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Abstract Several overlay-based live multimedia streaming

platforms have been proposed in the recent peer-to-peer stream-

ing literature. In most of the cases, the overlay neighbors

are chosen randomly for robustness of the overlay. How-

ever, this causes nodes that are distant in terms of proxim-

ity in the underlying physical network to become neighbors,

and thus data travels unnecessary distances before reach-

ing the destination. For efficiency of bulk data transmission

like multimedia streaming, the overlay neighborhood should

resemble the proximity in the underlying network. In this

paper, we exploit the proximity and redundancy properties

of a recently proposed clique-based clustered overlay net-

work, named eQuus, to build efficient as well as robust trans-

port overlays for multimedia streaming. To combine the ef-

ficiency of content pushing over tree structured overlays and

the robustness of data-driven mesh overlays, higher capacity

stable nodes are organized in tree structure to carry the long

haul traffic and less stable nodes with intermittent presence

are organized in localized meshes. The overlay construction
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and fault-recovery procedures are explained in details. Sim-

ulation study demonstrates the good locality propoerties of

the platform. The outage time and control overhead induced

by the failure recovery mechanism are minimal as demon-

strated by the analysis.

1 Introduction

With the widespread adoption of broadband residential In-

ternet access, live multimedia streaming over the IP net-

work may be envisioned as a dominating application on the

next generation Internet. Global presence of the IP network

makes it possible to deliver large number of commercial

as well as amateur TV channels to a large population of

viewers. Based on the peer-to-peer (P2P) communication

paradigm, live multimedia streaming applications have been

successfully deployed in the Internet with up to millions

of users at any given time. With commercial implementa-

tions like CoolStreaming [21], PPLive [8], TVAnts [15] and

UUSee [20], among others, large volumes of multimedia

content from hundreds of live TV channels are now being

streamed to users across the world.

Although naive unicast over IP works for delivering mul-

timedia stream to a restricted small group of clients, the

overwhelming bandwidth requirement makes it impossible

when the number of user grows to thousands or millions.

Several different delivery architectures are used in practice

for streaming of live video content, which include IP mul-

ticast [5], infrastructure-based application layer overlays [7]

and P2P overlays. P2P overlays are gaining popularity due

to their ease of large-scale deployment without requiring any

significant infrastructure.

Live multimedia streaming over P2P networks has sev-

eral challenges to be addressed. Unlike file sharing, the live

media need to be delivered almost synchronously to large



number of users, with minimum delay in playback com-

pared to the playback at the source. Due to the large vol-

ume of data in the media stream, it is of paramount interest

to avoid redundant transmission of the stream. Construct-

ing efficient paths for streaming is especially hard because

the nodes participating in the overlay have very minimal in-

formation regarding the topology of the underlying phys-

ical data transmission network. Moreover, the intermittent

joining and leaving behavior, or churn, of the nodes makes

it harder to maintain the overlay delivery paths once con-

structed. Heterogeneity of node bandwidths adds further com-

plexity to the problems.

Existing P2P live streaming platforms can be broadly

classified into two categories – tree based and mesh based.

In the tree based platforms, nodes are organized in a tree

topology with the streaming source at the root. The media

content is pro-actively pushed through the tree. Although

efficient in terms of avoiding redundant transmissions, the

nodes that happen to be interior nodes in the tree bear an un-

fair burden of forwarding the content downstream compared

to the nodes that become leaves of the tree. Some multi-

tree approaches like SplitStream [2] and ChunkySpread [17]

have been proposed that avoid this imbalance taking advan-

tage of multiple description coding of the media. Neverthe-

less, a major argument against the tree-based overlays is that

it is expensive to maintain the trees in presence of frequent

node join and leave or churn.

A dramatically different approach is to allow each node

to choose a small random set of overlay neighbors and thus

create a mesh topology. The stream is divided into small

fragments and each node comes to know what fragments

are possessed by its neighbors through periodic exchange

of their buffer-maps [21]. Required fragments to fill the cur-

rent playback buffer are then downloaded or pulled from the

neighbors as needed. Because of the unstructured and ran-

dom nature of the topology, the mesh-based platforms are

more robust to churn. However, there are several inherent

disadvantages in the pull process such as longer delay and

higher control overhead.

In most of the P2P streaming platforms, the overlay neigh-

bors are chosen randomly [20,21], which is important for

maintaining global connectivity of the overlay network. How-

ever, this causes nodes that are distant in terms of proxim-

ity in the underlying physical network to become neighbors.

There are two problems that arise from such random selec-

tion of neighbors. First, data travels unnecessary distances

before reaching the destination. Second, because the data

travel path is uncorrelated with the locality of the destina-

tion nodes, two nodes of very close proximity may receive

data through completely disjoint paths from the source. This

causes significant redundancy in data transmission and costs

a huge amount of network bandwidth for the whole plat-

form.

In this paper, we present the design of a P2P media stream-

ing platform named CliqueStream that exploits the proper-

ties of a clustered P2P overlay to achieve the locality prop-

erties and robustness simultaneously. The clustered peer-to-

peer overlay named eQuus [12] organizes the nodes into

clusters of proximal nodes. It assigns identifiers to clusters

and replicates the routing information among all nodes in

a given cluster. The assignment of identifier also imposes a

structured mapping of the identifier space to the proximity

space.

We also exploit the existence of more stable and higher

bandwidth nodes in the network to allow construction of ef-

ficient delivery structures without causing too much over-

head from churn. Existence of stable nodes, or super nodes,

are observed both in file sharing networks and media stream-

ing networks [18]. Our proposed platform elects one or more

stable nodes of highest available bandwidth in each clus-

ter and assigns a special relaying role to them. To maintain

transmission efficiency, a content delivery tree is constructed

out of the stable nodes using the structure in the underlying

routing substrate and content is pushed through them. Less

stable nodes within a given cluster then participate in the

content dissemination and pull the content creating a mesh

around the stable nodes.

