
QoS-based Distributed Query Processing

Haiwei Ye*1 — Brigitte Kerherve* — Gregor V. Bochmann**

* Departement d'informatique
Universite du Quebec a Montreal, CP 8888, succ. Centre-ville
Montreal Quebec, Canada H3C 3P8
ye@iro.umontreal.ca ; Kerherve.Brigitte®uqam.ca

** School of Information Technology & Engineering
University of Ottawa, P.O. Box 450, StnA
Ottawa Ontario, Canada KIN 6N5
bochmann @ site, uottawa. ca

ABSTRACT. Among the essential functionalities supported by distributed multimedia systems,
quality of service (QoS) is of prime interest and requires the involvement of different system
components. This function aims to control and guarantee the level of quality that the system is
able to offer to the user. The QoS requirements may concern system performance, the quality
of the information, as well as the costs of the service provision. In this paper, we propose a
general framework for integrating QoS requirements into a distributed query processing
environment. This framework is based on user classes, cost models, utility functions, and
policy-based management. We explain how we push QoS requirements and information into
the different steps of global query optimization. We present the prototype we have developed
as well as the experimentation we have conducted to validate our approach.

RtSVME. Parmi les fonctionnalites essentielles offertes par les systemes multimedias
distribues, la qualite de service (QoS) est depremiere importance et requiert I'implication de
differents composants du systeme. Cette fonction vise a controler et garantir le niveau de
qualite que le systeme est capable d'offrir a I'utilisateur. Les besoins en qualite de service
peuvent concerner la performance du systeme, la qualite de I'information comme les couts de
fourniture du service. Dans cet article, nous proposons un cadre general permettant
I'integration des besoins en qualite de service dans un environnement de traitement des
requetes distributes. Ce cadre est fonde sur des classes d'utilisateurs, des modeles de couts,
des fonctions d'utilite et des r&gles d'acces. Nous expliquons comment nous repercutons les
besoins en qualite de service et Vinformation dans les differentes etapes de I'optimisation de
requetes globules. Nous presentons le prototype que nous avons developpe ainsi que
I 'experimentation que nous avons menee pour valider notre approche.

KEYWORDS.- quality of service (QoS), distributed query processing, cost model, global query
optimization.

MOTS-CL&S: qualite de service, traitement de requetes distributes, modele de cout,
optimisation de requ&tes globules.

1. Currently working at IBM Toronto Lab. DB2 Universal Database Development.
IBM Toronto Lab, 8200 Warden Avenue, Markham, ON L6G 1C7, haiweiye@ca.ibm.com

RSTI - ISI - 9/2004. Qualit6 des systemes d'information, pages 205 to 234

206 RSTI - ISI - 9/2004. Qualite des systemes d'information

1. Introduction

Quality of Service (QoS) management has attracted a lot of research in the last
decade, mainly in the fields of telecommunication networks and multimedia
systems. To support QoS activities, mechanisms have been provided mainly for
individual component such as operating systems, transport systems, or multimedia
storage servers and integrated into QoS architectures for end-to-end QoS provision
(Aurrecoechea et al., 1998). None of these proposals take database systems into
consideration. However, database systems are an important component of today's
distributed systems. The QoS support in a distributed system requires all
components to be QoS aware, the database systems should not be an exception.

Most of today's applications need to collect information from many different
data sources, to access different types of network connections, and to address
various user's requirements (Braumandl et al., 2003). Both various user expectations
and dynamic system features enhance the need for QoS in the database server. As a
result, multiple QoS dimensions need to be "plugged in" a distributed query
processing. Traditional database optimizer aims at minimizing query response time
or disk I/O. However, the consideration of QoS means the inclusion of other
dimensions such as the cost of the query, the data quality of the query, and the
throughput of the database systems. Single optimization goal deployed in the
traditional database optimizer cannot satisfy these new QoS dimensions. We argue
that query optimization should take into account user-defined quality of service
constraints (Ye et al, 1999, 2003a, 2003c).

Let's consider an example. Suppose a user in Singapore wishes to access the
IBM share price. This may be available in the New York Stock Exchange database
(NYSEdb), it may also be available from the London Stock Exchange database
(LSEdb), and alternatively, from Singapore Exchange database (SGXdb). The
updates to these databases are different: the NYSEdb may be reliable to the previous
second; the LSEdb may have 15 minutes delay as compared with New York Stock
Exchange; the SGXdb may only provide the closing price of the previous day.
Accordingly, depending on how up-to-date the user wants the stock price (and of
course with different service charges associated with different update statuses of the
information), the user may choose from different databases to retrieve the data.

From this example we can identify at least four QoS requirements: up-to-date
status of the information, service charge, the response time of the query, and the
availability of the database server. Based on the specified QoS requirements and
using the QoS metadata, the query optimizer has to choose the pertinent database
server that can satisfy the user's requirements. This requires (1) the description of
the quality of the data and the data sources using the metadata; (2) the identification
of the optimization criteria in the presence of tradeoffs (e.g. response time versus
data quality) and (3) the processing of QoS-based query processing which should be
transparent to the user.

QoS-based Distributed Query Processing 207

The treatment of QoS requirements in our approach is reflected in the aspects of
integrating multiple optimization goals and how to select a query access plan that is
overall optimal. The related issues consist in identifying the possible optimization
goal, the way to obtain the user's priority between different optimization goals, and
how to achieve an overall optimal goal according to user's preference.

In this paper, we revisit distributed query processing. We propose an approach to
integrate user-defined QoS requirements into a distributed query processing
environment. We also consider the dynamic properties of the involved system
components. We then propose a query optimization strategy in which multiple goals
may be considered with the support of several cost models. We use utility functions
and weighting factors to capture user satisfaction. Furthermore, we discuss some
experimental results confirming the effectiveness of our approach.

The rest of this paper is organized as follows. Section 2 gives some related work
on the integration of different data sources and points out the QoS dimension
integrated in their systems. Section 3 presents the general framework for our QoS-
based query processing. By analyzing the process of query processing, we propose
to plug in the QoS features into different steps. Query optimization is our focus. The
concept of utility function is also introduced in this section. Section 4 provides
details of our QoS-based cost models. Section 5 covers three major algorithms
proposed for global query processing: global query decomposition, algorithm for
join ordering, and algorithm for join site selection. Section 6 describes the prototype
implemented. The treatment of different user classes in this prototype is presented.
We also show that different QoS requirements do affect the query access plan and
therefore provide different performance. Section 7 provides the results of the
experiments we conducted. The purpose of our experiments was to validate the
effectiveness of our approach. Finally, section 8 presents the summary and
conclusions of our work, and presents future research directions.

