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Abstract—Nowadays, extended state machines are prominent requirements specification techniques due to 

their capabilities of modeling complex systems in a compact way. These machines extend the standard state 

machines with variables and have transitions guarded by enabling predicates and may include variable update 

statements. Given a system modeled as an extended state machine, with possibly infinite state space and some 

non-controllable (parameterized) interactions, a pruning procedure is proposed to symbolically derive a maximal 

sub-machine of the original system that satisfies certain conditions; namely, some safeness and absence of un-

desirable deadlocks which could be produced during pruning. In addition, the user may specify, as predicates 

associated with states, some general goal assertions that should be preserved in the obtained sub-machine. Fur-

ther, one may also specify some specific requirements such as the elimination of certain undesirable deadlocks 

at states, or fail states that should never be reached. Application examples are given considering deadlock avoid-

ance and loops including infinite loops over non-controllable interactions showing that the procedure may not 

terminate. In addition, the procedure is applied for finding a controller of a system to be controlled. The approach 

generalizes existing work in respect to the considered extended machine model and the possibility of user defined 

control objectives written as assertions at states. 

Index Terms— Requirements/Specifications, component design and refinement, discrete event control systems, extended state 

machines, submodule construction and automatic derivation of a component behavior. 

——————————      —————————— 

1 INTRODUCTION

 
tate machines are often used for modeling the dynamic be-

havior of reactive systems that interact with their environment. 

The purpose of such a model is two-fold: (1) to provide a blue-

print for the implementation of the system, and (2) to define the 

set of possible interaction sequences, also called traces, that 

could occur when the system is executed. For the comparison of 

the behavior of an implementation with the behavior specified by 

the requirement model, one normally distinguishes two con-

cerns: (a) trace inclusion – are all traces performed by the imple-

mentation included in the allowed set of traces specified by the 

model? - and (b) absence of deadlocks, and the question whether 

all specified traces can be realized by the implementation (trace 

equivalence). We note that trace equivalence is often not manda-

tory.  

In this paper we do not deal with simple state machines, but 

with extended state machines which are state machine models 

extended with additional state variables of arbitrary type and in-

teractions that may have parameters. In this context, a major state 

(or simply called a state) corresponds to the state of an extended 

state machine – it is associated with many (possibly infinitely 

many) concrete states. A concrete state consists of a major state 

and a particular valuation of the machine state variables. A tran-

sition not only defines a starting and a destination (major) state 

and the involved interaction, but also includes: 

 A predicate, called guard, that must be True for the 

transition to be executable. It depends on the values of 

the state variables and parameters of the interaction. 
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 An action to be performed when the transition is exe-

cuted. It updates the values of the variables (depending 

on the previous values and the interaction parameters). 

Through the presence of these extensions, the power of ex-

pression of these extended state machines is equivalent to the 

power of programming languages, and therefore many questions 

concerning their properties are undecidable (in contrast to simple 

finite state machines for which all interesting questions are de-

cidable). Examples of commercially used specification tech-

niques that employ extended state models include the UML state 

diagrams, Statecharts, and the Specification Description Lan-

guage SDL.  

In this paper, we make abstraction from input and output and 

assume that a state machine communicates with another machine 

(or the environment) through rendezvous communication with 

interaction interleaving. That is, both machines may perform a 

transition with a given common interaction when both machines 

have an enabled transition for that interaction from their current 

state. However, we consider the possibility that some interactions 

are non-controllable, that is, they are supposed to possibly occur 

at certain (or all) states of the machine and they must be accepted 

at these states, as for instance certain interactions coming from 

the environment. Having some interactions as non-controllable 

can be due to various reasons, including limited visibility of the 

environment. 

One way for refining an extended state machine is the con-

struction of a refined sub-machine that is obtained from the orig-

inal machine by reducing the possible transitions. We assume 

that the additional constraints on the transitions should be such 

that some user-defined pruning requirements or goals should be 

satisfied. These requirements restrict the original machine by in-

troducing stronger guards on transitions, and thus may lead to 

pruning certain major states and transitions as they become inac-

cessible from the initial state. In other words, for a major state of 

the original machine, the designer may specify certain goals that 

identify the corresponding concrete states that are undesirable at 

the state and thus should become inaccessible in the refined ma-

chine. In our case, these goals are introduced by the user as sym-

bolic assertions at major states of the original machine and thus 

these assertions are not part nor affect the execution of this ma-

chine. In fact, a goal assertion for a particular major state repre-

sents a property of the variable assignment at this state that 

should hold at this state, but which will not necessarily hold dur-

ing the execution of the machine. By construction, a refined sub-

machine satisfies the trace inclusion property in comparison with 

the original machine. In fact, an assertion at a (major) state ini-

tially splits its corresponding concrete states into bad (or unde-

sirable) and OK (or Required , i.e., not bad, but desirable) states 

depending whether the concrete state satisfies the given pruning 

requirement, specified as an assertion, at the state or not. How-

ever, one of the difficulties that often occurs during the refine-

ment process is that some of the concrete states that are initially 

considered as OK states become undesirable because they may 

lead to other bad states, and thus pruning has to continue to make 

such states inaccessible too. This is not a trivial task as some in-

teractions of the machine are non-controllable. 

 Main contribution: The main contribution of this paper is the 

presentation of a symbolic pruning procedure for extended state 

machines which can be used to build, from a given (possibly in-

finite) extended state machine M (over both controllable and 

non-controllable parametrized interactions), a maximal sub-ma-

chine M that satisfies certain given pruning requirements, also 

called goals. These requirements are defined by the goal asser-

tions, depending on the local variables of the machine, associated 

with certain major states of M. Whenever the machine reaches 

one of these states, the associated goal should be True.  Thus, 

concrete states at major states that do not satisfy the associated 

goal can be regarded as undesirable and should become inacces-

sible from the initial concrete state through the pruning process. 

Besides general goals, one can define specific types of goals, 

such as defining a  major state as Fail state, which means that it 

should never be reached (by defining the associated assertion to 

be False), or making the concrete states for which there is an un-

desired deadlock inaccessible. An application example demon-

strating the usefulness of introducing user-defined assertions is 

provided in Section 3.4, and many other simple examples are 

provided in Section 4.5 to demonstrate certain situations related 

to loops; for instance show that the pruning procedure may not 

terminate due to loops over non-controllable interactions.  Alt-

hough we do not deal with liveness conditions in this paper, yet 

in Section 4.5.2, we informally discuss how certain ideas of the 

pruning procedure can be adapted for dealing with the problem 

of liveness conditions, especially loop termination.  

We note that the pruning procedure ensures that the pruning 

process does not introduce any new undesirable deadlocks, alt-

hough the system behavior may include some so-called final or 

accepting (major) states in which no further progress is expected. 

One application area where such pruning procedures are 

used regularly is the derivation of controllers for discrete-event 

systems [1] and submodule construction [2], also called “The un-

known component problem” [3]. The most simple system archi-

tecture for controller derivation is shown in Fig. 1(a). The behav-

ior of the plant A is given in the form of a state machine, and the 

behavior of the controller (component B) is to be found such that 

certain states of the plant - which are undesirable - are never 

reached. These undesirable states, also called Fail states, are de-

fined by the control objective. The controller communicates with 

the plant through rendezvous interactions through the interfaces 

IAB and IABS. The interactions over the latter interface also involve 

the system environment named hereafter S. The interactions of 

the controller are classified into controllable and non-controlla-

ble interactions. The former can be prevented from happening by 

the initiative of the controller, while the latter must be accepted 

by the controller when they occur. The control objective, which 

should be satisfied by the design of the controller, contains two 

parts: 

1. A subset of the states of the plant, called Fail 

states, that should never be reached. 

2. Constraints on the order of the interactions visible 

by the environment. Note: This constraint is called 

specification in the case of submodule construc-

tions (see below).  
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Fig.1. Architectures for controller derivation (submodule construction) 

 

A more general architecture for controller derivation is 

shown in Fig. 1(b). Here there are additional interfaces IAS and 

IBS for direct interaction with the environment S for the plant and 

the controller, respectively. The most important difference with 

Fig. 1(a) is that here the interactions at the interface IAS are not 

observable by the controller, and therefore also non-controllable. 

Therefore the controller must “play safe”, that is, its behavior 

must ensure the control objectives for all possible cases of inter-

actions that may occur at the IAS interface. This problem is the 

same as submodule construction [2-3] where the behavior of (the 

known) component A is given, as well as the desired behavior S 

of the system (called specification in submodule construction and 

defined over the interactions at the interfaces IAS , IABS and IBS, 

which are visible by the environment), and a suitable behavior of 

component B (unknown component or desired solution) is to be 

found such that the combined behavior of components A and B 

satisfies the requirements defined by the desired system behavior 

S. According to Fig. 1(b), for component B, interactions IBS , IAB, 

and IABS are observable and some of them could be non-control-

lable.  

Solutions to the submodule and supervisory control prob-

lems are given for systems modeled as Labeled Transition Sys-

tems (LTSs) [1-2], [4], CCS or CSP [5], Mealy FSMs [6], autom-

ata [7-10], etc. Application areas include in addition to control 

and protocol/logic synthesis and derivation of protocol convert-

ers [7], [11-12] modular connectors to solve interface mis-

matches [13], assumptions for software component verification 

[14], test cases for embedded FSM components [15-16], etc. 

 Second contribution: We show how the algorithm for 

controller derivation or submodule construction for finite state 

machines can be extended to extended state machines with pa-

rameterized interactions.  In this case, the goal assertions men-

tioned above may be useful to define the control objectives (e.g. 

that certain states of the plant should never be reached). We con-

sider the general architecture of Fig. 1(b) with rendezvous com-

munication and interaction interleaving where some interactions 

may not be controllable or visible by the controller. We present a 

formula for obtaining the behavior of the maximal solution to the 

submodule construction or the most general controller over (non-

extended, possibly infinite) LTSs. This formula uses operators 

for constructing machine products, for complementing, and for 

determinization and elimination of certain transitions and states. 