In most implementations of P2P streaming platforms, a

separate streaming overlay is created for distribution of me-

dia from each source, usually called a channel. We argue

that the user’s participation behavior for individual chan-

nel is significantly different from the participation behavior

with respect to the whole streaming platform. A user usually

switches channels frequently while keeping the TV turned

on for a long time. Therefore it is intuitively beneficial to

have a two-layer architecture, where a single routing over-

lay is maintained for the whole platform and streaming paths

are rapidly constructed for individual channels based on the

structure of the substrate. Performance comparison between

per-channel overlay and single overlay supporting multiple

channels also supports the latter organization [4].

The rest of the paper starts with a review of the relevant

features of the clustered P2P overlay named eQuus and dis-

cussion on the modifications we made into it. The design of

the platform with details of its functional components is pre-

sented in Section 3. In Section 4 we discuss the locality and

fault-tolerance properties of the platform.

2 eQuus: a Clustered DHT

2.1 Overview of eQuus

eQuus [12] is a structured peer-to-peer overlay which forms

a distributed hash table (DHT) consisting of clusters or cliques

of nodes instead of individual nodes. A unique identifier

(id) is assigned to each clique instead of each individual



node. Nodes in the same clique are closer to each other

than nodes in different cliques, based on some proximity

metric such as latency. These nodes maintain an all-to-all

overlay neighborhood among them, and hence they are col-

lectively denoted as a clique. The number of nodes in a

clique and the spread of these nodes in the proximity space

are small enough to allow such all-to-all neighborhood. Al-

though the DHT overlay is formed among cliques, individ-

ual nodes keep data structures (or routing tables) to represent

the overlay, by maintaining pointers to individual nodes in

other relevant cliques. IP addresses of the nodes are stored

along with clique ids as pointers.

Unlike many DHT overlays, the nodes or the cliques do

not assume random ids. Rather, the segmentation of the id-

space closely resembles the segmentation of the proximity

space into cliques. If all possible ids define the id space, each

clique occupies a certain numerically contiguous segment

of the id-space. Due to the id assignment process explained

later in this section, cliques with numerically adjacent ids

occupy adjacent segments of the proximity space. All the

existing cliques in the network can thus form a successor-

predecessor relationship based on the numerical sequence

of the ids such that the successor and predecessor cliques

are adjacent to each other.

As a new node joins eQuus network it becomes a mem-

ber of the closest clique in the proximity space. To do this,

the new node has to find a node in the desired clique. If it

is assumed that an arbitrary node already connected to the

overlay is known, it is possible to discover a node in the

closest clique in logarithmic number of message exchange

rounds as described in [12]. When the new node sends a join

message to the contact node, it returns the list of all nodes

in its routing table. The new node then determines the clos-

est among the newly discovered nodes by pinging. Another

join message is then sent to the closest node and the whole

process is repeated until no node closer than the previously

found nodes is discovered. An alternative method of find-

ing the closest node connected to the overlay is to perform

an expanding ring search in the IP network and contacting

the discovered nodes for overlay connectivity. However, in

this approach, the search time depends on the density of the

overlay conneted node in the proximity of the new node and

is not related to the number of nodes in the overlay.

Arrival of new nodes may cause a clique to contain more

nodes than a system-defined threshold. The clique then off-

shoots a new clique by splitting itself into two halves. One of

the halves retains the previous id. The other half gets a new

id that differs from its parent’s id by only one bit, effectively

splitting the id space occupied by the parent clique into two

halves. As the network grows, numerically consecutive seg-

ments of the id space is thus assigned to adjacent cliques. In

fact, if the cliques are ordered by their numerical id they oc-

cupy the consecutive positions in a space-filling curve that

fills the whole proximity-space. This is illustrated in Fig-

ure 1(a). Thus two cliques with numerically close ids are

always close to each other in the proximity space, although

the reverse may not always be true. Moreover, the longer the

matching prefix of two different ids, the closer they are po-

sitioned. In other words, all the nodes in the whole id space

may be hierarchically divided into local groups based on the

length of the matching prefix in their ids. For example the

cliques sharing id prefix 1011 may resemble a local group

which is further divided into two sub-groups with prefixes

10110 and 10111.

A message is routed towards a clique containing a cer-

tain id using the standard prefix matching algorithm. All

nodes in the same clique share the same routing table in

terms of clique neighborhood. The routing table contains

clique ids with different length of prefix match with the cur-

rent cliques id. For each clique id, IP addresses of k random

nodes of that particular clique are stored. The routing table

at the nodes in a given clique may vary in terms of these k

pointers.

The prefix-matched routing implies that if a message is

routed from clique A to clique B and also to clique C, the

message will be first carried to a region that shares the com-

mon prefix of B and C along a common path. The path will

then diverge towards each of B and C. The id assignment

process ensures that the closer B and C are in terms of prox-

imity, the longer is their common prefix. This implies that

messages from a single source to multiple destinations in

close proximity will travel along a long common path before

diverging (Figure 1(b)). We exploit this property to create

network efficient dissemination trees for live video stream-

ing from a single source.

2.2 Introducing Stable Nodes

We modify the original design of eQuus by introducing sta-

ble nodes. Heterogeneous stability and capacity character-

istics of the nodes are common in peer-to-peer networks.

Thus the existence of stable nodes, or super nodes, is well-

established in both file sharing and streaming peer-to-peer

networks [18]. In the case that all the nodes receiving the

streams are similarly low capacity and unstable, some high

capacity servers may be deliberately introduced in locations

across the network which may act as stable nodes.