2. Related work

In the last decade, several approaches have been proposed for query processing
over different data sources. They can be classified into two categories: 1) strategies
for providing universal access over multiple information sources, and 2) dynamic
and adaptive query optimization strategies. Proposals for the first category are based
on mediator architectures, where different data sources are described and integrated.
Different query capabilities are taken into account during the query optimization.
Such approaches are deployed in Garlic (Hass et al., 1997), IRO-DB (Gardarin et
al, 1996) and Mariposa (Stonebraker et al., 1996). The query optimizer
implemented in Garlic uses enumeration rules for describing query capabilities and
uses dynamic programming to find a good plan. The QoS dimension considered in
the Garlic project is mainly response time. IRO-DB provides federation of object-
oriented and relational database systems through the ODMG model and the OQL

208 RSTI - ISI - 9/2004. Qualit6 des systemes d'information

query language. The global query processor uses services of local cost tuners and
their corresponding calibrating procedure to derive the local cost parameters. In
addition to the response time, the IRO-DB also considers the load of the database
server in their query processing. The originality of the approach proposed in
Mariposa is its economic model in the query optimization phase. The bidding
mechanism allows sites to observe their environment from query to query, and
autonomously restate their costs of operation for subsequent queries. Mariposa
introduces a different QoS dimension: service charge, which is not considered in
other projects.

The approaches proposed in the second category generally provide adaptation
techniques (Ives et al, 1999, Hellerstein et al, 2000) and dynamic query processing
(Cole et al., 1994, Urban et al., 1998). They mainly address the system dynamics.
For example, the author in (Urban et al., 1998) addressed the issue of minimizing
response time in the context of wide-area data access, and they provided techniques
for dealing with delays in data processing and transfer to remote sites. However,
they did not address the issue of taking into account other user wishes concerning
quality during the processing of the queries.

In our work, we propose to use QoS monitoring tools to push dynamic properties
of the systems into global query optimization. The novelty of our approach lies in
the fact that we take the user's QoS requirements and the system policies into
consideration to support several optimization goals.

3. A general framework for QoS-based query processing

In order to address the dynamically changing requirements of the user and the
unpredictable performance of the underlying systems, we propose the integration of
QoS within distributed query processing. Specifically, we are guided by two main
goals when designing the QoS-based query processor: 1) recognition of individual
user requirements, and 2) consideration of the dynamic nature of the underlying
system.

3.1. A big picture of the framework

A logical architecture is proposed to show the relationships between QoS
management and query processing, as illustrated in figure 1. In this framework, we
include the typical components implemented in a query processor: Parser and
Rewriter, Optimizer, and Scheduler (Hasan et al., 1996; Ozsu et al., 1999;
Silberschatz et al., 1997). The user's query is sent to the Parser to be syntactically
analyzed and validated against the database schema (such as the tables and attributes
that really exist in the database). The output of the parser is transformed by a set of
rewriting rules in the rewriter. These rewriting rules are usually heuristics aiding in

QoS-based Distributed Query Processing 209

the transformation of the query into a semantically equivalent form that may be
processed more efficiently. Then, the internal query representation is passed to the
optimizer. The final generated plan is sent to the scheduler for execution. We mainly
work on the optimizer to integrate the QoS factors.

Traditional factors

1 Rules & Heuristics |

n*"̂ ' ' ' ~~~ i
\B Statistics I —
^*-n,,. n— ̂

SQL

_^ Parser &
Rewriter

Global
:;N Optimizer

Scheduler

Query plan

0 \ i

S I \ I I

3 i j J.
•o j j

re i 1

i I

QoS factors

i i QoS Information i
; i Base ;

: ; User Profile

; ; System Policies i

Figure 1. A big picture ofQoS-aware query processing

As can be seen from figure 1, we keep the factors traditionally considered in the
query processor (Dunkel et al, 1999; Ozsu et al, 1999; Kossmann, 2000), which
include table statistics (such as the number of rows in a table), column statistics
(such as the number of distinct values of a column), and index statistics (such as the
number of leaf pages). In addition, we inject those factors called "QoS factors" in
the query processor, which are information from the QoS Information Base
(QoSIB), the user profile, and system policies. The following section elaborates
these QoS factors.

3.2. Global optimizer and QoS factors

The main tasks of the global optimizer are 1) to choose an execution plan which
satisfies the optimization objectives, and 2) to send it to the scheduler which
coordinates the execution of the plan among the participating component DBMSs.
Parallelization techniques can be applied here because concurrently executing a

210 RSTI - ISI - 9/2004. Qualite des systemes d'information

number of subqueries may help reducing response time, provided that it does not
eventually lead to costly data transfers or context mediations. What makes our
global optimizer different from the traditional query optimizer is that we build those
QoS factors into the optimizer, in addition to the traditional factors. Although our
focus is to push these QoS factors into the optimization phase, the similar treatment
can be applied to other steps.

A user profile is built to 1) store the user's QoS expectation for a particular
service, and 2) to derive the trade-off between QoS dimensions, which is represented
by the weight assigned to each dimension. As a result, the user profile allows users
to specify their QoS requirements by defining utility functions and by specifying the
weights for each QoS dimension. This information helps the system to derive the
user's overall QoS requirement.

The QoS information base stores information about the service level offered by
the different system components. Two system components studied in our work
include the network and the database server. This information is collected by the
QoS monitoring module. Such dynamic system status is then factored in the query
optimization. As a result, the selected query access plan can take into consideration
the available system resources.

In our study, the system policies determine the constraints under which the
system resources can be used for providing services to the users. Usually, a policy is
a formal set of statements that define how the levels of services are to be provided to
particular classes of users. Different policies may be enforced to different classes of
users. Policy statements are stored in System Policies. Policy statement can be
expressed in natural language such as "Give the VIP users all the authority to access
all the system resources, while the normal users can only access a limited number of
system resources.". The user class is usually defined in the system policies. The
classification of users depends largely on the application and the business model
used. In the case of web-commerce application, some example factors include the
user's access pattern of the system, the user's importance and urgent degree of the
requested information, and of course the service fee that the user is willing to pay for
a certain level of service.

In summary, adding QoS factors into a distributed query processing environment
has several impacts and requires:

- the provision of new optimization goals;

- the modification and proposition of the corresponding cost models; and

- the proposition of new algorithms for query optimization.

We discuss the possible optimization goals in the next section. The cost models
and algorithms are discussed in the two subsequent sections.

QoS-based Distributed Query Processing 211

3.3. Different optimization goals

Different user's expectations should eventually be reflected in different
optimization goals (or objectives). In order to study the impact of optimization goals
on query processing, the first step is to identify the possible optimization goals. The
difference in optimization goals depends on various applications. It is not our
intention to consider a complete set of goals. Instead, one of the major contributions
of our study is to offer the possibility to express and integrate multiple optimization
goals in the process of query optimization.