We show how this formula can be used for extended state ma-

chines (ELTS) by defining these operators for ELTS, although 

the problems of determinization and pruning for extended ma-

chine model are in general non-decidable – which implies that 

the algorithm may not terminate.  

The paper is structured as follows: In Section 2, we present 

a simple example which will be used throughout the paper. Sec-

tion 3 defines a formal modeling framework for extended state 

machines. We use extended labelled transition systems which in-

clude an interaction in each transition. Abstract transition guards 

and state assertions are introduced. Section 4 contains the defini-

tion of the pruning procedure and a theorem stating its correct-

ness. It also contains the discussion of several examples includ-

ing an example showing that the procedure may not terminate. 

Section 5 discusses controller derivation (or submodule con-

struction) based on extended state machine models. The required 

operators on extended state machine models, such as comple-

ment, product, and hiding of unobservable interactions is first 

discussed, and then an example is described in detail. Section 6 

includes related work and Section 7 contains our conclusions and 

proposes extensions of our work.  

2 EXAMPLE OF A CALCULATOR 

As a running application example, we consider a calculator 

which is modelled as an ELTS as shown in Fig. 2. The calculator 

has two internal integer variables acc (accumulator) and reg (reg-

ister), and three (major) states a (initial), b and c. The machine 

has the (non-parameterized) interactions st (store), out, load and 

add, and the parameterized interactions i(p) and o(p). Hereafter, 

transition guards are written in […], and update statements in 

{…}. The transition st leads to state b from where the i(p) inter-

action is possible and which stores the value of the parameter p 

in the internal reg variable. Similarly, the out transition is fol-

lowed by the transition o(p) which is only possible when the pa-

rameter value equals the value of the internal acc variable. In a 

sense, this is an “output” transition since the value of the interac-

tion parameter is determined by the machine. The transition load 

loads the value of the reg into acc, and the transition add adds 

the value of reg to acc.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. ELTS model of the calculator 

3 MODELING FORMALISMS 

3.1 Labeled Transition Systems (LTSs) 

A LTS M = (S, ∑, T, s0 ) consists of a set S of states, a set ∑ 

of interactions (also called alphabet), a set T of transitions and an 

initial state s0. A transition t  T is usually written as t = (s – b -

> s) where s and s are states in S and b  ∑ is an interaction. 

The meaning of a transition t is as follows: if the machine is in 

state s it may execute the transition t by performing the interac-

tion b and changing its state to s, which is sometimes called the 

next state (reached by transition t).  Traditionally, a LTS is a finite 

state machine, that is, the sets S, ∑ and T are finite sets. However, 

in this paper we consider non-finite LTS where the sets S, ∑ and 

T may be infinite sets. The following definitions for finite LTS 

also apply to non-finite LTS. 

a

{reg := p}

st

i(p)

b
c

out

[p = acc]

o(p)

{acc := reg}
load

{acc := acc + reg}

add

{acc := reg :=1}
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Interaction Sequences: Given an alphabet ∑, an interaction 

sequence over ∑ is a sequence (b1, b2, … bn) of interactions  bi  

∑. We consider only finite interaction sequences in this paper. 

Execution sequences: Given an LTS M = (S, ∑, T, s0 ), an 

execution sequence from some state s0 to state sn of M is an inter-

action sequence (b0, b1, b2, … bn-1) such that there exist transi-

tions ti  T (i = 0, 1, 2, … (n-1)) with ti = (si – bi -> si+1). We say 

that an interaction sequence σ = (b0, b1, b2, … bn-1) is an execution 

sequence of a machine  M = (S, ∑, T, s0 ) if there is a state sn such 

that σ is an interaction sequence from s0 to sn.  

We say that a state sn is reachable in M if there is an execu-

tion sequence that leads to sn .  

An LTS M = (S, ∑, T, s0 ) is deterministic if there are no two 

transitions from the same state with the same interaction to two 

different next states. In a deterministic machine, a given execu-

tion sequence from some state s0 uniquely determines the state 

reached after the last interaction. 

In this paper we consider trace semantics, that is, we are in-

terested in the possible execution sequences of a given machine 

or system. This means that we consider that the meaning of an 

LTS model is the set of execution sequences that can be realized 

by the model. We note that the set of execution sequences of an 

LTS model is prefix-closed. 

 

3.2. Extended LTS 
 
An extended LTS (ELTS), or (extended) machine, M = (S, V, , 

T, s0, V0 ) is a finite LTS which is extended by a finite sequence 

V of state variables and where interactions may have parameters. 

For simplicity, we assume in this paper that each interaction may 

have at most one parameter. Let us assume that there are n state 

variables, V = {x1, x2, … xn}.  We write (V1, V2, …  Vn ) for an 

assignment of values to these state variables. For each state var-

iable Vi in V, we let Di denote its domain and then denote as the 

domain of value assignments D = D1 × D1 × … × Dn.  

More precisely, S is a finite set of (major) states, and s0  S 

is the initial (major) state of the machine and  V0 is the sequence 

of initial values of the state variables. The transitions t  T have 

the form t = (s – b(p) [ G ] up -> s) where s and s are the current 

and next (major) states of the transition, b is an interaction with 

the parameter p, G is the enabling predicate of t (also called 

guard) which depends on the values of the state variables and the 

parameter, and up is a concurrent update statement which defines 

new values for certain state variables as functions of the current 

values of all state variables and the parameter.   

The meaning of a transition t = (s – b(p) [ G ] up -> s) is 

the following: If the machine is in (the major) state s then the 

machine may make a transition to (the major) state s by perform-

ing the interaction b with parameter value p if the guard G is True 

for the current values  Vi of the state variables and the value p of 

the interaction parameter p. Note that the presence of the param-

eter is optional. If the transition is executed the values of the state 

variables will be changed according to the concurrent update 

statement up.  

It is clear that an extended LTS can be considered as an ab-

breviated notation for the definition of a (possibly) non-finite 

LTS, as defined above. Given an extended LTS M = (S, V, , T, 

s0, V0 ), an equivalent (possibly) non-finite LTS M = (S, ∑, T, s0 

) is defined as follows. By equivalent we mean that both models 

define the same set of execution sequences. We use V0 = {V0
1, V0

2, 

…  V0
n } for the initial value assignments of the variables. 

 S is the Cartesian product of S with D, the domains of 

all the variables. A given concrete state s  S, therefore, 

can be written as s = (s, V1, V2, …  Vn ). This concrete state 

corresponds to the state of the extended LTS with major 

state s and V1, V2, …  Vn  as values of its state variables.  

 The initial concrete state of M is s0 = (s0, V0
1, V0

2, …  V0
n 

). 

 ∑  is the set of interactions of the non-finite LTS. It is 

the union of , the set of interactions of the extended 

LTS (for the case that these interactions occur without 

any parameter) with the Cartesian product of  with the 

domain of the parameter values (for the case that the in-

teractions occur with a parameter).  

 We consider a transition t = (s – b(p) [ G ] up} -> s)  

T and assume that the guard has the form G = g(x1, x2, 

… xn, p) and the concurrent update statement updates k 

variables and is of the form up = { (xi1 := expri1 (x1, x2, 

… xn, p); … xik := exprik (x1, x2, … xn, p); }. Then the 

transition t stands for the set of transitions in M of the 

form (s, V1, V2, …  Vn ) - b(p)  ->  (s, V1, V2, …  Vn )  for 

which the following conditions are satisfied: 

1. g( V1, V2, …  Vn, p)  and  

2. for all i = 1, …n we have  

o if the variable xi is updated, that is, if i = ij for some 

j = 1, 2 … k, then, Vi= exprij (V1, V2, ...  Vn, p)   

o else Vi= Vi 

We note that parameterized transitions may effectively rep-

resent input or output operations. For instance, a transition with 

interaction a(p) and the update statement x := p, where x is a var-

iable represents an input action where the received parameter 

value is stored in the variable x for later processing. On the other 

hand, a transition with interaction a(p) and guard [ x = p ] repre-

sents an output operation where the value of the x is made avail-

able to the environment since the guard must hold.  

Based on this correspondence between the modeling para-

digm of extended LTS with variables and interaction parameters, 

on the one hand, and the modeling paradigm of non-finite (sim-

ple) LTS, on the other hand, we will in the following profit from 

both views: Extended LTS modeling allows us to write down rel-

atively condensed requirements for system components, and the 

corresponding model of non-finite (simple) LTS allows us to use 

the theoretical tools that have been developed in this context 

which allows us to talk about execution sequences, requirements 

in terms of sets of execution sequences, interaction hiding, and 

submodule construction. 

 

3.3 State Assertions 
 

We use assertions in the same way as in documentation and ver-

ification of software where an assertion introduced at a certain 

place in the program means that the assertion should be satisfied 

by the values of the program variables each time that the execu-

tion of the program reaches this place. Similarly, given an ex-

tended ELTS M = (S, V,  , T, s0, V0 ), we may associate an 
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assertion Assrs with the major state s  S. This means that each 

time that the major state s is reached during the execution of the 

ELTS, the values of the variables V should ensure that the asser-

tion is True. 

Definition 1: Given an extended ELTS M = (S, V, , T, s0, 

V0 ) and an assertion Assrs for the major state s  S, we say that 

the assertion is consistent with the ELTS if for all execution se-

quences of M that reach the major state s the values of the vari-

ables V are such that Assrs is True. 