We assume that each clique maintains t stable nodes all

the time, where t is a system parameter. Stable nodes are

elected from the existing eligible nodes in the clique. A node

becomes eligible to be a stable node after being alive for a

certain amount of time T , based on the observation that the

more uptime a node has spent, the longer is its expected time

before departure [18]. The clique always elects t nodes hav-

ing highest outgoing bandwidths among the eligible nodes.

For bootstrapping, when there is a single node in the whole



(a) The mapping of id-space to proximity

space in eQuus (reproduced from [12])

(b) Streaming tree over eQuus cliques (c) Streaming topology in CliqueStream

Fig. 1 Proximity and streaming topology

network, it immediately becomes a stable node. The elec-

tion is initiated whenever the recruitment of a new stable

node becomes necessary.

To reduce the overhead of maintaining a replica of the

clique routing table at each node of a clique, we replicate

the table among the stable nodes only. However, the all-to-

all neighborhood of the nodes within a clique still remains.

In addition, each node in a clique maintains the knowledge

of which nodes in the clique are acting as stable nodes. This

knowledge is updated whenever a new stable node is elected

or an existing stable node ceases to act as a stable node.

When a clique is split, a stable node remains a stable node in

the cliques that are born after the split of a clique. New stable

nodes are elected at the event of split to maintain sufficient

number of stable nodes in each clique.

2.3 Modification in the Routing Mechanism

Inclusion of the stable nodes causes some modifications to

the original routing method of eQuus. These modifications

also assist in the construction of the transport overlay such

that the stream of any particular channel is carried between

two different cliques through only one link. Because inter-

clique neighborhood is maintained only by the stable nodes,

messages are routed through the stable nodes when travel-

ing between cliques. Each stable node in a clique maintains

addresses of k nodes for each clique it has as its routing ta-

ble entry. Each node periodically updates this list of k nodes

and always tries to have at least one of them to be a stable

node. While routing a message to a particular clique, based

on the routing table match, the stable node is preferentially

selected instead of randomly choosing one of the k nodes.

However, the routing works even if none of the k nodes is a

stable node. If a non-stable node receives a message, it for-

wards the message to some stable node in the same clique.

In the live streaming platform, a CliqueStream layer is

implemented on top of the modified eQuus routing substrate.

The routing substrate provides the service of routing any

message to one of the stable nodes of the clique specified by

the destination clique id. The CliqueStream layer constructs

the transport overlay for streaming, using the path taken by

a message when routed by the substrate. To enable such

construction, the routing substrate notifies the CliqueStream

layer by invoking a callback method named forward(msg)

before forwarding any CliqueStream message to the next

hop. The forward method may modify the message includ-

ing its destination. The routing layer then processes the mod-

ified message and forwards it accordingly. To stop forward-

ing of the message to further hops, the destination clique id

may be modified to a null value. When a message arrives at

its destination node, the routing layer delivers the message

to the CliqueStream layer by invoking the deliver method.

3 System Overview

In this section we present the details of the CliqueStream

video streaming platform. The purpose of the platform is

to facilitate live streaming of multimedia content generated

from arbitrary source nodes to a large set of destinations

nodes. We use the term channel to denote a live stream of

content from a single source, in a similar way used by tele-

vision networks. In CliqueStream, a large number of stream-

ing channels can be delivered using a single routing overlay,

instead of creating and maintaining a separate overlay for

each channel. A transport overlay is created on the routing

substrate described in Section 2, for dissemination of each

channel. The shared routing substrate allows better balanc-

ing of the forwarding load among the participating nodes.



3.1 Overlay Topology and Streaming Procedure

The topology of the transport overlay in CliqueStream is a

combination of tree and mesh structure. We exploit the prox-

imity features of the routing substrate described in Section 2

to form an efficient topology. We consider the total amount

of distance travelled by a packet of media content in the

proximity space to be delivered to every receiver, as a mea-

sure of efficiency. This reflects the load on the underlying

physical network exerted by the stream transport overlay. A

more compact transport overlay is thus treated as more a ef-

ficient one.

Because the nodes in a single clique are close to each

other, arbitrarily interconnecting them in a mesh does not

incur any significant inefficiency in the network. If at least

one node in a clique receives the stream, other nodes in the

same clique can form data-exchange partnerships as in Cool-

Streaming [21] and receive the channel. Therefore, we need

some mechanism to deliver the stream to at least one node in

each clique that has some nodes trying to receive the stream.

For each channel, a dissemination tree is formed including a

single stable node from each participating clique. The source

of the stream is at the root of the tree. The stream is pushed

from the source to all the participating stable nodes. The

tree-mesh topology for dissemination of a streaming chan-

nel is illustrated in Figure 1(c). The following sub-section

explains the protocol for forming the transport overlay.

3.2 Data Structures for the Overlay

All the nodes that receive or forward a channel constitute the

transport overlay for that channel. There may be some stable

nodes that do not intend to receive the channel but partici-

pate in the group as relay nodes. We use the term member

node to collectively denote the recipient and the relay nodes

in the transport overlay of a channel. Each channel is identi-

fied by a globally unique name. We assume the existence of

a directory service that returns the IP address of the source

node for each channel name.

The tree structure of the inter-clique transport overlay is

maintained by the stable nodes in the participating cliques.

Each stable node in a clique maintains a table channelList

that stores information about all the channels being received

or relayed by at least one node in the clique. The entry for

each channel maps a channel name to a channelInfo data

structure. There may be a single or several stable nodes in

each clique depending on the replication strategy. In case

there are multiple stable nodes, a consistent replica of the

channelList is maintained in each of them. In our design, we

decided to use at least two stable nodes per clique, to facil-

itate failure recovery as discussed later. For each channel,

if one of the stable nodes acts as a relay node, the other is

maintained as a backup-relay. The replication of the data-

structures among the stable nodes adds to the stability of the

tree structure. Having multiple stable nodes also facilitates

sharing of the relaying load of different channels among the

stable nodes. The number of stable nodes in a clique may

increase based on the relaying load.