Optimization goals are defined by specifying how the query execution is
measured. The measure of the goal attainment is given by an objective function. An
objective function is a mathematical expression, which could be linear, that shows
the relationship between the decision variables and a single goal (or objective) under
consideration. Examples of such goals are total profit, total cost, response time,
share of the market, and the like.

Conventional distributed/parallel database query optimization was primarily
aimed at either minimizing the response time or system resource utilization.
However, in the context of today's pervasive applications, such as web-commerce,
this provision of a single optimization goal is not adequate. Therefore, other possible
optimization goals should be proposed and integrated into the optimizer. Table 1
lists some optimization goals that are useful for our study. They are grouped into
different categories. Some optimization goals are performance oriented, for
example, the response time, and the throughput of the database system. Others are
money oriented such as the service charge for a particular service.

Table 1. Optimization goals and their category

Optimization category

Performance oriented

Money oriented

Data quality

System oriented

Optimization goal

- Minimize response time

- Maximize DB throughput

- Minimize the cost of a service

- Maximize the benefit of the database system

- Multimedia vs. Plain text

- Recency of data

- Minimize resource utilization

The example of service charge given above includes the monetary cost arising,
for example, from (1) the cost of transferring data over the network, (2) the
processing of data by a component database server, and (3) a combination of both.
The charge from network access is easily acceptable and understandable. The

212 RSTI - ISI - 9/2004. Qualite" des systemes d' information

pricing for the network, especially for internet, has been studied extensively in the
literature (Cocchi et al, 1993) and deployed by most internet services providers2.
However, little attention was given to the study of cost incurred by local processing
and this is less noticeable to the end user. Only a few papers (Bodorik et al., 1988;
Spiliopoulou, 1996) mentioned that the cost to access the local component database
server (in a multidatabase architecture) may be charged. In our study, we believe
that with the increasing need for information integration, the local processing charge
also deserves careful research.

In the category of data quality, the optimization goal could be the representation
of the query results (e.g. multimedia or plain text) or the extent to which the data is
up-to-date. If the optimization goal is representation aware, some database rewriting
techniques must be applied to ensure that the optimizer realizes where to retrieve
which type of data. The up-to-date status of the data can be regarded as the recency
of the data; the different versions of the same data are mainly caused by the charge
for update frequency. The stock market example given in the introduction illustrates
the situation of recency versus cost.

Most of these criteria introduced thus far are user oriented, because the majority
is perceived by the user. The last category in table 1 is system oriented. That is,
emphasis is placed on the effective and efficient utilization of the system resources.
This is certainly a worthwhile measure of system performance and one that may be
maximized most of the time. However, it focuses on system performance rather than
the service provided to the user. Thus, it is of concern to a system administrator, but
not to the user population. In this category, the system always wants to minimize
system resource utilization or maximize the system capacity (in terms of number of
users the database system can handle).

One thing that should be noted for the optimization goals, listed in table 1, is that
they are interdependent, and sometimes it is impossible to optimize all of them
simultaneously. For example, providing good response time may require reducing
data transmission (especially for multimedia data) over the internet by using a high
compression rate algorithm. This may lead to the quality degradation of a video
frame. Therefore, the design of the optimizer should also address the compromise
among competing requirements.

3.4. Utility functions and weighting factors

When various optimization goals exist along multiple QoS dimensions, we
should find an optimal solution that satisfies all of them, optimal either from the user
perspective or the system perspective, or both. One way of combining various
optimization objectives is to use weighted combination (for example, a weighted

2. Currently, the price offered by ISP is usually not time-dependent, but only depends on the
access line capacity.

QoS-based Distributed Query Processing 213

sum) of different goals. In order to solve the different measures in different goals,
the concept of utility functions is introduced in section 3.4.1. The weight assigned to
each goal is calculated by using the method given in section 3.4.2. Section 3.4.3
gives an example of how the utility function and the derived weighting factors help
for the evaluation of different query access plans.

3.4.1. Utility functions

The satisfaction for each optimization goal or QoS metric can be captured by
using a utility function. By indicating different utility functions, the user expresses
his/her individual tastes. Usually the utility function maps the value of one QoS
dimension to a real number, which corresponds to a satisfaction level. For example,
the following formulas give the utility functions for the response time and the
service charge:

u t<»=l/e!, u$(jc)=l/ea j r+b

where t is the response time for a query access plan and x is the corresponding
service charge for that plan. These utility functions indicate that the user's
satisfaction decreases when the response time or the cost increases.

The calculation of those coefficients (a and b) is determined by the range of the
QoS dimension to a particular application. For example, if we know that the service
charge is less than 1 dollar, and most of the service charge falls between 0.05 dollar
and 0.9 dollar, also assume that u(0.05) = 0.9 and u(0.9) = 0.1, then the coefficients
for the service charge utility function can be derived, i.e. a = 2.585 and b = -0.1053.

Utility functions are used in our cost model to achieve an overall optimization
since they are used to compare the quality of the access plans. Utility functions also
provide an important link between the quality of a query plan and the user
satisfaction.

3.4.2. Deriving weights

The above example creates an interesting issue regarding how weights should be
assigned. It is less desired for a user to specify the exact weight for each
optimization goal or QoS dimension. In our approach, the Analytic Hierarchy
Process (AHP) (Saaty, 1992) is used to derive the weights from user's preference.
This method only requires the user to provide his or her judgment about the relative
importance of each criterion over another one (pairwise comparison of goals) and
then specify a preference index. Based on these preference indexes, the output of the
AHP is a prioritized ranking indicating the overall weights for each of the alternative
decisions.

The AHP approach is composed of four main steps: development of a goal
hierarchy, pairwise comparison of goals, consistency check of the comparisons, and
aggregation of the comparisons. The first step in the AHP is to develop a graphical

214 RSTI - ISI - 9/2004. Qualite des syst&mes d'information

representation of the problem in terms of the overall goal, the criteria, and the
decision alternatives. Such a graph depicts the hierarchy for the problem. Figure 2
shows the hierarchy for the query plan selection problem.

Overall Goal: Select the Best Plan

Criteria: Response time Price Frame rate

Decision Alternatives: Plan a Planb

Figure 2. AHP Hierarchy for the plan selection

Pairwise comparisons are the fundamental building blocks of the AHP. This step
requires the user to specify how important each criterion is compared to each of the
other criteria. If n criteria are used in the plan selection, the user needs to specify
n(n-l)/2 preferences. The AHP employs an underlying scale with values from 1
(equally preferred) to 9 (extremely preferred) to rate the relative preferences for two
items. For example, if the user is asked to state his or her preference for response
time compared to price, he or she indicates that price was moderately more
important than response time. The corresponding score is 3.

