with university of Trondheim, Norway) [Castejon 2011]

Question:
How do they fit with the above issues ?

10Gregor v. Bochmann, University of Ottawa

Overview of this talk
1. Introduction
2. Formalisms for describing global

dynamic behaviors
3. Deriving component behaviors

3.1 Distributed workflows
3.2 Strong sequencing between sub-collaborations
3.3 Weak sequencing between sub-collaborations
3.4 Summary

4. Conclusions

11Gregor v. Bochmann, University of Ottawa

2. Describing
functional requirements

 The functional requirements are usually defined
through a number of use cases.

 Use cases may be complex and need to be defined
precisely.

 We consider the following notations for this purpose
 For structural aspects:

 UML Component diagrams
 UML Collaboration diagrams

 For the dynamic behavior:
 dynamic collaboration diagrams - a variant of UML Activity or

State diagrams (formalization: Petri nets)
 Sequence diagrams (only for simple cases)

12Gregor v. Bochmann, University of Ottawa

Example of an Activity Diagram

13Gregor v. Bochmann, University of Ottawa

Concepts
 Each Use Case is a scenario

 Actions (Activities) done by actors in some given order
 Actor: Swimlane - we call it component or role
 Order of execution:

 sequence, alternatives, concurrency, arbitrary control flows (can
be modeled by Petri nets)

 Interruption through priority events (not modeled by Petri nets)

 Abstraction: refinement of activity
 Data-Flow: Object flow - Question: what type of data is

exchanged (an extension of control flow)
 Input assertions for input data flow
 Output assertions for output data flow
 Conditions for alternatives

14Gregor v. Bochmann, University of Ottawa

Petri nets
Defined by Petri in 1960. A net contains

 places: , may hold tokens
 Transitions: , represent actions that consume

tokens from their input places and produce
tokens for their output places.

 Tokens may contain data.
This diagram shows what happens when one transition is executed (fired):

15Gregor v. Bochmann, University of Ottawa

Activity Diagram:
the corresponding Petri net

16Gregor v. Bochmann, University of Ottawa

Free-choice nets – local choice
no choice

non-free choice

free choice

Component A

Component A

Component B

local choice

Non-local
choice

with conflict place

17Gregor v. Bochmann, University of Ottawa

Sequence diagrams
 Sequence diagram (or Message Sequence

Chart - MSC) is a well-known modeling
paradigm showing a scenario of messages
exchanged between a certain number of
system components in some given order.

 Limitation: Normally, only a few of all the
possible scenarios are shown.

 High-Level MSC can be used to describe the
composition of MSCs (with weak sequencing
– see below)

18Gregor v. Bochmann, University of Ottawa

Example : a Taxi system
 Three roles (components):

 User
 Taxi
 Manager

 Two use cases:
 Normal: user requests a taxi from the manager, taxi

assigned, meet, drive, pay
 Street pick-up: user sees a taxi and the taxi stops and

picks up the user, drive, pay
 Note: We assume that the three parties communicate

through a specific application running on mobile devices.

19Gregor v. Bochmann, University of Ottawa

Example: Taxi system (an activity diagram - each activity is a
collaboration between several roles: Client, Taxi, Manager)

new client C

Request Free

Assign

Meet

Pick-up

Drive

Pay

FreeWithdraw

new taxi T
taxi leaves

client leaves

client
leaves

T

T

T

T
T
T T

T

T

C

C

C C

M

C

M

M

M

M

M

M : taxi manager

initiating role

terminating
roles

Off-duty

20Gregor v. Bochmann, University of Ottawa

Taxi System
Detailed definitions of collaborations

req
C M

Request

meet

Drive

OK

CM

Meet

T
drive

OK

C T

assign

C

Assign

T

assign

M

assign

C T

assign

req free

meet

OK

drivepay

OK

off-duty

Example scenario
(sequence diagram)

21Gregor v. Bochmann, University of Ottawa

Taxi System : Problematic scenarios

M

assign

C T

assign

req
free

non-local
choice

[Gouda 84] suggests:
define different priorities

for different roles

M

assign

C T

assign

req free

meet
with-
draw

race
condition

M

assign

C1 T

assign

req
free

C2

pick-up

non-local
Choice

(conflict over taxi)
“implied scenario”:

[Alur 2000] component behaviors
that realize the normal scenario

will also give rise to implied scenarios

22Gregor v. Bochmann, University of Ottawa

Partial order of events
 Lamport [1978] pointed out that in a

distributed system, there is in general no
total order of events, only a partial order.
 The events taking place at a given component can be

totally ordered (assuming sequential execution).
 The reception of a message is after its sending.
 The after-relation is transitive.

a b
c

j

a

e

f

d

i

k

h
g

For example, we have b after a
and c after b; but d and e are
unrelated (no order defined -
concurrent), also j and i are
concurrent. d after a by
transitivity.