The channelInfo contains the meta-data needed to main-

tain the structure of the transport overlay for the channel.

This includes pointers to the neighboring nodes in the trans-

port overlay, both intra-clique and inter-clique. Intra-clique

pointers are relayNode and backupRelayNode, and only IP

addresses are stored for them. For inter-clique pointers, both

clique-id and IP-address are stored. Inter-clique pointers in-

clude parent and backupParent – the relay node and the

backup relay node in the upstream clique, and childList –

list of relay nodes in the immediate downstream cliques in

the transport overlay. To avoid inconsistency, updates to the

channelInfo is always initiated by the relay node and then

propagated to the other stable nodes.

Besides the replicated information of the tree structure

maintained by all the stable nodes, the stable node that acts

as the relay node in the clique for a given channel, maintains

some additional information for the intra-clique part of the

transport overlay. This includes a streamBuffer that holds a

certain number of current segments of the stream that are re-

layed, and a corresponding bitmap bufferMap to identify the

segments. The relay node also maintains a recipientList that

lists IP addresses of all the nodes in the same clique that are

receiving or relaying the channel, including the relay node

itself. Each node in the clique, regardless of being stable or

not, maintains a streamBuffer, a bufferMap and partnerList

for every channel it currently receives. partnerList is a list

of the nodes in the same clique with whom this node is ex-

changing the stream segments. Altogether, these data struc-

tures maintain the mesh-structured transport overlay inside

a clique.

3.3 Node Join

When a node connected to the routing substrate wants to join

a group to receive a channel, it sends a join request to one of

the stable nodes in its own clique. Receiving a join request,

the stable node first looks up the channelList if the requested

channel is already there and which stable node is relaying it.

If found, the join message is forwarded to that stable node.

The relaying stable node maintains a recipientList that lists

the nodes in the same clique that are receiving the channel.

When the relaying stable node receives the request, it adds

the requesting node to the list and returns a random sub-

set of the recipientList to the requesting node. Receiving the

reply, the requesting node can now request those nodes for

their current bufferMap download stream segments. In turn,



those nodes also know the presence of the new node in re-

cipientList and may include it in their partnerList.

If the stable node, on receiving the join request, does not

find the requested channel in its channelList, it creates an en-

try for that channel making itself as the relay node and some

other stable node as backup relay node. It then looks-up the

address of the source node for the channel from the directory

service and sends a joinRemote request to the source node to

include the stable node as a member of the group. On receiv-

ing the joinRemote, the source sends an addNode message

using the routing substrate, towards the clique from which

it received the joinRemote request. The addNode message

travels through nodes in several other cliques before reach-

ing the joining clique. The routing substrate routes these

inter-clique messages through the stable nodes (Section 2.3).

While traveling through the cliques, the addNode message

creates or extends the tree structured transport overlay and

establishes a streaming path from the root to the joining sta-

ble node using one stable node in each intermediate clique.

When the addNode reaches a stable node of an inter-

mediate clique, the data structures are updated to reflect the

changes in the tree; the transport layer is notified by the for-

ward method, it looks up its channelList table to find the

relaying stable node for the particular channel. In case no

entry for the channel is found in the channelList, the sta-

ble node initiates the relay election protocol to elect one

of the stable nodes as relay node for the channel. The sim-

plest version of this protocol is to select itself. Alternatively,

the protocol may select the stable node with highest avail-

able uplink bandwidth, to ensure balancing of the relaying

load among the stable nodes. At the same time, a back-

upRelayNode is also selected to complement the relay node.

The addNode message is then forwarded to the existing or

the newly elected relay node for that channel.

When a stable node, being the relay node for the chan-

nel in its clique, forwards the addNode to another clique to-

wards the destination, it stores its clique id and IP address

and IP address of the backup relay node in the message.

The relay node in the receiver clique updates the parent

and bakupParent entries for that channel based on this in-

formation. The addNode message is then forwarded further

towards the destination clique. Besides, the relay node also

sends an addNodeAck message to the parent node. Receiving

the addNodeAck, the upstream relay node adds the sender of

the message to its childList table and initiates pushing of the

stream to the new child along with others.

When the addNode message is finally delivered to the

stable node that originated the joinRemote request, it updates

the channelInfo data structure for the channel in a similar

manner as above. A response is then sent back to the node

that initially sent the join request, containing the current

recipientList and bufferMap. The joining node then starts

downloading the stream segments from the relay node or

other nodes possibly included in the recipientList. The mes-

sage exchange protocol for node join is illustrated in Fig-

ure 2(a).

3.4 Graceful Departure of Nodes

A node may leave the transport overlay of a channel or leave

the whole system. The underlying routing substrate needs

to be updated when a node leaves the system. In case the

number of nodes in a clique becomes lower than a thresh-

old, the clique merges with its successor clique. Details of

this are discussed in [12]. When a non-stable node leaves

the transport overlay of a channel, it sends leave message to

all its mesh neighbors, including the relaying stable node.

The relay node updates the recipientList and other neigh-

bors update their neighborhood table. If the number of mesh

neighbors becomes lower than a system defined threshold, a

node can refresh the neighbor list by asking the relay node

for a random list of recipients in the clique.