All the pairwise comparisons are recorded in a matrix. Using the AHP nine-point
numerical rating scale (please refer to (Saaty, 1992), a value of 3 is recorded to show
the higher importance of the price criterion (as compared to response time). As a
result, a value of 3 is entered in the (3,1) position of the matrix shown in figure 3a.
Figure 3 shows two comparison matrices for two users. In the example, the frame
rate is simplified as "rate" and response time as "time".

The next step is the consistency check, which basically gives hints on which
comparisons are transitively inconsistent. That is, if A is twice as desirable as B, and
B is twice as desirable as C, then to be consistent A must be four times desirable as
C. To handle the consistency question, the AHP provides a method for measuring
the degree of consistency among the pairwise judgments. The concept of consistency
ratio (CR) is designed in such a way that the values of the ratio exceeding 0.10 are
indications of inconsistent judgment (Saaty, 1992). The CRs for User 1's and
User2's preference matrices are 0.028 and 0.075, respectively. The process
continues since the values of CRs are less than 0.10 and are considered to indicate a

QoS-based Distributed Query Processing 215

reasonable level of consistency in the pairwise comparisons. A detailed procedure of
the consistency check can be found in (Saaty, 1992).

Time'

Price

Rate
\e Price Rate

'\^

1/6 1 2

1/7 1/2 1
/

Time

1 ^ Price

Rate

weights

0.15

0.09
V /

(a) User 1's preference

Time

Price

Rate

Time Price Rate

(1 1/6 2

6 1 5
1/2 1/2 1

Time

1> Price

Rate

weights

'0.17^
0.72

0.19

(b) User 2's preference

Figure 3. Two pairwise comparison matrices

The aggregation step is a mathematical procedure, which involves the
computation of eigenvalues and eigenvectors. The following three-step procedure
can be used for a good approximation of this step.

Step 1: sum the values in each column of the pairwise comparison matrix.

Step 2: divide each value in each column of the pairwise comparison matrix by
the corresponding column sum. The resulting matrix is referred to as the normalized
pairwise comparison matrix.

Step 3: average the values in each row of the normalized matrix.

The final AHP ranking for each user is provided in figure 3, where we give the
weights associated to the three criteria for user 1 and user 2.

3.4.3. An example of using weights and utility functions

In order to illustrate how the utility function and weights are used in our work,
we give an example. Assume we are interested in three QoS dimensions: response
time, price and frame rate. Suppose that the query optimizer compares two plans,
with the related information given in table 2. The weighting factors for the two users
are derived in figure 3.

216 RSTI - ISI - 9/2004. Qualite des syst&nes d' information

Table 2. The QoS information in the example

Response time

Price

Frame rate

Plan a

0.2s

$0.2

20£ps

Planb

O.ls

$0.3

25fps

Userl's weight

0.76

0.15

0.09

User2's weight

0.17

0.72

0.11

Also assume that the utility functions for the response time and frame rate are
decreasing, such as those defined in section 2.1, that is ut (?) = 1/e ' and u$ (x) = u$
(jc) = 1/e " + b. The utility function for frame rate should be increased and the frame
rate should range from 0 fps to 30 fps. It is urate (fps) = 1- e<atfps + b), assume that urate

(5) = 0.5 and urate (20) = 0.95. Therefore, a = -0.1535, b = 0.0744.

In our approach, weighed sums of utilities are used to achieve the overall
optimization. For each user, the optimizer selects the maximum utility values
between two plans. For User 1, the overall utilities for Plan a and b are 0.79 and
0.83, respectively. Accordingly, Plan b will be chosen for User 1 since it has higher
utility. Similarly, Plan a is optimal from User 2's perspective. From this example,
we can see that corresponding to different user's QoS requirements/preferences, the
optimizer should be able to choose different plans.

4. Cost models

We propose a new approach to the problem of evaluating the cost of a query plan
in a multidatabase system. Our approach relies on QoS monitoring to provide
dynamic system status and on user profiles. The novelty of our approach lies in the
consideration of user requirements, user classes as well as the way to deal with
dynamic network performance. In our work, three levels of cost models are used.
The first level is the global cost model, which is used to calculate the overall utility
of a query access plan. The second level is used to calculate the cost for each node in
a query access plan. The last level is the local cost model, which is used to estimate
locally the cost of an operator.

4.1. Global cost model

Global cost models are the essential parts for the global query optimizer. Each
access plan is associated with several cost measures, such as response time, service
charge, and the server load. The global cost model is used to calculate the overall
cost of an access plan. As mentioned earlier, utility is used to unify all the cost
measures. So what we really compare between different query access plans is the

QoS-based Distributed Query Processing 217

total utility. The plan that has the maximum utility is the winner. The global cost
model is defined as follows:

Max { X < w i - W i (C i . p)}
P=I »=i

where Cif is the cost for ith QoS dimension of the plan p; «,-() is the utility function
for cost component Ciip; to, is the weighting factor assigned to the cost component
Qp, where 0 <<o, < 1 and the sum of to, equals to 1.

4.2. Plan cost model

A query access plan is represented by a binary tree. Each internal node is an
inter-site binary operation (such as join or union) and each leaf node is the subquery
executed at one database server. Since we consider several cost components, the cost
of each node is also expressed according to multiple dimensions. For example, if we
select the response time, the service charge, and the availability as our cost
components, then the cost information recorded in each node will include three
parts: time, dollar, and availability. The cost information for leaf nodes is based on
the local cost model and the QoS Information Base (e.g. availability). The cost
information for the internal node is calculated as a combination of the cost
information of its left and right child nodes. The cost formula for each QoS
dimension is different.

Table 3 lists the cost functions for response time, dollar, and availability. We use
join operation as our study focus. The join time (time to perform a join at a
particular site) for each node is determined by the load of the server and the current
TCP performance. The formula for each join is:

T j0in = local (site, query) + net (sitei, sitej)

where local (site, query) represents the local execution time for the query at site, net
(site,, sitej) represents the data transmission time spent over the network. The
calculation of each time depends on the traditional factors and the QoS factors as we
introduced in section 3. Traditional factors include the statistics from the database
catalog such as the cardinality, the selectivity, the size of each column and so on.
The QoS parameters used to decide the local cost include the availability and the
load of the database server. The QoS information used to calculate the network cost
includes the available bandwidth and delay. As mentioned before, the QoS monitor
is used to capture this dynamic information. The optimizer will then consult this
information and plug it into the cost models.

218 RSTI - ISI - 9/2004. Qualit6 des systemes d' information

Table 3. Cost functions for each cost component

Cost component

Response time

Service Charge

Availability

Cost function

Join-time + max
(left.respose_time,

right.response_time)

Join-charge + left.charge

+ right.charge

Left.availability *
right.availability

Brief description

The join time is the response time to
perform the join between the left and
the right child.