For verifying the consistency between assertions and a pro-

gram, Dijkstra developed the calculus of weakest preconditions 

for program statements [17]. Given an assignment statement As-

sign which assigns an expression expr to a variable x in a pro-

gram, and assuming that after the execution of this statement the 

assertion Assr should hold, Dijkstra defined the weakest precon-

dition of Assr in respect to Assign given by WPAssign(Assr) = 

Assr(x/expr) where Assr(x/expr) is the assertion Assr in which 

each occurrence of x is replaced by expr. He proved that this is 

the weakest condition which, when satisfied before the execution 

of the statement, assures that the assertion Assr is satisfied after 

the execution of the statement. For a concurrent update statement 

of the form up = { (x1 := expr1 (x1, x2, … xn, p); … xn := exprn (x1, 

x2, … xn, p); )}, the weakest precondition WPup(Assr) in respect 

to an assertion Assr is obtained from Assr by substituting each 

occurrence of xj by exprj (for all j = 1, … n).  In this paper, we 

write “Assr o up” for WPup(Assr). This notation recognizes that 

the update statement up is a mapping from D to D, and it means 

that first the up mapping is applied to the current values of the 

variables, and then the assertion Assr is evaluated on the obtained 

variable values, that is, “o” means composition of functions.  

We say that an assertion A is stronger than an assertion B if 

A implies B, written A => B, and A is not equivalent to B.  

Definition 2: Given an extended machine M = (S, V, , T, 

s0, V0 ), a transition t = (s – b(p) [ G ] up -> s)  T and two 

assertions Assrs and Assrs  associated with the starting and end-

ing states of the transition, we say that Assrs  is consistent with 

Assrs  in respect to transition t if the following condition is satis-

fied: 
  for all values of x1, x2, … xn and p: Assrs  G => Assrs o up  (1)           

Proposition 1: Given an extended machine M = (S, V, , 

T, s0, V0 ) and a set of assertions {Assrs  | s  S} associated with 

the (major) states of the machine. The assertions are consistent 

with M if the following conditions are satisfied: 

1. Assrs0 holds for the initial concrete state (s0, V0 ). 

2. For all transitions t = (s – b(p) [ G ] up -> s)  T : 

Assrs  is consistent with Assrs  in respect to t. 

This proposition can be easily proved by induction: Assrs0 is 

satisfied for the initial (concrete) state (s0, V0 ). When a transition 

t = (s – b(p) [ G ] up -> s) is executed, we can assume that Assrs 

holds. The transition can only be executed when G holds. There-

fore Assrs   G  holds before the execution, and because of con-

dition (2) Assrs o up also holds before the execution. Therefore 

Assrs  holds after the execution of the update statement of the 

transition.   

We note that consistent assertions are not uniquely deter-

mined by the given ELTS – one could, for instance, associate 

with each state the assertion True. We also note that the assertion 

associated with an ELTS state that is part of a loop is in fact an 

invariant for that loop. Some methods for deriving loop invari-

ants are described in [18]. 

 

3.4 The Example of the Calculator 

 

We consider the calculator of Fig. 2 as an example. It has two 

variables, acc and reg. After the transition (b - i(p) { reg := p} -

> a) the variable reg assumes the  value which was provided as 

interaction parameter. After the interaction load, the values of the 

two variables are equal (to the parameter) and subsequent inter-

actions add lead to states where the value of acc is a multiple of 

the value of reg, that is, the assertions  [ acc = reg ], [ acc = 2 * 

reg ], [ acc = 3 * reg ], etc. may hold.  

In order to describe this situation in a more systematic man-

ner, one may build a new model by adding an integer variable n 

which represents the number of successive executions of the add 

interactions since the last load interaction, plus one. Then we 

may consider the assertion [acc = n * reg] which holds when the 

load interaction has been executed. Since this assertion does not 

hold initially, one may split the (major) state a into two (major) 

states a1 and a2, as shown in Fig. 3. Now it is easy to show that 

the set of associated assertions is consistent. For instance, the 

weakest precondition for the assertion of state a2, namely [(acc 

= n * reg)  (n > 0)], in respect to the load transition is calculated 

by replacing acc by reg and n by the value 1. This gives [(reg = 

1 * reg)  (1 > 0)] which is True. Similarly, we obtain the weakest 

precondition in respect to the add transition:   [(acc + reg = (n + 

1) * reg)  ((n + 1) > 0)] which is implied by [(acc = n * reg)  

(n > 0)]. Therefore, this assertion is an invariant for both of the 

looping transitions load and add. 

Fig. 3. A new model of the calculator written as a hierarchical UML 

state machine, including assertions. 

 

3.5. Sub-machines 
 

As mentioned in the Introduction, our pruning algorithm, applied 

to an ELTS M, results in a sub-machine M of M.  In the context 

of LTS, a sub-machine is defined as follows: 

Definition 3(a) – Sub-machine of an LTS: An LTS M = 

(S, ∑, T, s0 ) is a sub-machine of an LTS M = (S, ∑, T, s0 ) if M 

is obtained from M by pruning (eliminating) certain transitions, 

that is, if  T is a subset of T.  

One usually also eliminates all those states of M (together 

with their outgoing transitions) which become inaccessible from 

the initial state, that is, S is a subset of S. For ELTSs, we use the 

following definition: 

Definition 3(b) – Sub-machine of an ELTS: Given M = 

(S, V, , T, s0, V0 )  and M = (S, V, , T, s0, V0 ), we say that M 

is a sub-machine of M if the transitions in T are the same tran-

c

[T] 

b

[T] out

st

o(p)

[p=acc]

i(p)

{reg := p}

Component A

a1

[T]

add

n:=1}

add

{n := n + 1;

a[AssrA]

{acc := reg;

acc := acc + reg}

a2

[(acc = n * reg) ^ (n>0)]

n:=1}
{acc := reg;

load

load

{ acc := reg := 1 }
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sitions as in T except that their guards may be stronger or equiv-

alent.  

It is clear that in this case the equivalent (possibly) non-fi-

nite LTS M of M is a sub-machine (LTS) of the LTS equivalent 

to M. We note that the transitions of M with a guard that is False 

may be eliminated without affecting the behavior of M, and as 

in the case of LTS, the major states of M that are inaccessible 

from the initial state may also be eliminated together with their 

outgoing transitions.  

In fact, in this paper, we are interested in sub-machines that 

satisfy certain properties such as assertions that should hold at 

major states of the sub-machine.  

Definition 3(c) – Maximal sub-machine of an ELTS: M 

is the maximal sub-machine of M that satisfies certain properties 

C if for each sub-machine M of M that satisfies C, M is a sub-

machine of M.  

4 DERIVING A SUB-MACHINE THAT SATISFIES SOME 

GIVEN PRUNING REQUIREMENTS 

In this section we discuss how a given ELTS M can be modified 

such that certain properties, called pruning requirements, be-

come satisfied. We assume that the modified ELTS M should be 

a sub-machine of M. In Section 4.1, we explain how we charac-

terize the pruning requirements, and in Section 4.2 we present a 

pruning procedure which constructs M. Since the problem of 

finding M is undecidable in general, the pruning procedure may 

not terminate for certain given ELTS. A theorem stating the prop-

erties of this procedure is proved in Section 4.4. Examples are 

given in Sections 4.3 and 4.5.  In Section 4.5.2, we informally 

discuss how certain ideas of the pruning procedure can be 

adapted for dealing with the problem of liveness conditions, es-

pecially loop termination. 

 
4.1. Pruning Requirements  

We assume that an ELTS M = (S, V, , T, s0 , V0 ) is given and 

that the designer wants to obtain a submachine M of M for 

which certain pruning requirements are satisfied. These require-

ments are given in the form of assertions that should hold at cer-

tain major states. For a major state s  S, the following types of 

(Goal) assertions can be considered. 

Types of Goal Assertions (or Pruning Requirements): 

1. General Goal: The assertion Goals should be satisfied 

each time the major state s is reached. 

2. A major Fail state : Goals  = False. This means that the 

major state s should never be reached. This concept is im-

portant for the derivation of controllers for discrete event 

systems (see Section 5).  

3. No undesired deadlock at s : Goals  =  enableds where en-

ableds denotes the logical or of the guards Gt of all out-

going transitions t from major state s . This means that  

enableds should never be True when state s is reached 

– therefore at least one transition will be possible from 

this state. In fact, this goal should apply in all major states, 

except those that are designated as final or accepting.  If 

the value of the guard Gt of a transition t depends on the 

value of an interaction parameter p, then the condition for 

this transition would be “there exists a value of parameter 

p such that Gt is True.“  

4.2. The Pruning Procedure 
 

The pruning procedure prunes certain transitions of the ELTS 

such that the pruning requirements become consistent assertions 

in the resulting sub-machine. We say that a transition t of the 

given ELTS M is pruned if a stronger guard is introduced for the 

transition, or if the transition is completely eliminated. The latter 

happens if the guard of a transition becomes False, the transition 

is never executable and thus can be eliminated from the ELTS. 

Major states that become inaccessible can also be eliminated. 

Therefore, the resulting ELTS M is a sub-machine of M. We 

note that M is the maximal sub-machine of M for which the 

pruning requirements are consistent. 

When this pruning procedure is used for the derivation of a 

controller, it is important to note that certain transitions of the 

controller behavior cannot be pruned because their interactions 

cannot be controlled, such as input interactions from the environ-

ment (see Section 5). Therefore we assume here that we know 

which interactions of M are controllable. Any transition of M 

that has an interaction that is non-controllable cannot be pruned 

and must remain as is.  We note that the pruning procedure avoids 

all undesired deadlocks that may be introduced when a transition 

is pruned.   