A stable node does not depart from relaying a channel if

it is alive and connected to the routing substrate, unless both

of its childList and recipientList are empty. If it wants to

leave the CliqueStream platform including the routing sub-

strate, then it initiates a relay election protocol among the

other stable nodes in the clique and the stable node with

highest available bandwidth is selected. Then the leaving

node initiates the handOver protocol to transfer the relay-

ing role for the channel it was relaying. The parent node

is notified of the new relay node and the channelInfo for

the particular channel is updated in all the stable nodes in

the clique to reflect the assumption of new relay node. The

departing stable node also initiates a stable node election

protocol concurrently. The node departs after initiating the

handOver.

3.5 Failure of Nodes and Reconstruction of Delivery Trees

Apart from graceful departure, nodes may suddenly depart

or crash. Here we describe how node failures are detected

and how the streaming tree is reconstructed.

The failure of a non-stable node is detected by its mesh

neighbors and their neighbor list is replenished by finding

new neighbors, in the same way as in graceful departure.

When a stable node fails, all the downstream stable nodes,

in the streaming tree for each of the channels the stable

node was relaying, stop receiving the stream. After pass-

ing a small threshold of stoppage time, all of them will re-

act to recover from the failure of the upstream relay node.

However, the protocol we devised quickly resolves which

relay node actually failed and then transfers its responsibil-

ity to the back-up relay node in the same clique. Failure of

the relay node is also detected by the backup relay node as
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Fig. 2 Message exchange during node join and failure recovery

the stable nodes in a clique periodically exchange heartbeat

messages.

Any stable node, detecting the stoppage of receiving the

pushed stream to itself, checks whether its parent is still alive

by sending an isAlive message to the parent and waits for an

alive message as reply. In case the reply timeouts, it sends a

recoverTree message to the node designated as backupPar-

ent to take over. On receiving the recoverTree message or de-

tecting the failure of the relay node through heartbeat time-

out, the backupRelayNode initiates a recovery of the link.

It retains a replica of the channelInfo data structure, and it

knows the parent node of the failed relay node. A handOver

message is sent to that parent to consider the backup node

as a child instead of the failed node. Thus the failure is re-

covered completely locally. A new backup relay node is also

designated at this time. The failure recovery procedure is il-

lustrated in Figure 2(b).

In the very unlikely event when both the relay node and

backup relay node fail concurrently, the tree will not be re-

covered and the node that sent the recoverTree message to

the backup parent will not receive any stream data. Pass-

ing a certain amount of time without receiving any stream

data after receiving the alive message from the parent or af-

ter sending the recoverTree message, the downstream nodes

will realize that both relay and the backup relay failed in

some upstream node. All of these downstream relay nodes

will join the streaming group independently using the join

procedure.

3.6 Split and Merge of Cliques

As described in Section 2, when arrival and departure of

nodes in the routing overlay make a clique too large or too

small, the clique splits into two or merges with its successor

clique. In addition to the routing table updates done by the

routing substrate, the tree structure of the transport overlay

may also need to be updated during split and merge.

When a clique merges with its successor, we denote the

former as merging clique and the latter as merged clique.

The new clique after merger retains the id of the merging

clique and the id of the merged clique vanishes. The stable

nodes of the previously individual cliques maintain their sta-

ble status for a while. They update their channelInfo data by

merging the data from the merging and the merged cliques

including all channels relayed by one or the other or both of

these cliques. In case two relay nodes are found for the same

channel, the one that earlier belonged to the merging clique

prevails and the children from the relay in the merged clique

are transferred to that node.

When overpopulated, a clique splits into two, and one

of them retains the previous clique’s id. Let us denote this

clique as primary, and the other clique as offspring. The sta-

ble nodes of the previous clique remain as stable nodes in

the new cliques and they belong to either the primary or the

offspring clique according to the proximity rules of split-

ting. The channels relayed by the stable nodes belonging to

the offspring clique may need to be handed over to the sta-

ble nodes in the primary clique to make the streaming tree

consistent with the routing tables. This is needed only if the

channel has a non-empty childList. In case there are some

recipient nodes in the offspring clique for that channel, the

stable node re-joins the channel using the new clique id be-

fore performing the hand-over. In case a channel relayed

by a stable node in the primary clique has some recipient

now belonging to the offspring clique, they are requested to

re-join the channel. This will result in a stable node in the

offspring clique to become a relay node for that channel.

Note that new stable nodes are recruited in both the primary

and the offspring clique as necessary to accommodate the

channels. At the beginning, the stable nodes in the offspring

clique are underloaded. However, they soon get new relay

loads when new join messages are routed through them.



4 Analysis of System Features

In this section we discuss the notable features of the CliqueStream

platform. The main argument of the paper is that clique-

based overlays allow creation of a streaming topology with

good locality properties compared to other approaches. The

CliqueStream approach also allows fast and localized recov-

ery mechanism in presence of node departures. The follow-

ing sub-sections discuss each of these features in details.

4.1 Locality

The locality property in the overlay network is achieved when

overlay neighbors are in close proximity in the physical net-

work. There are twofold benefits of forming a locality-aware

overlay – first, the stretch of the streaming path from the

source to the recipient nodes is minimized, and second, a

significant portion of the streaming paths from the source to

each individual recipient are shared. To demonstrate these

two aspects of locality, we performed some simulation ex-

periments.

For the simulation model, we assumed that the nodes

can be laid out in a 2-dimensional Euclidean space based

on some proximity metric, such as network latency. We also

assume that the nodes are uniformly distributed in the 2-

dimensional space. While the uniform distribution does not

accurately reflect the node distribution in large networks like

the Internet, several works have shown that nodes in the In-

ternet can be mapped on an Euclidean space with good ac-

curacy [6].