The join charge is the money cost to
perform the join between the left and
the right child.

The probability that both servers are
available.

4.3. Local cost model

The discussions in the previous subsection are based on the assumptions that the
cost information for a local component DBMS is available. However, in a
multidatabase environment, the local database systems usually do not expose the
needed statistical information to the global level. Furthermore, cost formulas for
processing an operator (e.g. selection, or join) vary radically depending on the
implementation of the underlying (local) database system. This requires derivation
or guess-work on the part of the local cost model. In this section, we illustrate how
such information is obtained.

To derive the local cost model, the sampling method proposed in (Zhu et al,
1998) is applied with a modification for considering server load. The idea of the
query sampling method can be characterized by the following steps:

1) Classify queries ;

2) Draw a sample of queries from each class;

3) Perform sample queries on the DBMS ;

4) Derive a cost formula for each class using multiple linear regression.

The objective of classification of queries is to group queries into homogeneous
classes so that the costs of queries in each query class can be estimated by the same
formula. The factors considered for classifying queries are the type of queries (unary
or join), characteristics of operand tables (such as cardinality), indexed columns and
characteristics of the underlying DBMS (such as supported access methods). In our
work, one further factor is added: server load for the DBMS. As join operations are
of the main interest (one of the assumptions indicated previously) and the join
predicate is not considered, the two main criteria used for the classification of the
queries are the server load and the number of joins.

After queries are classified, a cost estimation formula needs to be derived for
each query class based on the observed costs of sample queries. Such a cost formula

QoS-based Distributed Query Processing 219

includes a set of variables that affect the costs of queries and a number of
coefficients that reflect the performance behavior of the underlying DBMS. In order
to estimate the coefficients of the cost formulas, the statistical procedure is applied.

4.4. Statistical procedure to derive the local cost models

Regression models are used to estimate the value of a variable (called dependent
variable) as a function of several other variables (known as independent variables).
In our problem, the dependent variable is the response time of a query. The
independent variables may be the cardinality of each table involved in the query and
the result cardinality.

The statistical relationship established between the cost and the independent
variables can take many forms. The most commonly used relationship assumes that
the dependent variable is a linear function of the independent variables. In order to
decide whether our local cost model can be explained by a linear relationship,
statistical tools are needed.

The residual plots may help to observe the relationship between the independent
variable (X) and the dependent variable (Y). The residual is also called the error. A
residual plot is the scatter plot of residuals against the explanatory variable.
According to (Moore et al., 1996), if each of the residual plots shows scatter in a
horizontal band with no values too far from the band and no pattern such as
curvature or increasing spread, it suggests that the relationship between Y and X is
linear.

The residual plots were completed in our study for all the cases in the local cost
model forecasting. According to the experiment results (Appendix 4 in Ye, 2003),
all the plots display no patterns. Therefore, a linear relation is reasonable. This
indicates that the linear regression may be applied to establish a statistical
relationship between the response time of queries and the relevant independent
variables.

The next question is which independent variables should be included in the
linear regression model. As identified at the beginning, two types of independent
variables are possible in this case: one is the cardinality of the table; the other is the
cardinality of the result. Remember that a Cartesian product is assumed; therefore
the cardinality of the result is directly related to the cardinalities of the tables
involved in the query. This reveals that both types cannot be included in the
regression model since one criterion in selecting the independent variable is that
they must be independent of each other.

As a result, either the table cardinality or the result cardinality in the regression
model should be included. That is, a choice must be made between two of the
following cost models:

220 RSTI - ISI - 9/2004. Qualite des systemes d' information

The cost model includes the table cardinality:

Cost = C0 + CiXNi [1]
1=1

The cost model includes the result cardinality:

Cost =C0+C1xRN [2]

where Ci is the coefficient to be derived, M is the table cardinality, and RN is the
result cardinality3.

5. Algorithm for global query optimization

Global query optimization is generally implemented by three steps (Dayal 1985;
Meng et al, 1995; Ozsu et al, 1999). After parsing, a global query is first
decomposed into query units (subqueries) such that the data needed by each
subquery is available from a single local database. Second, an optimized query plan
is generated based on the decomposition results. Finally, each subquery of the query
plan is dispatched to the related local database server to be executed and the result
for each subquery is collected to compute the final answer.

In our study, the focus is placed on the first two steps and we map them to the
problems of global query decomposition, inter-site join ordering and join site
selection (Cornell et al, 1989; Du et al, 1995; Evrendilek et al, 1997; Urhan et al,
1998). Therefore, the objective of our approach is to enhance the three steps of
distributed query processing with pushing QoS information into each of them. In
this section, we present the details of the different steps we propose for global query
optimization. In addition, we also explain how QoS information is considered.

This section provides a general idea of the algorithm. First, we identify the QoS
parameters integrated into the algorithm. Then, an example is given to show how the
global query is processed step by step. After that, a summary of these steps for
global query processing is presented. Last, section 5.4 presents the treatment of join
site selection. The reason that we want to give a special treatment of join site
selection is that it is usually overly simplified in the traditional query processing. We

3. Instinct suggests that the result cardinality will explain better the relationship. To verify this
point, the regression model was run for both of the formulas given above and the R-Square
was for each of them. The results for Formula 1 are given in Appendix 3 of (Ye, 2003). The
results for Formula 2 are given in section 6.5.4 of (Ye, 2003). As can be seen from these two
results, the Formula 2 has higher R-Square and therefore is adopted for the local cost model.
This confirms our intuition.

QoS-based Distributed Query Processing 221

have shown in (Ye, 2003b) that by considering other data transmission options, we
could see a big difference in performance.

5.1. QoS information integrated in the algorithm

To be QoS-centric, one of the feasible solutions is to study how to integrate QoS
information into the three steps discussed above. Table 4 identifies the related QoS
parameters that could be factored into each step.

Table 4. QoS information relevant to global query optimization

Global query optimization

Decomposition

Inter-site join ordering

Join site selection

Relevant QoS parameters
Server availability
Server load
Server load
TCP throughput
TCP delay
Server load
TCP throughput
TCP delay

5.2. Step-wise illustration of the algorithm

The idea is illustrated using an example, as given in figure 4. The original query,
given in table 5, is represented by a list of tables to be joined, a list of join
predicates, and the location information.

Table 5. The original query of the example

Tables:

Join Predicates:

Locations:

A, B, C, D, E, F

A.a = B.a, B.b = C.b, C.c = D.c, D.d = E.d,

Sitel: A, B, Site2: C, D, Site3: E , Site4: F

E.e = F.e

The main task of global query decomposition is to break down a global query
into several subqueries such that the tables involved in each subquery are located in
one site. One such example of decomposition is shown in figure 4a. Figure 4b gives
the result of the decomposition which contains 4 subqueries. Subquery 1 and 2 are
joins performed at the local database server, while subquery 3 and 4 are the single
table access (and possible some selection operations, if required in the query).