      Initialization Step: The initial inputs for the pruning proce-

dure are the following: 

1. An initial ELTS M = (S, V, , T, s0, V0 ). 

2. For each interaction of M whether it is controllable or not. 

3. The pruning requirements in the form of goal assertions 

Goals for certain major states s , as illustrated above. 

The pruning procedure uses a variable called Problematic 

which represents the set of major states for which the required 

assertion has not yet been checked. Initially, this set contains 

each state s with an associated Goals assertion from point (3) 

above. 

An initial set of assertions { Assrs  | s  S } associated with 

the (major) states of M is defined as follows. Assrs is equal to 

Goals if the state s is associated with a Goal, or True otherwise.  

 

Pruning Procedure:  

While the set Problematic is not empty and the associated as-
sertion of the initial state, Assrs0 , is  not False, take a state s 

from Problematic and call the procedure prune (s) where this 

procedure is defined as follows:  

 

Procedure prune (majorState s ) 

         For each incoming transition t = (s – b(p) [ G ] up -> s) 

do the following: 

       Step 1: If the interaction b of the transition is controllable:  

If G does not imply (Assrs  o up), replace t by the 

following transition (which has a stronger guard): 

                       tOK = (s – b(p) [ G  (Assrs  o up) ] up -> s)   

               Define Assrs 
(new) := Assrs  enableds  or if s 

is a final or accepting state, Assrs 
(new) :=  

Assrs . 

Note A: The introduction of the 
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stronger guard of tOK may lead to a po-

tential undesirable deadlock in state s. 

Such deadlock is captured by the up-

date Assrs 
(new) := Assrs  enableds 

and later in Step (3) s will be put into 

the Problematic set if such an update 

produces a stronger assertion at s.  
       Step 2: Otherwise (if the interaction b is non-controllable): 

                   Define Assrs 
(new) := Assrs  for all p:( G  Assrs  

o up) 

Note B: This means that the reachable 

concrete states of s should be such 

that either the transition t is not exe-

cutable or, after the transition t is per-

formed, the associated assertion Assrs 

should be satisfied in the next state s. 

       Step 3:  

If Assrs
 (new)  is stronger than Assrs, then 

                    Update the associated assertion  Assrs := Assrs 
(new) 

, and  

                    Put s into the Problematic set. 

Note C: We may want to prune more 

than necessary, that is, we use some 

Assrs 
(stronger) instead of Assrs 

(new) 

where Assrs 
(stronger)  implies  Assrs 

(new) 

. We call this non-required pruning. 

This type of pruning is demonstrated 

in the Factorial Example given in Sec-

tion 4.5. 

Note D: s may be further constrained 

(that is, another “part” (subset of 

states) of s may be pruned) when an-

other outgoing transition from s leads 

to another problematic state on which 

the prune procedure is later applied. 

                Else, then there is effectively no constraining – nothing 

further to do. 

 Note E: We note that the decision whether Assrs
 (new)  

is stronger than Assrs is in general undecidable. This 

decision is important when there are loops in the tran-

sition graph in order to determine whether the pruning 

procedure will loop forever (see examples in Section 

4.5.1). 

         EndFor 

 End prune 

 

Note F: The states s for which the associated assertion Assrs 

is False are not accessible from the initial state in the ELTS ob-

tained by the pruning procedure. In certain cases (see for instance 

Example A-1 in Section 4.5.1) only the initial state may remain 

accessible – clearly, that is not an interesting solution. If the as-
sociated assertion of the initial state, Assrs0 , is False and no 

non-required pruning was used, then there is no solution.  

 

4.3. A Simple Example: Avoiding Undesirable Dead-

locks 

The given ELTS is shown in Fig. 4(a). There are two major states 

with potential deadlocks: states D and E. To avoid these dead-

locks, the designer may constrain, under point (3) of the Initiali-

zation Step, states D and E by defining the corresponding goal 

assertions [x = 15  w]  and  [w], and obtain D and E, respec-

tively, as shown in Fig. 4(b). Thus, the set Problematic initially 

includes states D and E. Let us assume that interactions c, d, and 

g are non-controllable, while e, h, and b are controllable.                                                                                                                                  

Let us assume that we start the pruning procedure by calling 

the procedure prune (D) as shown in Fig. 4(b). Since the incom-

ing transition d is non-controllable, in Step 2, state C is consid-

ered problematic with the required assertion  AssrC 
(new)  equals [x 

=14  w], and the procedure prune will later be called for C 

while the associated assertion is AssrC
 (new) := [x =14  w].  

We now continue the pruning procedure by applying prune 

to the second initially problematic state E which now has the as-

sociated assertion [w] as described above and shown in Fig. 4(b). 

The incoming transition with the (controllable) interaction h is a 

self-loop without any update action. Therefore, the assertion [w] 

(for starting and ending state) is consistent with this looping tran-

sition. The g-transition is another incoming transition to state E. 

Since we assume that this transition is non-controllable, the prun-

ing process would have to continue. The constraint of the g-tran-

sition would be transferred to the state C which would be con-

strained by the additional stronger assertion [w] ; this constrained 

state is called C in Fig. 4(c). When this state is processed, as the 

incoming c-transition is non-controllable, then state B must also 

be constrained to [w], and corresponding state B becomes prob-

lematic with the additional constraint [w] obtained in Steps 2 and 

3, respectively. 

Then, the (controllable) incoming b-transition to B, with the 

associated assertion [w], is processed and according to Step 1, 

the required guard for this transition becomes a contradiction as 

it includes [w] and [w]. Therefore, this transition must be com-

pletely eliminated. Note, if interaction b was non-controllable, 

then the starting state of this transition must also be eliminated. 

However, since this state is the initial state, this means that there 

would be no solution to avoiding possible deadlocks. 

 

 

Fig. 4. Simple example, (a) The given ELTS, (b) After dealing with the prob-

lematic state D, (c) After dealing with the problematic states E and C. 

4.4. Proof of Correctness 
 

The following theorem states the properties of the pruning pro-

cedure of Section 4.2, and it is proved using two lemmas and a 
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proposition.  

Theorem 1: Given an ELTS M = (S, V, , T, s0, V0 ) for which 

certain transitions may be uncontrollable, and with goal asser-

tions for a subset of the major states.  Let M = (S, V, , T, s0, 

V0) be the ELTS obtained by applying the pruning procedure of 

Section 4.2 to M, and let { Assrs
 final

 | s  S } be the set of 

associated assertions obtained when the procedure ends. If the 

procedure terminates and the associated assertion of the ini-
tial state, Assrs0 , is  not False, we have the following properties: 

1. M is a sub-machine of M.  

2. { Assrs
 final

 | s  S } is a consistent set of assertions for 

M. 

3. For all major states s for which a goal assertion Goals
 

was given in the Initialization Step, Assrs
 final

   implies 

Goals
  . 

4. The pruning algorithm does not introduce any new 

deadlocks at major states.  

5. M is the maximal sub-machine of M that satisfies 

properties (3) and (4) above, i.e., for every sub-machine 

M of M that satisfies properties (3) and (4), M is a 

sub-machine of M.          

Lemma 1:  During the execution of the pruning procedure, 

each time the prune (s) procedure terminates after processing a 

major state s , we have for all transitions t = (s – b(p) [ G ] up -

> s) that are incoming to s that the associated assertions Assrs 

and  Assrs  are consistent with transition t. 

Proof: If the interaction b is controllable, the additional 

guard (Assrs  o up) introduced in Step 1 ensures that Assrs is sat-

isfied after the execution of the transition. Therefore (according 

to Definition (2) in Section 3.3.1) Assrs and  Assrs  are consistent 

with transition t, even if Assrs is strengthened in Step 3 accord-

ing to the assertion defined in Step 1. – If Step 2 is executed, i.e., 

b is non-controllable, Assrs (updated in Step 3 according to the 

assertion defined in Step 2) implies (G  Assrs o up), which 

means that – if t is executable – then G is True;  and thus the 

assertion Assrs should be satisfied after the execution of the tran-

sition in the next state s .   

Lemma 2:  During the execution of the pruning procedure, 

let us assume that the associated assertions Assrs and  Assrs  are 

consistent with the transition transitions t = (s – b(p) [ G ] up -

> s) . If the prune (s) procedure is executed for another state s 

that also has an incoming transition t1 = (s – b (p) [ G ] up -> 

s) from s , then the update of the associated assertion of s 

(when handling t1 in Step 3 according to the assertions defined 

in Steps 1 and 2 of the procedure) will never weaken the asser-

tion. Therefore the assertions Assrs and Assrs  remain consistent 

with the transition t. 

     Proof: This is evident from the form of Step3 (and the related 

assertions defined in Steps 1 and 2), and Definition 2.          

Proposition 2: During the execution of the pruning proce-

dure, between the executions of the procedure prune for differ-

ent major states in Problematic, we have for all transitions t = 

(s – b(p) [ G ] up -> s) in T the following:  If s is not in Prob-

lematic, then the assertions Assrs and Assrs are consistent with 

transition t. 

    Proof: By induction over the sequence of prune executions 

(using Lemma 1 and Lemma 2).  

Proof of Theorem 1: 

1. This follows directly from the definition of the pruning 

algorithm.  

2. This follows directly from Proposition 2, since Prob-

lematic is empty when the procedure stops. 

3. This follows directly from Lemma 2. 

4. A new deadlock may be introduced in major state s by 

the prune procedure in Step 1 due to the stronger guard 

of the transition. However, the definition of the ena-

bleds assertion ensures that no deadlock is possible in 

state s if the new Assrs (updated in Step 3) is satisfied.  