First, we tried to demonstrate that, if a message is routed

from a source node to two different destination nodes, the

fraction of the path that is common to both routing paths is

correlated to the distance between the two destinations. This

implies, when two nodes are close enough in the Euclidean

space, a large portion of the paths from the source to the two

nodes are shared. We measure the commonality of the two

paths using a convergence metric used in [1]. If dc is the

length of the common path and d1 and d2 are the lengths of

the paths from the diverging point to the two nodes, then the

convergence metric C = ( dc

dc+d1

+ dc

dc+d2

)/2. C has a value

0 when the two paths are completely disjoint and 1 when

they are completely shared.

We created an eQuus overlay of 100000 nodes, where

the minimum and maximum clique size parameters were set

to be 32 and 128, respectively. The length of the id was 64

bits. The parameter b that defines how many bits of the id are

matched in each routing hop was set to 2. Note that the max-

imum fan-out of a streaming tree in CliqueStream is 2b. We

chose 100 random nodes as source, and for each source we

chose 100 random pairs of destination nodes. The conver-

gence metric is then computed for each pair of paths. In the

simulation runs, we placed the nodes on an arbitrarily cho-

sen 3500 × 3500 2-d plane. The length (or cost) of an over-

lay link between two nodes, which is used for computing

the convergence factor and network load (defined later), is

computed as the Euclidean distance between the two nodes

on the given plane. Figure 3 plots the average convergence

metric against the distance between two destinations. This

clearly shows the correlation of convergence to the distance

between the pair of destinations.

In the next set of experiments, we evaluated the proper-

ties of the streaming tree created over the routing substrate.

We constructed a routing substrate with 50000 nodes and

constructed a streaming tree using a random subset of nodes.

For comparison, a random tree was created with the same set

of nodes joining the tree in the same order. Each newly join-

ing node randomly chooses one of the existing tree-nodes as

its parent. To evaluate the stretch of the source-to-recipient

streaming paths we used the ratio of the length of the routing

path to the length of the shortest possible source-to-recipient

path (which is the Euclidean distance). The average stretch

for source-to-node paths is computed for various sizes of

transport overlays. To evaluate the load on the network due

to redundant data transmission paths, we used a network

load metric that counts the total length of paths traveled by a

message (and its replicas) to disseminate the message from

the source node to all the recipients. For comparison across

different sizes of transport overlays, the metric is normal-

ized by dividing it by the number of nodes in the transport

overlay.

We considered two other types of optimally constructed

trees for comparison– one that has minimal average stretch

for the source-to-destination paths, and the other that has

minimal network load. The optimal stretch tree is constructed

by connecting the newly joining node as close as possible to

the root, subject to the maximum fan-out constraint (which

is the same as in CliqueStream). The optimal load tree is

constructed by connecting each newly joining node to the

node that is closest to the new node.

Figure 4 compares the average stretch of the source-to-

recipient paths for different tree construction protocols. The

CliqueStream trees have significantly lower stretch than ran-

dom trees and are pretty close to the optimal stretch trees.

In fact, the stretch of a CliqueStream tree is defined by the

stretch of the lookup paths in the routing substrate, which

is bounded by the logarithm of the total number of nodes in

the substrate.

Figure 5 compares the network load per member met-

ric for different tree construction protocols. It shows that

the network load per node in CliqueStream is significantly

lower than that in the random tree. The network load of

CliqueStream is also lower than that of the optimal stretch

tree and pretty close to that of the optimal load tree. Another

observation is that the network load per node actually de-
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Fig. 6 Use of stable nodes reduces the network load

creases when more nodes are added in the tree. This implies

better scalability of the CliqueStream platform.

The benefits of using stable nodes in CliqueStream is

evaluated in Figure 6. The main argument behind using sta-

ble nodes is that it eliminates redundant streaming paths

and thus reduces the network load. This effect is demon-

strated in Figure 6, where the tree in CliqueStream with sta-

ble nodes causes less network load irrespective of the size

of the group. If stable nodes are not considered and a stream

is forwarded along the eQuus routing paths from source to

individual nodes, there may be multiple overlay links carry-

ing the traffic between the nodes between the same pair of

cliques, as illustrated in Figure 7(a) and 7(b).

The use of stable nodes, however, causes some of these

nodes to act as relay node even if the node itself is not re-

ceiving the particular channel. This may result in unneces-

sary relay load for the stable nodes. The worst case scenario

occurs when each member of every clique is recipient of

a different channel. In this case, if there is only one relay

node per clique, each relay node has to relay all the chan-

nels to 2b downstream relay nodes. On the other extreme,

the maximum benefit of aggregation of streaming paths in

(a) No stable node (b) With stable node

Fig. 7 Stable nodes eliminate redundant paths

the stable nodes can be achieved for very popular channels

and when the popularity of different channels are concen-

trated in different network proximities. To avoid the worst

case scenario, CliqueStream recruits more stable nodes in a

clique when the relay load exceeds the capacity of the exist-

ing stable nodes. The number of stable nodes in a clique is

bounded only by the total number of nodes in the clique. In

any case, the relay load on a stable node for a single channel

is bounded by a constant 2b.



4.2 Startup Delay

The startup delay is an important metric of user perceived

performance in a video streaming system. It is defined as

the time elapsed from the time when the user expresses her

intention to receive a channel of video to the time the stream

starts on the display. Factors that contribute to this startup

delay are the time required to connect the node to the sys-

tem (connection time), and the time required to activate the

reception of the channel (channel switch time).The latter in-

cludes time for signaling, for the transmission of the video

frames and the playout buffering time for accumulating suf-

ficient stream packets in the local buffer before starting the

playback. The user experiences the cumulative delay for both

of the joining times when she turns on her node, (e.g. the set-

top box). However, when the user switches to a new channel

while having her node turned on, only the channel switching

time is experienced.