222 RSTI - ISI - 9/2004. Qualite des systemes d'information

Next, in the join ordering step, the optimizer tries to develop a good ordering to
combine inter-site joins between the results of the local subqueries. The join
ordering can also be represented as a binary tree, where leaf nodes are the
subqueries and internal nodes are inter-site join operations.

Join on attribute b [X]

V\n on attribute d 1X1 Sub4
/\4

S \

E.e=F.elXl Join on attribute e |><3 Sub1

/x>
D.d =E.c£><] (F \4 »

^A r?<±. Bub4
C.c=D.<£X] ,' E ^— < I

B.b=C.bt><] D "VJSsubJJi]
\/\2 v '•• I

_/\

,' '' /\5Site2 }
> / \ • ~LSubit̂ Join on attribu
\ B \ j
\Site1 Sitel ! l>$

: CllWl S
• dllO I •: /

^^ '•'• ' I /

-~ SubS
SiteS

(a) Query decomposition

Join on attribute e t><]
/\. N

Join on attribute d IXl Sub4
/\4 Join on

/ \
Join on attribute b P><] SubS y

/\S /
/ \S

Sub1 Sub2 SiteS
Sitel Site2

(b) Result of query decomposition

/\l
/ \2 SubS

Site2 SiteS

(c) Left deep tree

Join on attribute b
fe^l

^•x'̂ Vs\̂
te^^ Join onaltqbu

V /\

Sub4 Sub2
Site4 Site2

(d) Bushy tree

Join on attribute b
>^ Site3

^attribute e Join onaltei
><1 SiteS IX
^\ /

Sub4 Sub2
Site4 Site2

(e) Join site selection

ed

\1
Sitel

puted
Sitel

\1

Sitel

Figure 4. Illustration of different steps for global query processing

This phase can be further implemented by a two sub-step procedure: left deep
tree generation and bushy tree generation. An example of left deep tree is shown in
figure 4c. It should be noted that the join ordering of figure 4c is different from that

QoS-based Distributed Query Processing 223

of figure 4b. Through utilization of the distributed nature of the multidatabase
system, an attempt is made to create this tree as low as possible by building the join
in parallel as much as possible. This is accomplished by balancing the left deep tree
to a bushy tree, as illustrated in figure 4d. The join ordering is used as an example to
study the binary operation ordering. The same method can be generalized to other
binary operations such as union.

Last is the decision of where to perform the inter-site joins - this is referred to as
join site selection. In our approach, this step is implemented by annotating the
binary tree generated from the join ordering step. Each node is annotated by the
location where this join should be performed, as demonstrated in figure 4e. In this
step, the information of network data transfer is also marked. Those "zigzag" lines
embedded in a straight line are used for this purpose. For example, the result of
subquery 4 needs to be shipped from site 4 to site 3 to perform the join. The straight
lines used in this step denote that data transfer is not needed.

5.3. Algorithm summary

In table 6, the big picture of the algorithms is provided according to the different
steps in global query processing. We cover the objective of each step, the QoS
information plugged into each step, the assumptions used, and the overall idea. Due
to the space limit, we only give the algorithm of the join site selection in section 5.4.
For more information on the other algorithms, please refer to (Ye, 2003).

Table 6. Algorithm summary

Objective

Input

Output

Step 1:
Global query
decomposition

To decompose a
global query into
subqueries that target
one location

• Global query graph
(linear)

• Involved tables
with location
information

A set of subqueries
with location
information

Step 2:
Inter-site join
ordering

Select join ordering and
join site

A set of subqueries with
location information

Query plan tree (bushy
tree) labelled with the
location for performing
each join and data
transfer operations

Step 3:
Join site selection

Assign a join site to each
internal node with
consideration of a large
number of possible
candidates sites

Bushy tree

Query plan tree labelled with
the location for performing
each join and data transfer
operation

224 RSTI - ISI - 9/2004. Qualite des systemes d'information

Algorithm
idea

QoS
information

Assumptions
/ heuristics

Consider all the
possible
decompositions and
select the one with
minimum cost

• Server load
• Server availability
• Linear join graph is

assumed
• Subqueries are not

overlapping

• Left linear tree
generation with
consideration of join
site selection

• Tree balancing by
applying
transformation rules

• Communication cost
• Server load
The inter-site joins are
done on one of the
component DBMSs (i.e.
there is no central site)

• A threshold is used to
decide the candidate set for
the third site

• Post order tree traversal is
used to label the location of
each internal node

• Communication cost
• Server load

Only consider the node that
bottlenecks the cost of its
parent node

5.4. Join site selection

In a complete survey (Kossmann, 2000), Kossmann summarized three site
selection strategies for client-server architectures. Depending on whether to move
the query to the data (execution at servers) or to move the data to the query
(execution at clients), the strategy is called query-shipping or data-shipping. A
hybrid approach of these two solutions is also possible. Traditionally (Cornell et al.,
1988; Selinger et. al., 1980), two types of strategies were proposed: Move-Small and
Query-Site. In the query-site strategy, all joins are performed at the site where the
query was submitted. In the move-small strategy, for each join operation, the smaller
(perhaps temporary) relation participating in the join is always sent to the site of the
larger relation. Selinger and Adiba suggested another option in (Selinger et al.,
1980). They mentioned that for a join of two given tables at different sites, they
could move both tables to a "third" site yet to be specified. However, this "third"
site strategy has not been completely studied and none of the commercial database
systems adopts this strategy either.

The above strategies for join site selection in a distributed environment are
inadequate in the sense that they are only suitable in a static environment where
network performance and load of the database server are fixed and predictable. This
is obviously not the case for today's highly distributed and dynamic systems. In this
paper, we address the issue of join site selection in a distributed multidatabase
system deployed for e-commerce applications. The objective is to optimize the
performance according to current system status. Dynamic system properties include
the performance of the internet and the load of the server. The decisions are cost
based. No effort has previously been made to integrate the dynamic system
properties and consider a "third" candidate site.

QoS-based Distributed Query Processing 225

5.4.1. Selecting candidate site

The key issue in site selection is to decide which site is the best (optimal) for
each binary operator. The site selection process becomes complicated when several
candidate sites are capable of handling the operation. In fact, the crucial question is
how many candidates should be considered for the third site. There are three
possible approaches to determine candidate sets:

- consider all the available sites in the system. This is simple but this will usually
incur too much overhead for the optimizer;

- we can shrink the above set to all the sites involved in this particular query. By
considering these sites, we may benefit from the situation where the result of this
join needs to be shipped to the selected third site for further calculation. However, if
the number of locations involved in the query is larger, we may have the same
problem as above: too much optimization overhead;

- we can apply some heuristics to further decrease the size of the candidate set.
For example, we can restrict the third site for a particular join operator to its "close
relatives", such as niece/nephew sites in the join tree.