5. This follows from the fact that the additional guard in 

Step 1 and the assertions enableds and (for all p: ( 

G  Assrs  o up)) , defined in Steps 1 and 2, respec-

tively, which are additional constraints to be satisfied 

by the new version of Assrs are the weakest constraints 

that are sufficient to ensure consistency with the pro-

cessed transition.   

4.5. Examples 
 

4.5.1. Looping Examples 

 

We consider an ELTS as shown in Fig 5 where the a-transition is 

controllable, but the other transitions are non-controllable. The 

d-transition has no guard nor update statement, while the b and c 

transitions have various guards and assignments, depending on 

the cases discussed below. And State s4 has various associated 

goals. The initial associated assertions are True for all states. 

 

 

 

 

 

 

 

 

 

Fig. 5. ELTS of the looping examples  

 

(A): Examples where n is an Integer variable 

 

Example A-1. Goal of s4 = [ n = 0 ]; c has assignment{ n 

:= n – 1 } (Note: unless stated otherwise, the transitions b 

and c have no guard and no assignment). In the following, 

we indicate the different steps of the pruning process, where 

in each step the prune procedure is applied to one of the 

states and one of the incoming transitions is handled. 

(Step 1) The prune procedure is called for state s4 which 

has the assertion [ n = 0 ];  handling the in-

coming transition  d : s2 obtains the associated 

assertion Assrs2 = [ n = 0 ]  

(Step 2) Prune is called for state s2 ; incoming transition 

is c : s3 obtains the associated assertion Assrs3 

[ n =1 ] 
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(Step 3) Prune is called for state s3 ; incoming transition 

is b : the new assertion for s2 becomes 

Assrs2
(new) = [ n = 1   n = 0 ] which is False, 

which means that this state should become in-

accessible. 

(Step 4) Prune is called for state s2 ; incoming transition 

is a (which is controllable): The transition a 

obtains the guard [(p  0)  False], which 

means that this transition is eliminated. The 

resulting ELTS has an initial state without 

any transitions. 

 Example A-2. Goal of s4 = [ n   0 ] ; c has assignment 

{ n := n – 1 } 

(Step 1)  prune is called for state s4 with the associated 

assertion [ n   0 ] ; incoming transition is d : 

a new assertion is assigned to state s2 - Assrs2 

:= [ n  0 ] 

(Step 2)  s2 ;  c : Assrs3 := [ n  1 ] 

(Step 3) s3 ; b : Assrs2 := [ n  1 ] – this is a stronger as-

sertion than at (Step 1). Therefore the pruning 

process continues. 

(Step 4) s2 ;  c : Assrs3 := [ n  2] 

(Step 5) s3; b : Assrs2 := [ n  2 ] – this is stronger again. 

The pruning process will never terminate.  

Example A-3. Goal of s4 = [ n  0 ]; c has assignment { n 

:= n – 1 } ;  b has guard [n > 0] 

(Step 1) prune is called for state s4 with the associated 

assertion [ n  0 ]; d : Assrs2 := [ n  0 ] 

(Step 2)  s2 ;  c : Assrs3 := [ n  1 ] 

(Step 3)  s3 ;  b : Assrs2. :=  [ n  0    n  1] – this is not 

stronger than at (Step 1). Pruning stops 

Example A-4. Goal of s4 = [ n   0 ] ; c has assignment { n 

:= n - 1 } ; b has guard [ n < 2 ] 

(Step 1) prune is called for state s4 with the assertion [ n  

 0 ]; d : Assrs2 := [ n  0 ] 

(Step 2)  s2 ; c : Assrs3 := [ n  1 ] 

(Step 3)  s3 ; b : Assrs2 := [ (n  2)  (n 1) ] = [ n  1 ] – 

pruning process continues. 

(Step 4)  s2 ; c : Assrs3 := [ n  2 ] 

(Step 5)  s3 ; b : Assrs2 := [ n  2 ]  – pruning process 

continues. 

(Step 6)  s2 ; c : Assrs3 := [ n  3 ] 

(Step 7)  s3 ; b : Assrs2 := [ (n  2)  (n  3) ] = [ n  2 ] – 

This is the same constraint as at (Step 5) and 

this repeated pruning process stops. When [ n 

 2 ] holds, the b-transition is not enabled and 

there is no loop.  

(Step 8) The pruning process continues for the a-transi-

tion (which is controllable). This leads to the 

introduction to a stronger guard [ p  2 ]. 

(B): Examples where n is a Real variable (always positive or 

zero) 

Example B-1. Goal of s4 = [ n < 1 ]; c has { n := n / 2 } 

(Step 1) prune is called for state s4 with the assertion [ n 

< 1 ]; d : Assrs2 := [ n < 1 ] 

(Step 2)  s2 ; c : Assrs3 := [ n < 2 ] 

(Step 3) s3 ; b : Assrs2 := [ n < 2] – this condition is not 

stronger than at (Step 1). Therefore the prun-

ing process stops here, and (Step 2) is the so-

lution. That is, the a-transition will get a 

guard ensuring p < 1. 

Example B-2. Goal of s4 = [ n < 1]; c has { n := n*2 } 

(Step 1) prune is called for state s4 with associated asser-

tion [n < 1]; d : Assrs2 := [ n < 1] 

(Step 2) s2 ; c : Assrs3 := [ n < 0.5 ] 

(Step 3) s3 ; b : Assrs2 := [ n < 0.5 ] – this is a stronger 

condition than at (Step 1). Therefore the prun-

ing process continues.  

(Step 4) Next time the condition will be [ n < 0.25], etc. 

This means that the pruning process will 

never stop. However, we know that when the 

parameter p has the value zero (and therefore 

n = 0.0), there is no problem with the goal 

(although the pruning process does not show 

this).  

 

4.5.2. Examples with Considerations of Termination 

 

(C) Calculator Example: We consider the application of the 

pruning procedure to the ELTS shown in Fig. 2. There are no fail 

states nor deadlocks in this ELTS. However, we assume that the 

goal assertion Goalc  = [ acc = reg ] is introduced in State c. As-

suming that all interactions are controllable, the application of 

the prune procedure to State c, will add  an additional  guards [ 

Goalc ] to the transition out. The pruning procedure then termi-

nates.  

The resulting behavior of the ELTS M does not reach any 

bad state, however, it includes many execution sequences that are 

not very useful because of the looping behavior of the transitions 

load and add. Therefore the question comes up whether it is pos-

sible to prune the behavior of M further in such a way that loops 

without progress are eliminated and possibly also other execution 

sequences that are not useful for attaining the state with the spec-

ified goal. Similarly, the ELTS of M may include inaccessible 

goal states which, however, should be reachable by definition.  

We call such questions termination considerations. 

We note that the constraining process defined by the pruning 

procedure can be further applied to the ELTS M in order to de-

termine which transitions could be pruned further in order to in-

clude only execution sequences that are useful for the termina-

tion properties. The basic idea is to split a state s which is in-

volved in an infinite loop and has a transition leading out of this 

loop, into two sub-states, which we call sreq and slooping. The ad-

ditional assertion associated with sreq is the guard of the transition 

leading out of the loop, and the additional assertion of the other 

sub-state is the opposite. Then we split each incoming transition 
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into two transitions leading into the two states sreq and slooping , 

respectively, and apply the pruning algorithm to both of them by 

adding an additional guard (if the transition is controllable) or 

splitting the starting state of the transition into two sub-states ac-

cording to the additional constraints which must be applied ac-

cording to the pruning algorithm. This is a recursive process, as 

defined in the pruning procedure. Finally, one uses one’s intui-

tion to decide the pruning of those transitions that are not useful. 

c 

b 

load

st

a1

[acc=reg]

add
a2

[acc   reg]

st

i(p)

[p=acc]

load
{acc:=reg}

{reg:=p}

{acc:=reg}

{acc:=acc+reg}

add
{acc:=acc+reg}

{acc:=reg:=1}

i(p)

{reg:=p}
[p    acc]

out 

[acc=reg]

pruned to unnecessary looping

[p=acc]
o(p)

¹

¹

 
Fig. 6. Result of pruning the calculator of Fig. 2 with the goal [ acc = reg ] in 

state c. 

If we apply this approach to the calculator example consid-

ered above (where all transitions are controllable), we obtain the 

machine in Fig. 6. We would propose to prune all add transitions, 

and the load transition from the major state “a1 [ acc = reg]”. 

This additional pruning is indicated in Fig. 6 by the dashed tran-

sitions. 

 (D): Factorial Example 

Like the examples from Section 4.5.1, this example also uses the 

state diagram of Fig. 5. It has the following additional features: 

Goal of s4 = [ f = n! ]; b has the update { i := i + 1 }; c has { f := 

f * i }; d has the guard [ n= i ]. This ELTS represents the classical 

Factorial function which contains two variables: a counter i and 

the variable f which contains the intermediate result of the calcu-

lation. The variable n represents the input, and the final result 

should be n! . 

(Step 1) prune is called for state s4 with the associated asser-

tion [ f = n! ];  handling d with the guard [ n= i ],  

one obtains Assrs2 := [ n ¹ i  f = n! ] which is 

equivalent to [( n = i) implies (f = n!) ]. 

(Step 2) Based on some intuition, we introduce instead a 

stronger constraint for s2 (called non-required 

pruning in Note C of the prune procedure), 

namely  Assrs2 = [ f = i! ]   

(Step 3)  s2 ; c : Assrs3 := [ f * i =  i! ] 

(Step 4) s3 ; b : Assrs2 := [ f * (i+1) = (i+1)! ] = [ f = i! ] – we 

see that this is a loop invariant, and the pruning 

process stops for the loop. 

(Step 5) We now have to introduce an update statement for the 

a-transition that ensures that this invariant is satis-

fied when this transition leads to s2. The simplest 

way is to add    {  i := 1 ;  f := 1 ; }. But this is not 

part of the pruning process.  