The connection time is the time required for joining the

routing substrate. It is equivalent to the node join time in

eQuus, which is the time required for 2 log2b (N/c) round

trip messages [12]. Here N is the total number of nodes in

the routing overlay and c is the number of nodes per clique.

The channel switch time is the time required to join the

transport overlay of a channel. A node either needs to create

a mesh connection with the nodes in the same clique that

are already in that transport overlay, or ask the stable node

in the clique to join the streaming tree of the overlay. In the

first case, three round-trip message exchanges are required

– one round to get a list of in-clique nodes that are receiv-

ing the channel, and one round to establish the partnership

with them. The stream packets are pulled from the partners

in the third round. In the second case, 3 + 2 log2b (N/c)

one-way messages are exchanged before the first packet of

the stream arrives at the joining node. This shows that the

channel switching time of the user is at most one third of the

time needed for the initial startup.

The buffering time depends on the system defined play-

back buffer size, which in turn is based on the jitter experi-

enced in the stream. Our overlay design does not affect the

stream jitter, hence we leave the buffer size to be determined

empirically.

4.3 Playback Latency

Playback latency, another important metric for user perceived

performance in video streaming systems, is defined as the

time lag between the occurrence of a live event at the source

and the playback of the event at the node where the stream

is being watched. Transmission time – the time needed for

a stream packet to travel from the source to the playback

node, and buffering time are the contributors to the playback

latency.

The transmission time has two parts – the time for a

packet being pushed through the tree and the time for pulling

a packet in the mesh inside a clique. In each part, the trans-

mission time equals the number of overlay hops times the

forwarding time at each hop, plus the sum of the latencies of

the hops in the underlying network. Number of overlay hops

in the tree is log2b(N/c) in the worst case. The total under-

lay latency equals the stretch times the distance between the

source and the playback node in the latency space. As de-

scribed in eQuus [12], the stretch is bounded by a constant

and independent of N . Inside a clique, the number of hops

within the mesh is logarithmic to the clique size, because

each packet is distributed along an induced tree. Altogether,

the total transmission time is O(log N).

An interesting feature of the CliqueStream platform is

that the playback latency is highly correlated to the locality,

i.e. the latency at two nearby nodes are similar. This follows

from the fact that nodes in the same clique receive the stream

almost along the same path, and the streaming path for nodes

in nearby cliques are also largely shared. This effect is fur-

ther demonstrated by a simulation study. Figure 8(a) shows

the normalized difference in the total latency of the over-

lay hops in the inter-clique part of the transport overlay,

for pairs of receiver nodes at different distances in the la-

tency space. Figure 8(b) shows the corresponding difference

in number of hops from the source. The difference in total

latency clearly shows the correlation with the distance be-

tween the receiver-pair. The difference in number of hops

does not grow much for distant pairs of recievers, possibly

because the maximum number of overlay hops for the given

network size was reached.

4.4 Failure Recovery and Availability

Improved fault tolerance of CliqueStream results from two

facts. On the one hand, relatively more stable and higher ca-

pacity nodes are placed as internal nodes of the tree and less

stable nodes are the leaves of the tree. Thus the effect of

failure of non-stable nodes are localized inside the cliques.

The use of receiver-driven pulling on a mesh-like topology

inside the clique makes it further adaptive to the node dy-

namics. On the other hand, the clustered topology allows

multiple stable nodes in a single clique, which in turn allows

maintaining a backup relay node for each channel. The use

of backup relay nodes facilitates fast and localized recovery

from failure of stable nodes.

We can determine the outage time due to a failure in

terms of the average round trip delay between nodes in ad-

jacent cliques (RTT). The outage time for a failure is the

sum of the failure detection time and the repair time. As de-

scribed in Section 3.5, the failure of a relay node is detected

either by the relay node in the downstream clique or by the
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backup relay node in the same clique. In the first case, it re-

quires the downstream relay node to pass a timeout period

of stream outage, to send an isAlive message to the parent

and wait for another timeout period before it either receives

an alive reply from the parent or detects the failure. A rea-

sonable period for both the timeouts is 2RTT, hence the to-

tal detection time is 4RTT. It requires one more message

transfer to the backup of the failed relay (the recover mes-

sage), so the the backup relay is aware of the failure after

4.5RTT. In fact, the time before the backup relay node be-

comes aware of the failure is the minimum of 4.5RTT and

the heartbeat message interval. The recovery time is 1

2
RTT

for a backup relay node to notify the parent plus 2 ×
1

2
= 1

RTT to send the stream from the parent to the failure de-

tecting child through the backup relay. So, in total, failure

detection and recovery time tfr = 6RTT. For a 50 ms RTT,

this amounts to 300ms only. The parent of the failed relay

node is unaware of the failure until it receives the handover

message from the backup relay node. So the video segments

streamed before the end of the failure-recovery period will

be lost.

CliqueStream is also quite efficient in terms of control

message overhead induced by each stable node failure. In-

stead of every downstream node rejoining the tree, only the

immediate children initiate the recovery process and only a

one step recovery process is conducted by the backup relay

node. Each of the downstream nodes exchanges a (isAlive,

alive) message pair except the immediate children of the

failed relay node. The recovery process takes only 2 mes-

sages from the backup relay node. Each of the immediate

children may send 1 request to the backup parent to initiate

the recovery process.

Now, let us try to determine what fraction of the stream

is lost on average due to failures during a streaming session.

Say, the depth of the streaming tree is k. For the nodes in the

clique that is farthest from the source in the streaming tree,

the availability of the stream is A = Πk
i=1Ai, where Ai is

the availability of the relay node in the clique i hops away

from the source. We may model the life of a relay node as

a birth-death Markov process. If we assume that the failure

of a stable node is a Poisson process with rate λ, then the

expected time before the next failure is 1

λ
. If the time needed

for recovery from a failure is 1

µ
, then the availability of a

relay node is µ
λ+µ

, ignoring the possibility of both the relay

node and the backup relay node failing at the same time.