In our consideration of candidate set, we combine the option 2 and the option 3.
A threshold for the number of sites is therefore used to describe the situation where
option 3 should be used. That is,

II the sites in the tree, if N < threshold
Candidate sites for a join = -i

'-Close relative (children and niece), otherwise

where N is the total number of sites involved in the query. The value of threshold
should be derived from the experiment. In the following algorithm, we use a
procedure CandidateSiteSelectionQ to represent this procedure.

5.4.2. The algorithm for join site selection

The procedure of join site selection can be regarded as marking the site for each
join node in the tree. And this process is usually done in a bottom-up fashion. Thus
we can employ one of the standard bottom-up tree traversal algorithms for this
purpose. In our algorithm, we use post order tree traversal to visit the internal nodes
of the tree. We ignore the post order algorithm and only give the algorithm
(SiteSelectionO) to visit each node.

Algorithm: SiteSelection (treenode)
1. {
2. if (hasChild(treenode) == true) {
3. candidate_set [] = CandidateSiteSelection (treenode);
4. for each site_s in candidate_set

5. cost [s] = Cost-node (treenode, si te_s) ; //Using the cost
model to compute the cost if the join is performed on this site

6. min_site = select-min (c o s t U) ;

226 RSTI - ISI - 9/2004. Qualite des systemes d'information

7. treenode.join_site = min_site;
8. if (sites is also marked as join site for treenode m)
9. cost-node (m, site_s) ; //recalculate cost for node m under the new

added load introduced by site s
10. } // end if
11. }

The procedure of SiteSelection() returns nothing, it only picks up the join site
based on the cost model and records the join site in the root node of the input tree.
The Cost-node^ implements the cost model, which was explained section 4.

6. Prototype implementation

In order to validate our approach, we implemented a prototype where we
concentrated on those aspects that are representative for the QoS-based distributed
query processing we propose. Based on the experience we learned from this
prototype, we could apply it toward the construction of larger and more realistic
system. For simplicity, we integrate two QoS dimensions in the prototype. However,
the implementation is not limited to these two dimensions, the modules
implementing other dimensions can be easily plugged into our prototype. Highlights
of the implementation are given below.

User classes: In order to show the differentiated services in our prototype, we
have adopted the priority-based user classification and considered two user classes,
namely VIP user and normal user.

Optimization goal: For our prototype implementation, we focus on two
optimization goals: minimize the response time and/or the service charge. Basically,
we want to demonstrate the integration of the criteria of time and money into our
prototype. Accordingly the overall optimization goal is calculated by the following
formula:

Min { a), u, (response_time) + (0$ u$ (service_charge)}

where co, and a>$ are the weights specified by the users for the response time and
service charge, respectively; u, and u$ are utility functions used for the response time
and service charge respectively. For the purpose of simplicity, we use the utility
functions ut(r) = lit and u$ (x) = \lx for the response time and the cost, respectively.

Global cost models: The general cost model contains two cost components:
response time and service charge. Depending on the optimization goals, three cost
models can be selected:

Qime = response_time;
Cdoiiar = service_charge;
C0veraii = Wdme * ut(response_time) + Wdo)iar * u$(service_charge)

QoS-based Distributed Query Processing 227

The calculation of the response time is straightforward. The total response time
of a query plan (represented as a tree structure) is the sum of the response time on
each node along the critical path in the query access tree.

For the service charge, we are dealing with a pricing issue. Typically, two types
of charging schemes are popular today. They are flat-rate and usage-based
(Odlyzko, 2001). We adopt the usage-based pricing policy for our prototype
implementation. We concentrate on network bandwidth utilization. A complete
pricing schema, however, should consider all the resources including both the
network and the server. The reason for only considering the network resource is not
only because we want to simplify the implementation, but also because there have
already been many studies for the pricing for the internet. We assume the service
charge of a query plan is proportional to the network resource consumed.
Accordingly, this second optimization goal is eventually simplified as the problem
of minimizing the network bandwidth utilization.

Local cost model: In the prototype, four levels of server load (no load, low,
medium, and high) are considered. Two-way, three-way and four-way joins are
considered in the prototype. The cost formula is derived for each level of server
load. Thus, 12 types of queries for the "sample" database were used.

Prototype architecture

The functional modules of the prototype include the user interface part for SQL
input and QoS schema selection, the optimization part based on the algorithms
proposed, the visualization pan for the query plan and QoS information and the
result display part. A big picture of the prototype is shown in figure 5. The optimizer
takes several elements as input. All the input information is stored as XML files.
Our prototype offers a simplified GUI for SQL input4. This component allows a user
to specify a query by selecting the desired attributes and tables as well as join and
restriction predicates.

The user can also choose to view the XML representation of the specified query
that will be forwarded to the optimizer by clicking the "show query (XML)" button.
The other component integrated with the SQL Input GUI is the User Preference
manager, shown in the lower part in figure 6. In this part, the user can select his
trade-off between the response time and the service charge. The sliding bars are used
for this purpose and this ratio is further integrated in the optimizer to derive the
overall optimization goal. To simplify the implementation, we did not use the AHP
method introduced in section 3.4.2 in our prototype. Since we only deal with two
QoS dimensions here, we assume that the user is able to provide the weights among
two things, which does not seem to be a hard choice.

4. Please note that we did not intend to implement the whole database engine in our prototype.
Thus we bypassed the parser/semantics and rewrites steps. We also assume that the user
always provides us a valid (syntactically and semantically) query.

228 RSTI - ISI - 9/2004. Qualite des systemes d'information

SOL Input User
Profile

"""Ifl"

Optimizer Vr—

j; o
U ^^ j | Plan • [p

Nf=j j4] VisualizatiojJ '" 8.L

' ~"' î̂ iir

::; :i£aoSIB;:::;;n:;:
, Management

oSInfo
*

» • •••:-<:<: sis
Visualization

• Network
+Server
Load

• User Profile \e 5. Logical components of the prototype

When an SQL query and the QoS preferences are specified by the user, he/she
can see the generated query access plan. For the query specified as in figure 6, the
query plan shown to the user will look like the one shown in figure 7.