If we do not use non-required pruning and instead use Assrs2 

from Step 1 directly, we get Assrs3 = [n ¹ i  f *i = 

n! ] and a new assertion for s2, Assrs2
new  = [n ¹ i+1 

 f *(i+1) = n! ]  Assrs2 which is equivalent to [( 

(n=i+1)  implies (f *(i+1) = n!) )  ( (n=i) implies 

(f = n!) ) ]. This is stronger than Assrs2 and the 

pruning will not terminate, therefore not providing 

a solution.  

5 APPLICATION TO THE CONTROL OF DISCRETE 

EVENT SYSTEMS AND SUBMODULE 

CONSTRUCTION 

As mentioned in the Introduction, the problem of deriving a con-

troller for discrete-event systems is the same as the problem of 

submodule construction. In both cases the system has a structure 

as shown in Fig. 1(b) and we have the problem, called “The un-

known component problem” in [3], which is the following: The 

behavior of component A is given, also the desired behavior S of 

the system as seen at the external interfaces (while the interac-

tions at the internal interface IAB are hidden). The problem con-

sists of finding a suitable behavior for the component B such that 

the composition of A and B exhibits a behavior that conforms to 

the requirements of S. The conformance requirements are nor-

mally safeness requirements, either expressed in the form that 

certain states of S should never be reached, or that all interaction 

sequences produced by the composition of A and B should be 

among the set of valid sequences defined by S. Depending on the 

behavior of A, the following three cases could occur: (1) all se-

quences of S can be realized by A and B, (2) only a subset of the 

valid sequences of S can be realized by A and B, or (3) there is 

no solution to the problem, that is, there is no B such that the 

composition of A and B would only produce valid sequences. 

The problem of deriving controllers for discrete-event sys-

tems can be considered a special case of submodule construction, 

where component A represents the plant to be controlled, and 

component B is the controller. The main difference with submod-

ule construction is the fact that some of the interactions of the 

controller are controllable while others are non-controllable. The 

occurrence of non-controllable interactions is solely determined 

by the environment of the controller, either component A or the 

environment E; the controller has no way to avoid the occurrence 

of these interactions. Controllable interactions can be prevented 

by the controller; they can be interpreted as rendezvous between 

the controller and its environments, that is, if the controller is in 

a state without an outgoing transition with the controllable inter-

action c then c cannot occur when the controller is in this state. 

 

5.1 Algorithm for Submodule Construction 
 

In [19], Bochmann showed that algorithms for solving the sub-

module construction problem in the context of different commu-

nication paradigms (including rendezvous with synchronous 

communication, interleaving rendezvous semantics, and input-

output interactions) can be derived from a single general problem 

formulated in first-order logic. Equations are given for the max-

imal set of execution sequences of B (called maximal solution) 

and for the so-called reduced maximal solution which includes 

in general less execution sequences, but produces – in collabora-

tion with component A – the same externally visible execution 

sequences as the maximal solution.  

For the case of rendezvous communication with interleaving 



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2878728,
IEEE Transactions on Software Engineering

EL-FAKIH AND BOCHMANN:  SYMBOLIC REFINEMENT OF EXTENDED STATE MACHINES WITH APPLICATIONS TO THE AUTOMATIC DERIVATION OF 

SUB-COMPONENTS AND CONTROLLERS 11 

 

– the communication paradigm of LTSs assumed in this paper – 

the following equation is derived for CB
red , the reduced maximal 

solution for the component B ( see Equation 5LTS in [19], Propo-

sition 4.1): 

 [ CB
red (xBS, xAB) ]  =  hide(LTS)

AS [ CA(xAS, xAB)  CS(xAS, xBS) ]  

\ hide(LTS)
AS [ CA(xAS, xAB)  CS(xAS, xBS)  ]                      (2) 

where the names of the interfaces have been adapted to the names 

of Fig.1(b).  This formula uses a modeling paradigm with syn-

chronous (simultaneous) interactions at all interfaces including 

null-interactions (stuttering). In order to enforce interleaving se-

mantics, there is the constraint that at each instant, there is at 

most one non-null interaction at any of these interfaces. The term 

xBS, for instance, represents an interaction sequence (including 

null interactions) at the interface IBS; CS(xAS, xBS), for instance, is 

the condition (predicate) that characterizes the pairs of sequences 

at the interfaces IAS and IBS that satisfy the behavior of the system 

requirement S; and  [ CS(xAS, xBS) ] represents the set of pairs of 

sequences that satisfy this predicate. The  operator (logical 

and) corresponds to component composition, the operator 

hide(LTS)
AS hides the interactions at the IAS interface, and  and 

\ are logical negation and set difference, respectively. Note that 

it is assumed here that there are no interactions at the IABS inter-

face. 

The above formula can be rewritten in a more intuitive form 

as follows. We write SA , SB , and AB for the set of inter-

actions that may occur at the interfaces ISA , ISB , and IAB, respec-

tively. Then the alphabets of the components A, B, and of S are 

A = SA  AB, B = SB  AB, and S = SA  SB, 

respectively. We write  σS , σA , σB for interaction sequences 

over S , A , B , respectively, and σglobal for an interaction 

sequence over the global system alphabet  global  = SA  

SB  AB . Finally, we write SeqX for the set of execution 

sequences of an X (X = A, B or S). Then the above formula for 

the behavior of the reduced maximal solution to the submodule 

construction problem can be rewritten as follows: 

    SeqB = {hideSA (σglobal ) | hideSB (σglobal )  SeqA  hideAB 

(σglobal )  SeqS} \  

{hideSA (σglobal) | hideSB (σglobal)SeqA hideAB (σglobal )  SeqS}              

 (3) 

where the operator hideY eliminates the interactions in the alpha-

bet Y from the given sequence. 

For the case that the behavior of S and A is defined by finite-

state LTS, [19] gives an algorithm for constructing an LTS that 

is the solution to the submodule construction problem. This al-

gorithm follows the evaluation of the above formula and consists 

of the following steps:  

1. Complementing S: Built a completed model S of S by 

introducing a fail state. This completed model realizes 

the execution sequences accepted by the behavior of S 

and also the sequences in the complement which will 

lead to the fail state. 

2. Product: Construct the product machine A x S which 

has execution sequences over the global alphabet. 

3. If there are interactions at the ISA interface do the fol-

lowing: 

3.1. Hiding: Hide the interactions at the ISA interface, that 

is, replace them by spontaneous transitions that are 

unobservable. This results in general in a non-deter-

ministic LTS because the hidden interactions are re-

placed in the machine model by spontaneous transi-

tions. 

3.2. Determinization: Build the equivalent deterministic 

state machine. An exponentially complex algorithm 

exists for finite state machines [20].  

4. Pruning: Eliminate certain transitions (of the obtained 

deterministic machine) such that the fail states of S be-

come unreachable, and such that the resulting behavior, 

which will be the behavior of component B, has no un-

desirable deadlock. Note that in this process, some use-

ful states may also be pruned. If the initial state must be 

pruned, then there is no solution to the submodule con-

struction problem. It is important to note that transitions 

with non-controllable interactions cannot be pruned.  

This is the only step of the algorithm where the control-

lability of interactions comes into play. 

5. Checking for deadlocks: While undesirable deadlocks 

in the behavior of component B are avoided by Step 4, 

it is still possible that the interactions between the com-

ponents A and B may lead to an undesired  deadlock if 

the Steps 3.1 and 3.2 were performed. This is already 

well-known for simple state machine models [19]. 

Such deadlocks may be eliminated by constructing the 

product of the components A and B and applying the 

pruning algorithm to this product, where – again – only 

the transitions in which B is involved with controllable 

interactions may be pruned. Since this is similar to the 

case of simple state machines [19], we do not discuss 

this further here.  

 

5.2 Submodule Construction for Extended LTS Mod-

els: Overview 

 

We note that Equation (3) above is quite general in nature and 

applies to arbitrary models, including models with an infinite 

number of states. Although the solution procedure in five steps, 

given above, was designed for finite-state models, it can also be 

used for state machine models with an infinite number of states 

– if each of the steps of the procedure can be performed. We ex-

plain in Sections 5.3 and 5.4 how the first two steps can be per-

formed for ELTS models. Step 3.1 (hiding) is not a problem, but 

Step 3.2 (determinization) is in general undecidable. This is fur-

ther discussed in Section 5.5. Finally, for Step 4 (pruning) – also 

an undecidable problem in general – we propose to use the prun-

ing procedure described in Section 4. 

 

5.3 Completing an Extended State Machine 
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The approach of completing a state machine by adding a (major) 

Fail state makes sense if the given state machine is deterministic. 

Then any execution sequence that ends up in the Fail state is not 

accepted by the original state machine. The same approach can 

be used for an extended state machine if it is deterministic. A 

sufficient condition for an ELTS to be deterministic is the fol-

lowing: If there is a major state with several outgoing transitions 

with the same interaction, then the guards of these transitions are 

mutually exclusive. 

The completion procedure for a deterministic ELTS is as fol-

lows: 

1. Add a new (major) state, called Fail. 

2. For each (major) state s (including Fail), and for each 

interaction b in the alphabet, add a transition from s to 

Fail with interaction b, an empty update operation, and 

a guard which is the complement of the logical and of 

the guards of all transitions from s with interaction b in 

the original ELTS. 