23Gregor v. Bochmann, University of Ottawa

Strong and Weak sequencing
 Normal (strong) sequencing: C1 ; C2

 all actions of C1 must be completed before any
action of C2 may start.

Weak sequencing (introduced for the High-
Level MSCs) is based on partial order.

 Weak sequencing: C1 ;w C2
 for each component c, all actions of C1 at c must be

completed before any action of C2 at c may start.
(only local sequencing is enforced by each component, no

global sequencing – this often leads to race conditions)

24Gregor v. Bochmann, University of Ottawa

Example of
strong and weak sequencing

strongly sequenced
(blue after red)

can be enforce by

weakly sequenced
(blue afterw red)

how to enforce ?
(there are often race conditions)

Coordination message

25Gregor v. Bochmann, University of Ottawa

3. Deriving component behaviors

Do you remember the problem ?

26Gregor v. Bochmann, University of Ottawa

The problem
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices
 Identify system components
 Define underlying communication service

 Define behavior of system components:
 Locally performed functions
 Communication protocol

 Required messages to be exchanged and order of
exchanges

 Coding of message types and parameters

27Gregor v. Bochmann, University of Ottawa

3.1 Distributed workflows
 We consider the following situation:

 The global dynamic behavior is defined by an
Activity diagram (or a similar notation) where
each activity either represent a local action at a
single component or a collaboration among
several components.

 Each explicit flow relations defines a partial
order between a terminating actions of one
activity and an initiating action of other activity.

 Initially: No weak sequencing

28Gregor v. Bochmann, University of Ottawa

An example collaboration
Petri nets are a more simple formalism than Activity Diagrams.
Therefore it is useful to first look for a general algorithm to derive
component behaviors from global behavior specifications in the form of
a Petri net.
There are three components: A, B and C

sub-collab. SA sub-collab. SB

A A

A

A A
B

B

B C

C

CB
B

29Gregor v. Bochmann, University of Ottawa

Component derivation rule
A B Global view

Component view
A B

send fm(x) to B receive fm(x) from A

x

A B

30Gregor v. Bochmann, University of Ottawa

Example Activity Diagram
Ware-

house

Client

Office

Here all activities are local
to some component

31Gregor v. Bochmann, University of Ottawa

Office component

Office
Send

to wareh.

Receive from

wareh.

to Client

Payment

from Client

If a partial order relation goes from one component to another, then it
should give rise to a send and receive operation in the respective
components.

32Gregor v. Bochmann, University of Ottawa

Client component

Sent to
office

33Gregor v. Bochmann, University of Ottawa

3.2. Strong sequencing
between abstract sub-collaborations

Collab. SA Collab. SBs

This strong sequence means:
all actions of SA must be
completed before actions of
SB can start.

The diagram below does not give strong sequencing: e.g. the transition of
C of collaboration SA may occur after or during collaboration SB.

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C

C

B
B

34Gregor v. Bochmann, University of Ottawa

Initiating and terminating actions

 initiating action - no action is earlier (according to the
partial order)

 terminating actions - no action is later
Strong sequencing SA ;s SB can be enforced

by ensuring that all terminating actions of
SA occur before all initiating actions of SB.

Transition C in SA
is a terminating
action.

Only after a, b and
c have a token
should tokens arrive
in d and e.

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C
C

B
B

a

b

c

d

e

35Gregor v. Bochmann, University of Ottawa

Realizing strong sequence

Collab.
SA

A

B

C

Collab.
SB

A

B B

located at some
given component

centralized
realization

Collab.
SA

A

B

C

Collab.
SB

A

B B

Distributed Realization
(first described in [Bochmann 86])

then apply derivation rule

A

B

B

A

C

Two ways to coordinate
the terminating and
initiating actions:
centralized
and distributed

B

B

36Gregor v. Bochmann, University of Ottawa

Choice propagation

Collab. SC

A

AA B

B

C

Component B should know which alternative
was chosen
(include parameter xi in flow message)

x1

x2

Here the choice is done by
component A (local choice)

37Gregor v. Bochmann, University of Ottawa

3.3. Component design
for weak sequencing

 The component design approach described
above was proposed in 1986 (see [Boch 86, Gotz 90])

 This was extended in 2008 to deal with
weak sequencing [Bochmann 2008].