From the previous analysis, we got the average recovery

time 1

µ
= 6RTT . Therefore A = ( µ

λ+µ
)k. From the prop-

erty of the routing substrate, the worst case value of k is

log2bN/c. For example, in a CliqueStream system with 105

nodes, organized in 1000 cliques of 100 nodes each on av-

erage, with a fanout from a streaming node of 4, with an av-

erage life time of a stable node of 4 hours (λ = 1

4∗3600
) and

an average RTT between two overlay nodes of 250ms (µ =
1000

6∗250
= 2

3
), we obtain the availability of (0.999896)4.9829 =

0.9995. This means that the stream is available at the re-

ceiver at 99.95% of the session time. This amounts to 31ms

of outage time in a 1hour streaming session.

The outage time due to the failure of a non-stable node

in the mesh inside a clique depends on several factors, such

as the size of the data-exchange buffer maintained by each

node, the time interval between the exchange of buffer-maps

and the number of mesh neighbors. Previous works have

studied the trade-off between the improvement in packet loss

by increasing the buffer size and the corresponding overhead

of buffer-map exchange [9]. In CliqueStream, the existence

of the stable relay node in each clique allows the non-stable

nodes to retrieve time-critical stream packets from the re-

lay node, in case none of its mesh neighbors can provide

those packets, thus reducing the outage time due to non-

stable node failures.



5 Related Work

There are quite a few approaches for streaming video over

P2P overlays both in industry and in academia. Widely used

commercial implementations, such as PPLive [8] and UUSee [20],

use receiver-driven content pulling over unstructured mesh

overlays with random neighborhood, which are variants of

the CoolStreaming [21] protocol. The inefficiency of these

platforms in terms of huge long-haul traffic burden is ex-

plained in [8].

There have been several efforts to create peer-to-peer

overlays that select the overlay neighbors based on locality

characteristics of the underlying physical network. CAN [13]

has applied a landmark-based binning approach to assign

d-dimensional coordinates to each node and routing is per-

formed based on the proximity of the nodes in the coordinate

space. Zigzag [16] is another architecture that organizes the

nodes into locality-based clusters. It creates a hierarchy of

clusters, grouping leaders of lower level clusters into higher

level clusters and streaming the media content through this

hierarchy.

Among the video streaming or group multicast topolo-

gies on structured peer-to-peer overlays, Scribe [3] is a promi-

nent one. Scribe creates the multicast tree based on the re-

verse path of message routing in the Pastry [14] routing

substrate. However, since Pastry assigns random ids to the

nodes, the routing path is likely to have random hops be-

tween locally uncorrelated nodes. Some form of locality is

however achieved by careful selection of routing table en-

tries. In CliqueStream, the multicast streaming tree is con-

structed based on the forward paths of the messages from

the source to the receivers on the clustered and structured

peer-to-peer overlay, named eQuus. Because node id assign-

ment in eQuus is strongly correlated with locality, the rout-

ing paths are more directionally controlled and have pre-

dictable locality properties.

In general P2P streaming platforms apply either con-

tent pushing over multicast trees or receiver driven content

pulling over a mesh overlay. mTreeBone [19] has proposed a

hybrid approach where more stable nodes constitute the in-

ternal nodes of the tree and more dynamic nodes are placed

at the leaf level. The leaf nodes also participate in a mesh,

and the stream is delivered using a combination of pushing

and pulling. Our approach of using stable nodes to construct

the tree backbone is similar to mTreeBone. However, the

locality-based clustering was not considered in mTreeBone.

Making the overlay localized runs the risk of partition-

ing the network. In DAGStream [10] a DAG of nodes is cre-

ated instead of a tree and content is delivered by receiver-

driven pulling. Presence of multiple parents allow the sys-

tem to work in the presence of node failure or departure.

AnySee [11] maintains a set of backup paths for each active

path over which it streams the data. When a stream in the

active path is disrupted, one of the backup paths is selected

and assumed as active path. However, switching the whole

path takes much longer time than switching a single hop, as

done in CliqueStream.

Zigzag [16] maintains a head and an associate head for

each cluster. An associate-head receives the stream from the

head of a foreign cluster and disseminates it inside the clus-

ter. The head controls the resources within a cluster and can

quickly elect a new associate-head in case the current one

fails. Failure of the head is tolerated by selecting an alterna-

tive foreign head by the downstream associate-head. Unlike

hierarchical clustering in Zigzag, CliqueStream creates dis-

joint clusters of nodes at the same level. CliqueStream main-

tains a backup relay node for each relaying stable node. The

recovery procedure is initiated by the backup node of the

same clique and it is contained locally.

6 Conclusion

In this paper we have exploited the features of a clustered

distributed hash table overlay to create a network efficient

transport overlay for video streaming. Our analysis shows

that the clustered topology of the transport overlay provides

good locality properties such as low stretch and low com-

munication load compared to random topologies commonly

used in existing peer-to-peer streaming systems. Also, we

have introduced fast and localized failure recovery mecha-

nisms to make the streaming platform robust against node

dynamics. Relatively more stable nodes are used as internal

nodes of the streaming tree so that their failure probability

is minimal. Moreover, backup relay nodes are used to allow

fast recovery. The localized clustering of the nodes allows an

efficient election mechanism for the relay nodes and backup

relay nodes.

To avoid the small disruptions in the streams that occur

due to failure of tree nodes, use of multiple description cod-

ing and streaming different descriptions over different trees

may be a good solution. However, the question how mul-

tiple node-disjoint trees can be constructed in the clustered

peer-to-peer overlay, remains an open problem to be solved.
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