As an example, we consider the desired system behavior S 

shown in Fig. 7(a). It has three states named 1, 2, and 3, and one 

integer variable w, two parameterized actions i(p) , o(p) with the 

integer parameter p , and one non-parameterized action called 

two. At the initial state 1 under i(p) the machine executes the up-

date statement w := p ( w stores the value of the parameter p of 

i(p) ) and then moves to state 2. At state 3, under o(p) if the value 

of parameter p equals 2 times the value of variable w, i.e., p = 2 

* w, the machine returns back to state 1. In fact, this means that 

the value of this parameter can be selected by the machine in such 

a way as to satisfy this condition. The completed version of this 

ELTS is shown in Fig. 7(b). 

 

 

 

 

 

 

 

 

Fig. 7. (a) Service specification S,  (b) Specification of (a) completed 

 

5.4 Constructing the Product of Two Extended State 

Machines 

 

The construction of an ELTS M = (S, V, , T, s0, V0 ) that is 

equivalent to the product of two given ELTSs M1 = (S1, V1, 1, 

T1, s0
1, V0

1 ) and M2 = (S2, V2, 2, T2, s0
2, V0

2 ) is very similar to 

the construction of the product of two simple LTS. We assume 

here that the variables of these two machines are disjoint. The 

product M is constructed as follows: 

 S is the Cartesian product of S1 and S2: S = S1 x S2. A 

(major) state of M is written as (s1 , s2), and s0 = (s0
1 , 

s0
2). 

 The variables V of M correspond to the variables of M1 

and M2 , but they are different (disjoint) from the vari-

ables of M1 and M2 . For each variable of M1 (and of 

M2 ), there is a corresponding variable of M with the 

same domain. For simplicity, we assume that the vari-

ables of M have the same names as the variables of M1 

and M2 . Therefore we can write  V = V1.V2 (concate-

nation of variable sequences), and the initial values are   

V0
 =  V0

1. V0
2.   

  = 1  2 . Note, there is rendezvous for the inter-

actions that are in both alphabets. 

 T contains for each (major) state (s1 , s2) the following 

type of transitions: 

1. Joint (rendezvous) transitions: If T1 contains 

the transition t1 = (s1 – b(p) [ G1 ] up1 -> s1) 

and T2 contains the transition t2 = (s2 – b(p) [ 

G2 ] up2 -> s2) then  T contains the transition 

t = ( (s1, s2) – b(p)  [G1  G2 ] up -> (s1, s2) 

) where up is the concurrent execution of up1 

and up2 .  

2. Separate transition of M1 involving an interaction b 

that is not in 2:  If T1 contains the transition t1 = (s1 

– b(p) [ G1 ] up1 -> s1) and b(p) is not in 2, then  T 

contains the transition t = ( (s1, s2) – b(p) [ G1 ] up1 -

> (s1, s2) ) . 

3. Separate transition of M2 (similarly). 

In Section 3.3.1 we considered that for a given ELTS, a 

(major) state s may be associated with an assertion Assrs that is 

True whenever this (major) state is reached. Given the above def-

inition of the product of two state machines M1 and M2 the fol-

lowing is clear: 

If two states s1 and s2 of the respective machines are 

associated with the assertions Assrs1 and Assrs2, re-

spectively, then the state (s1, s2) of the product machine 

M would be associated with the assertion Assr(s1,s2) = 

(Assrs1    Assrs2 ).  

However, additional assertions may become true. If a state 

of the product machine is only reached through a rendezvous 

transition involving an interaction with a parameter, then the 

value of this parameter will be visible to both components and, 

through the respective update statements, may give rise to an as-

sertion relating variables of the two different machines. Let us 

consider as an example the transition t = ( (s1, s2) – b(p) [ G1  

G2 ] up -> (s1, s2)) considered under point (1) above. If the up-

date statement up1 of M1 assigns the value of the parameter p to 

the local variable v1 and the update statement up2 of M2 assigns 

the value of p to the local variable v2, then we can add the asser-

tion Assrnew  = [v1 = v2] to the state  (s1, s2), assuming that it 

cannot be reached by other transitions. We call such assertions 

parameter-implied assertions. 

We note that [21] also introduces a composition operator 

that uses rendezvous communication with interaction interleav-

ing. This operator allows that a variable is shared among differ-

ent components, however, it imposes the constraint that a shared 

variable must be updated the same way by the sharing compo-
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nents. The shared variables in [21] are used for exchanging val-

ues between the sharing components. The operator employed in 

this paper assumes disjoint variables of components; however, it 

allows the exchange of variables values via the parameterized in-

teractions.  Thus, the consistent sharing constraint of [21] corre-

sponds to the parameter-implied assertions discussed in the par-

agraph above. Our formalism has the advantage that the variables 

and updates of a component can be defined independently of any 

assumption about the other component variables and updates. 

Thus, when the proposed operator is used in the context of sub-

module construction (supervisor control), the desired behavior of 

the system and that of the known component (plant) have differ-

ent variables; and the desired solution (controller) obtains local 

copies of these variables. 

5.5 Dealing with Non-Observable Interac-

tions  

If non-observable interactions are identified in Step 3.1 of the 

controller derivation algorithm of Section 5.1, then Step 3.2 must 

be performed to obtain a determinized version of the product ma-

chine A x S. For the case of non-extended state machine, there 

is a well-known algorithm of exponential complexity to obtain 

an equivalent deterministic state machine for a given non-deter-

ministic one [20]. For extended state machines, the determiniza-

tion of non-deterministic state machines without spontaneous 

(non-observable) interactions is described in [22]. Nondetermin-

ism occurs, if in a given major state, there are several outgoing 

transitions with the same interaction and overlapping guards. 

This problem is in general undecidable - the paper also explains 

under which conditions the given algorithm terminates.  

We note that Step 3.1 leads to a state machine model of the 

product that contains spontaneous transitions, which in general 

introduces nondeterminism. In the case that the extended ma-

chine contains no loop of (only) spontaneous transitions, then the 

product machine can be transformed into a (in general) non-de-

terministic machine that contains no spontaneous transition, as 

explained in [22]. The idea is to replace a sequence of spontane-

ous transitions ti (i=1, 2, … (n-1)) followed by an observable 

transition tn, by a modified transition tn, where all guards and 

update operations of the spontaneous transitions are deferred to 

tn. Assuming that the given transitions have the form ti = (si – 

bi [ Gi ] up i -> s i+1), where bi (i=1, … (n-1)) = ɛ (spontaneous), 

then transitions tn  has the form tn  = (sn – bn [ G1  (G2 o up1)  

 …   (Gn-1  upn-1 o … o up1)]  (upn o upn-1 o … o up1)  -> s i+1). 

This means, the update operations are performed by tn in the 

order of the spontaneous transitions, and the guard of the transi-

tion tn ensures that the guard conditions of the spontaneous tran-

sitions are satisfied. Note that a spontaneous transition with a pa-

rameter will introduce a FORALL quantification in the resulting 

guard for all values of this parameter. 

We note that in the case that the elimination of the spontane-

ous transitions does not introduce any nondeterminism and the 

state sn has no other incoming transitions, we do not need to elim-

inate these spontaneous transitions, and we can apply the pruning 

procedure of Section 4 directly on the product machine including 

the spontaneous transitions. 

 

5.6 Example: The Controller for the Calculator 

As an example, we consider the completed desired system be-

havior of S (Fig. 7(b)) and Component A (the calculator, see Fig. 

3). The architecture of this example is shown in Fig. 8, where the 

solution (controller) will obtain local copies of the variables of 

Component A and S. The product machine of S and A is in Fig. 

9. In this example, interactions i(p) and o(p) are  non-controllable 

by the controller as they are not visible, while all other interac-

tions are controllable.  

We note that for simplicity of presentations, we write in the 

following figures A1 for the assertion [ acc = n*reg   n > 0 ] of 

state a2 of component A, and Ap for the parameter-implied as-

sertion [ reg = w ].  

Component A
( plant )

Unknown component B
( controller )
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st, add, 
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Local variables: reg , acc , n

two

Local variables reg, acc, n of component A and w 

of the desired system behavior or environment S
 

Fig. 8. Architecture of the Calculaor example  

 

In the following, we go through the four steps of controller 

construction, as discussed in Section 5.1. The first step, the com-

pletion of the desired model S, was already discussed in Section 

5, and leads to the completed S shown in Figure 7(b). 

The second step of the controller construction (the product 

construction) leads to the product machine shown in Figure 9. 

The update statement of the i(p) transition from state (1, b) leads 

to the parameter-implied assertion Ap = [reg = w] which remains 

True in all succeeding states. 

In the third step (hiding and determinization), the transitions 

i(p) and o(p) are recognized to be hidden (unobservable) and 

therefore uncontrollable. In particular, the parameter of these 

transitions is also hidden from the controller. Therefore, the con-

troller cannot know the values of its own variables reg and w, 

since they are assigned by the hidden i(p) transition, and also the 

value of the variable acc is unknown, since it depends on reg. 

Only the value of the variable n is known since it is assigned by 

visible (controllable) transitions. However, the controller knows 

certain assertions that are associated with its major states.  

During the subsequent determinization sub-step, the hiding 

of i(p) leads to the combination of the states (1, b) and (2, a1) into 

a single state, which we call {(1, b), (2, a1)}, and similarly, the 

hiding of o(p) leads to the combined state { (3, c) , (1, a1) }. 

In the following we describe the fourth step of the controller 

construction: Pruning. Each major state of the product that con-

tains the Fail state of S, denoted as  in Figure 9, is a problematic 

state with assertion False and thus, such states should not be 

reached.  In the following, we explain the pruning process in sev-

eral steps. 
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Fig. 9. The product completed S (Fig. 7(b)) and Component A (Fig. 3) 

 

 Pruning the controllable two-transitions leading to the 

Fail state: Let us first consider the transition two from state { (3, 

c) , (1, a1) } in Fig. 9. The next state of this transition is a Fail 

state, which has the associated assertion False. Applying the 

prune procedure to this state and handling the incoming two tran-

sition, this transition obtains the guard False, which means that it 

cannot be executed and therefore is eliminated. In the same way, 

all other two transitions leading to the Fail states can be pruned 

in Fig. 9. We note that also transition two from state (1, b) must 

be pruned because it leads to the Fail state. However, this state 

is combined with state (2, a1) through the determination step. 