This new approach uses the ideas above
and adds the following:

 Selective consumption of received messages
 Received message enter a pool. The component fetches (or

waits for) a given message when it is ready to consume it (like
the Petri net models, see also [Mooij 2005])

 An additional type of message: choice indication
message

 Additional message parameters, e.g. loop counters

38Gregor v. Bochmann, University of Ottawa

Need for
choice indication message (cim)

With weak sequencing, each component must know when the current sub-
collaboration is locally complete in order to be ready to participate (or
initiate) the next sub-collaboration.
• This is difficult for component C at the end of sub-collaboration B (above)
if the upper branch was chosen (no message received).

Therefore we propose a choice indication message
(from A to C in this case)

A

B

sub-collab. SA sub-collab. SB

A

A

A
B

B C
C

B
B

a

b

c

d

e

C

;w

;w

39Gregor v. Bochmann, University of Ottawa

Need for loop counters
With weak sequencing, a message referring to the

termination of a loop may arrive before a message
referring to the last loop execution. See example:

R1 R2 R3

b(u2)

a(u1)

a(u2)
b(u1)

c(v2)

R1
a

R2 R3

b

U
R1 R2 R3

V

c
d

e f

Note: Nakata [1998] proposed to include in each coordination message
an abbreviation of the complete execution history.

40Gregor v. Bochmann, University of Ottawa

3.4 Summary
1. Define requirements in the

form of a collaboration model
2. Architectural choices: allocate

collaboration roles to different
system components

3. Derive component behavior
specifications (automated)

4. Evaluate performance and
other non-functional
requirements (revise
architectural choices, if
necessary)

5. Use automated tools to derive
implementations of
component behaviors.

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation

41Gregor v. Bochmann, University of Ottawa

Algorithm
for deriving component behaviors

 Step 1: Calculate starting, terminating and
participating roles for each sub-collaboration

 Step 2: Use architectural choices to
determine starting, terminating and
participating components.

 Step 3: For each component, use a
recursively defined transformation function
to derive the behavior of the component
from the global requirements

 Projection onto the given component
 Additional flow and choice indication messages [Bochmann

2008]

42Gregor v. Bochmann, University of Ottawa

Historical comments
 Initially, only strong sequencing, choice and

concurrency operators, plus sub-behaviors
[Bochmann and Gotzhein, 1986 and Gotzhein and Bochmann 1990]

 Main conclusions:
 Strong sequencing requires flow messages; need to identify

initiating and terminating roles
 Choice propagation: need for unique message parameters

 More powerful languages
 LOTOS [Kant 1996]

 recursive process call: >> ; disruption operator: [>
(impossibility of distributed implementation)

 Language with recursion and concurrency [Nakata 1998]

43Gregor v. Bochmann, University of Ottawa

… for Petri nets

 Restriction: free-choice PN and “local choice”
(as discussed above) [Kahlouche et al. 1996]

 general Petri nets [Yamaguchi et al. 2007]

 It is quite complex (distributed choice of transition to be executed,
depending on tokens in places associated with different sites)

 Note: These methods can be easily extended to Colored Petri
nets (or Predicate Transition nets): exchanged messages now contain
tokens with data parameters

 Petri nets with registers (see next slide)
[Yamaguchi et al. 2003]

44Gregor v. Bochmann, University of Ottawa

… for Petri net with registers
The Petri net has
 Local registers (e.g. R, R’)

A transition has
 External input or output

interaction (e.g. G)
 Enabling predicate
 Update operations on

registers

• The component behavior includes messages to exchange register
values for evaluating predicates and updating registers.
• The number of required messages depends strongly on the
distribution of the registers over the different components. –
Optimization problem.

45Gregor v. Bochmann, University of Ottawa

Remaining problems
 Support complex temporal order relationships

with weak sequencing
 Example:

 Data flow from non-terminating components

 Concurrent sessions and dynamic selection of
collaboration partners

 Proof of correctness of derivation algorithm

46Gregor v. Bochmann, University of Ottawa

Conclusions (i)
 Distributed system design in several steps:

1. Requirements model: global behavior in terms of certain activities
(collaborations) and their temporal ordering.

2. Architectural choices: Based on architectural and non-functional
requirements, allocate collaboration roles to system components

3. Deriving component behavior (can be automated)
 Proposed modeling language for requirements:

 Activity diagrams where an activity may be a collaboration between
several roles

 Identify roles for each activity (participating, starting, terminating)
 Hierarchical description of requirements in terms of sub-activities

(sub-collaborations)
 Can be applied to other modeling languages:

 Hierachical State diagrams (UML)
 Use Case Maps (standardized by ITU)
 BPEL (business process execution language – for Web Services)
 XPDL (Workflow Management Coalition) and BPMN (OMG)

47Gregor v. Bochmann, University of Ottawa

Conclusions (ii)

 Many fields of application:
 service composition for communication services
 workflows
 e-commerce applications - Web Services
 Grid and Cloud computing
 Multi-core computer architectures

 Further work:
 proving correctness of derivation algorithm
 tools for deriving component behavior specifications
 performance modeling for composed collaborations
 “agile dynamic architectures”

48Gregor v. Bochmann, University of Ottawa

References
 [Alur 2000] Alur, Rajeev, Etessami, Kousha, & Yannakakis, Mihalis. 2000. Inference of message sequence charts.

Pages 304–313 of: 22nd International Conference on Software Engineering (ICSE’00).
 [Boch 86g] G. v. Bochmann and R. Gotzhein, Deriving protocol specifications from service specifications, Proc. ACM

SIGCOMM Symposium, 1986, pp. 148-156.
 [Bochmann 2008] G. v. Bochmann, Deriving component designs from global requirements, Proc. Intern. Workshop on

Model Based Architecting and Construction of Embedded Systems (ACES), Toulouse, Sept. 2008.
 [Castejon 2007] H. Castejón, R. Bræk, G.v. Bochmann, Realizability of Collaboration-based Service Specifications,

Proceedings of the 14th Asia-Pacific Soft. Eng. Conf. (APSEC'07), IEEE Computer Society Press, pp. 73-80, 2007.
 [Castejon 2011] H. N. Castejòn, G. v. Bochmann and R. Braek, On the realizability of collaborative services, Journal of

Software and Systems Modeling, Vol. 10 (12 October 2011), pp. 1-21.
 [Gotz 90a] R. Gotzhein and G. v. Bochmann, Deriving protocol specifications from service specifications including

parameters, ACM Transactions on Computer Systems, Vol.8, No.4, 1990, pp.255-283.
 [Goud 84] M. G. Gouda and Y.-T. Yu, Synthesis of communicating Finite State Machines with guaranteed progress,

IEEE Trans on Communications, vol. Com-32, No. 7, July 1984, pp. 779-788.
 [Lamport 1978] L. Lamport, "Time, clocks and the ordering of events in a distributed system", Comm. ACM, 21, 7, July,

1978, pp. 558-565.
 [Kant 96a] C. Kant, T. Higashino and G. v. Bochmann, Deriving protocol specifications from service specifications

written in LOTOS, Distributed Computing, Vol. 10, No. 1, 1996, pp.29-47.
 [Mouij 2005] A. J. Mooij, N. Goga and J. Romijn, "Non-local choice and beyond: Intricacies of MSC choice nodes", Proc.

Intl. Conf. on Fundamental Approaches to Soft. Eng. (FASE'05), LNCS, 3442, Springer, 2005.
 [Nakata 98] A. Nakata, T. Higashino and K. Taniguchi, "Protocol synthesis from context-free processes using event

structures", Proc. 5th Intl. Conf. on Real-Time Computing Systems and Applications (RTCSA'98), Hiroshima, Japan,
IEEE Comp. Soc. Press, 1998, pp.173-180.

 [Sanders 05] R. T. Sanders, R. Bræk, G. v. Bochmann and D. Amyot, "Service discovery and component reuse with
semantic interfaces", Proc. 12th Intl. SDL Forum, Grimstad, Norway, LNCS, vol. 3530, Springer, 2005.

 [Yama 03a] H. Yamaguchi, K. El-Fakih, G. v. Bochmann and T. Higashino, Protocol synthesis and re-synthesis with
optimal allocation of resources based on extended Petri nets., Distributed Computing, Vol. 16, 1 (March 2003), pp. 21-
36.

 [Yama 07] H. Yamaguchi, K. El-Fakih, G. v. Bochmann and T. Higashino, Deriving protocol specifications from service
specifications written as Predicate/Transition-Nets, Computer Networks, 2007, vol. 51, no1, pp. 258-284

49Gregor v. Bochmann, University of Ottawa

Thanks !

Any questions ??

For copy of slides, see

http://www.site.uottawa.ca/~bochmann/talks/Deriving.ppt