Therefore the two transition must also be pruned from state (2, 

a1). As a result, the state (3, a1) becomes inaccessible from { (1, 

b) , (2, a1) } and is eliminated with all its outgoing transitions. 

 Pruning non-controllable (spontaneous) transitions 

leading to the Fail state: The transition o(p) from state (1, c) 

leads to the Fail state. Since the transition cannot be pruned, its 

outgoing  state (1, c) becomes a problematic state with a False 

assertion which means it is a failing state and should not be ac-

cessible. Since out is controllable, we can prune the out transition 

leading to this state. Similarly, the i(p) transitions from states (2, 

b) and (3, b) lead to Fail states. Therefore we prune the st tran-

sitions that lead to these states. The states become inaccessible 

and can be  removed. 

 Dealing with the o(p) transitions from the state { (3, c) 

, (1, a1) }: The major states (3, c) in Figure 9, which is part of  { 

(3, c) , (1, a1) }, has two hidden outgoing o(p) transitions with 

guards [p = 2*w  p = acc] and [p ¹ 2*w  p = acc], respectively. 

As these transitions are non-controllable, to make the bad transi-

tion leading to the Fail state (written as ) impossible, we need 

the required Assrs
 (new)  for this state to be  p such that  p = ( 2 * 

w   p = acc). This means acc = 2 * w. Since Ap = [ reg = w ]  

holds, we have the assertion [acc = 2 * reg]. Then pruning con-

tinues by considering the two incoming transitions under the ac-

tions two and out. We note that the out transition from the state 

(3, a1) must be eliminated since the assertion [acc = 2 * reg] 

cannot be ensured. For the out transition from state (3, a2), [acc 

= 2 * reg] is ensured if we add the guard [ n = 2 ], since the 

starting state of that transition has the assertion [ acc = n*reg   

n > 0 ] which together with the guard ensures [acc = 2 * reg]. For 

the two transition from state (2, c) the required assertion for that 

state will become the same as for state {(3, c), (1, a1)}. Then the 

pruning of the incoming out transitions from the states (2, a1) 

and (2, a2) would be handled as the out transition to state { (3, c) 

, (1, a1) }.  

The resulting sub-machine of the product of Fig. 9 is shown 

in Fig. 10. The reader may observe that the obtained sub-machine 

includes only the paths that do not lead to any Fail () or a dead-

lock. We note that the resulting controller is a maximal subma-

chine that ensures that during an o(p) transition the parameter p 

satisfies the requirement [ p = acc = 2 * w]. The pruning of tran-

sitions is based on the visibility of the controller component (as 

shown in Figure 8), and in particular the fact that the controller 

cannot know the value of its own reg variable which is assigned 

during the hidden i(p) transition. If the controller could know the 

value of its reg variable, it could for instance allow for a weaker 

guard for the out transition from state (3, a2), namely [(reg = 0  

 n > 0)  [ n = 2 ] instead of [n = 2]. 

 

 

 

 

 

 

 

 

Fig. 10. The machine obtained after applying the pruning algorithm  

6 RELATED WORK 

According to our knowledge, the procedure we proposed for 

symbolically pruning a possibly infinite ELTS that may have pa-

rameterized and non-controllable interactions, with respect to 

some user defined requirements (given as assertions at states) is 

novel. The way our procedure Prune uses assertions is very sim-

ilar to the use of assertions and invariants for proving properties 

of programs. In other words, Prune utilizes for the considered 

ELTS the calculus for weakest preconditions developed for pro-

grams by Dijkstra [17]. The computation of weakest precondi-

tions for many types of programs under various restrictions is 

investigated in many papers. The reader may refer to Barnett et 

al. [23] for more related information.  In addition, Prune uses a 

backward propagation strategy which is well studied in verifica-

tion for solving the reachability problem over various types of 

state models. For example, closely related to the considered 

model, Delzanno [24] studied symbolic reachability using back-

ward propagation for Cache Coherent Protocols modeled as infi-

nite extended state machines over integer variables where guards 

can be represented as integer constraints. We note that efficient 

solutions for backward propagation, which usually use some 

combinations of model checking tools, abstraction, binary deci-

sion diagrams, and constraint satisfaction techniques, are well 

studied in numerous papers. The reader may refer to [24] for 

some related work. In this paper, we also use backward propaga-

tion as a strategy; however, our procedure is rather different from 

the previous backward procedures as we do not determine reach-

ability but rather derive a sub-machine of a given extended ma-

chine taking into consideration certain general and specific goals 
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or requirements, written as predicates at states, such that the con-

crete states that do not satisfy these requirements become inac-

cessible and no undesirable deadlocks are introduced while de-

riving the sub-machine. In the Conclusion section, we state how 

this previous work can be used to extend our work. 

To the best of our knowledge, the only earlier work on sub-

module construction for extended state machines (with possibly 

infinite state space) was presented by Daou and Bochmann in 

[25]. This work introduced the idea of state splitting for handling 

the pruning of the submodule behavior in order to avoid global 

interaction sequences that violate the given desired behavior of 

the system. This idea inspired us for the pruning procedure pre-

sented in this paper. We note, however, that [25] considered a 

very restricted form of ELTS where values of interaction param-

eters or variables are only copied, but never used for calculating 

new values through assignment expressions. As a consequence, 

state assertions were limited to equalities between variable val-

ues, and the procedure itself does not consider and handle user 

defined assertions at states.  

A method for the derivation of a controller from an extended 

state model is proposed by Ouedraogo et al. in [21]. However, 

the work in [21] considers the simplified architecture of Figure 

1(a) where all interactions are visible by the controller; in addi-

tion, the considered extended machine model is assumed to be 

finite (in terms of state space and variables domains) and the ap-

proach does not consider exactly the same control objectives 

(pruning requirements) discussed in this paper. Accordingly, the 

controller construction approach is simpler and always termi-

nates. Here we show that when considering the general architec-

ture (Figure 2(a)) and the assumed extended machine model 

(with possibly infinite state space and assertions at states), a so-

lution might not be possible in general. In fact, in this paper, a 

formula for obtaining the behavior of the controller is provided 

for possibly infinite LTSs and an algorithm is proposed, for the 

considered ELTS model and control objectives, and appropriate 

operators are utilized in the algorithm for constructing machine 

products, for complementing, and for determinization and prun-

ing. In addition, the work in [21] refers to individual concrete 

states while our pruning procedure is formulated at a higher level 

of abstraction using transition guards and state assertions. Again 

a major difference between of our approach and the work in [21] 

is that our approach provides the intended solution (controller) 

considering general user defined goals introduced as assertions 

at states. Thus, our construction approach of a supervisor is much 

involved as it has to satisfy certain user defined assertions taking 

into account that some interactions are non-controllable. In this 

case, restricting the guards of incoming transitions with non-con-

trollable interactions to certain major states with undesirable be-

havior is not possible; and there is a need to appropriately prop-

agate this bad behavior to the starting states of these transitions, 

and then do further propagation as needed. Also, as some inter-

actions are non-controllable, determinization is usually used 

while deriving the controller.  

We note that there exists other approaches for the synthesis 

of controllers for simple and extended state machines with partial 

observability where it is assumed that the controller observes 

states of the plant. The reader may refer to Kalyon et al. [26] for 

a related summary. These approaches to partial observability are 

rather different from what is considered in this paper and in [25] 

for extended machines and in [2-3], [27-28] for simple state ma-

chines, where partial observability of actions (not states) is as-

sumed. 

7 CONCLUSIONS 

This paper presents a procedure that symbolically prunes a given 

extended state machine leading to a maximal sub-machine that 

satisfies certain user-defined general goals, specified as asser-

tions at states, and other specific goals, such as the elimination 

of undesired deadlocks at certain states and fail states which 

should never be reached. The procedure also removes all unde-

sirable deadlocks which could be produced during pruning. Ap-

plication examples demonstrating several aspects of the pro-

posed procedure including its usefulness and limitations are pro-

vided. It is also worth mentioning that the presented pruning pro-

cedure can also be used for pruning non-deterministic extended 

state machines.  

As topics for further study, we mention the following. While 

the pruning requirements described in Section 4.1 are safeness 

properties and deadlocks, it would be interesting to further ex-

plore how the pruning algorithm could be adapted to take into 

account progress properties (liveness), and possibly eliminate 

execution sequences that are not useful for attaining a specific 

goal state. This aspect is only discussed informally in this paper 

(see Section 4.5.2).   

  The second contribution of the paper is the application of 

the pruning algorithm to the control of discrete event systems and 

submodule construction. In this regard, we also show how the 

general submodule (controller) construction algorithm for finite 

state machines can be adapted to extended (possibly infinite) 

state machine models. Here we consider certain traditionally 

considered specific control objectives in addition to certain gen-

eral user defined objectives. In this paper, we make abstraction 

from input and output; however, the work can also be applied 

when a distinction between inputs and outputs is necessary, i.e. 

to systems modeled as extended I/O automata; for example.  

As another topic of further research, it would be interesting 

to implement and experimentally assess the proposed work and 

also consider efficient decidable implementations of both the 

pruning and the submodule construction problems. This can be 

done by either considering various restricted versions (in terms 

of types of variables, assertions, and guards) of the considered 

extended model or by using combinations of model checking 

tools, abstract interpretation, binary decision diagrams, and con-

straint satisfaction techniques [24], [26], [29-31].  
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