From) 8ei«t| »i««tssiwtiu[ij

I
DEPARTMENT, EMPLOYEE, EKP_ACT, PROJECT, SALES

DEPARTHEHT.DEI'THO = EKPLOTEE.fOEKLEPT

EHP_ACT.EMPHO = EEPLOYEE.EHPHO

EHP_ACT.PROJHO = PROJECT.PROJHQ

PROJECT.PRSTDATE = SALES.SALES JJATE

J

8 ' ' ' ' ' ' '
i ! fnoi

j -~ »»
i • ;sai&o:
I i I D

illThe cucrent user class is: VIP User

Figure 6. An example of SQL input interface and selection of query preference

QoS-based Distributed Query Processing 229

In short, through the implementation of the prototype, we have demonstrated the
following points:

- different user classes are provided in the prototype. Users are classified based
on priority and a system policy is made for each user class;

- two optimization goals are supported in the current prototype, according to two
QoS dimensions: response time and service charge. The overall optimization goal is
achieved by using the weighted sum of the resulting utility functions applied for
different goals;

- different query access plans can be generated for different user classes;

-dynamic QoS conditions for systems may affect the decision. The system
parameters include both the network information and server characteristics.

CXI
©Montreal

EMP_ACT PROJECT SALES
©Monteal (Ottawa) (Toronto) (Kingston)

DEPARTMENT EMPLOYEE
(Montreal) (Quebec)

Figure 7. An example of generated query access plan

7. Experiment

In this section, we evaluate the performance of our QoS-based query processing
strategy according to the framework proposed in the previous sections. The
objective of our experiment is to show that our query optimizer can adapt itself to
workload changes (both server load and network load) and always chooses the best
plan for different user classes. In the experiment we simulate two classes of users:
VIP user and normal user.

We have three goals for our experiments: (i) how our estimated plan cost (in
terms of response time) is close to the real execution cost; (ii) what are the quality of
service for VIP user and normal user under different workloads (we focus on
response time in the experiment); and (iii) to design a scenario where the traditional
join site selection strategy is no longer optimal. Corresponding to these goals, three
sets of experiments were set up.

230 RSTI - ISI - 9/2004. Qualit6 des systemes d' information

In the first experiment, named estimated vs executed, we take the query plan
generated by the prototype and execute it under different server loads. The network
bandwidth used for the plan estimation is 5Mbps since this is the most representative
maximum bandwidth during the daytime according to our observation between
University of Montreal and University of Ottawa.

The second experiment, named VIP vs normal is designed to measure the
response times for VIP users and normal users under different server loads and
network congestion levels. The 3-way join with different resulting cardinalities is
used for the second experiment.

The third experiment, called Third-site vs Larger-site, is carried out to compare
the response times for the two join site selection algorithms. The Third-site
represents our algorithm that considers a third candidate as join site except for the
sites that hold two join tables; the Larger-site represents the traditional join site
selection in which the site containing the larger table among the two join tables is
chosen for the join site.

7.1. Experimental setup and assumptions

All tests were performed under Windows NT 4.0 (SP 6) on a single Pentium III
CPU and 192MB RAM. The tables used in this experiment are based on the
SAMPLE database provided by the DB2 Universal Database (DB2 UDB). The size
of the database is about 7.5KB.

Two types of system loads are used for our measurement, one for network and
the other for server load. For network load, we mainly focus on the available
bandwidth as the indication of network congestion level. For server load, we
concentrate on the CPU utilization as the indication of server load.

Concerning the server load, in our experiments we degrade the performance of
one server by loading it with additional processes. We categorized the server load
into 4 levels: no load, low load, medium load, and high load.

As for the network load, we consider the TCP congestion level. In our global
database schema, we assume the data are distributed among different cities in
Canada. For this purpose, we observed the TCP traffic using IPERF [IPERF]
between UdeM (University of Montreal) and UO (University of Ottawa). Based on
the observation, we find the maximum bandwidth ranging from 0.2Mbps to 10 Mbps
depending on the time of the day. We group those throughputs into 6 congestion
levels of within the range between O.lMbps and SMbps (Ye 2003; Ye et al., 2003a).

QoS-based Distributed Query Processing 231

7.2. Summary of experiment results

We conducted a number of experiments and performance data are collected for
the two sets of experiments identified previously. Detailed results can be found in
(Ye, 2003; Ye et al, 2003a). Here we explain what we got from our
experimentations.

Estimated versus execution time. In the first set of experiments, estimated vs.
executed, we first vary the workload of the server. Then under different loads, a plan
is generated with an estimated time. This plan is then executed and the observed
execution time is recorded for the purpose of comparison. The network congestion
level for all links is level 1 (which is equivalent to 5Mbps). From the experiments,
the collected execution times are very close to the estimated response time. We also
analyze the result statistically by constructing a linear regression model of these two
times. The regression results indicate that the estimated times can explain about 95%
of the real execution times (detailed in Ye, 2003).

VIP versus Normal users. We compare the execution times for VIP users and
normal users under different server loads. Concerning the server load, we observed
(Ye, 2003; Ye et al, 2003a) that, under no load, all the users would get the same
performance. With the increasing load, the VIP user always stays at the same curve
(the same performance), while the normal user will get higher response time (the
curves marked with square sign). And the advantage of performance for VIP users
increases with increasing server load. In short, this set of experiments shows that the
VIP users always get best performance while the normal user will suffer the slow
response when the load increases.

To study the affect of the network congestion levels, we assume that the links
among the nodes involved in the join are congested while other links have the
normal throughput (SMbps). In addition, there is no load of the server during the
experimental periods. Again, estimated times are used for the comparison of this
experiment. We observed the same trend as in the load test, whenever the links are
congested to a certain level (usually at level 3, i.e. IMbps), the plan for the VIP user
can choose another smooth route for data transformation and maintain the fast
response time. Since doing so may incur extra data transmission, and this is regarded
as "expensive" for normal users, the normal user will experience a slower query
response in these cases.

Third-site versus Larger-site. In the last experiment, we evaluate our "third-site"
algorithm as opposed to traditional site selection. The purpose for this experiment is
to find a scenario where traditional site selection (the larger-site selection strategy) is
not always optimal in terms of response time. The results shown in (Ye et al.,
2003b) demonstrate the superiority of our algorithm over the traditional algorithm
whenever the larger site of the two-way join is loaded. In the case that the network
link between the two operand sites is congested to a certain level, our algorithm can
also avoid the congested link by selecting a third site as the join site.

232 RSTI - ISI - 9/2004. Qualite des systemes d'information

8. Conclusion and future work

In this paper, we have proposed a general framework for integrating QoS
requirements in a distributed query processing environment. This framework is
based on user classes, cost models, utility functions, and policy-based management.
Our approach allows us to offer differentiated services to different classes of users
according to their expectations in terms of QoS. We have presented our QoS-based
distributed query processing strategy where we push QoS requirements and
information into the different steps of global query optimization: global query
decomposition, join ordering and join site selection. We presented the prototype we
have developed as well as experimentation we have conducted to validate our
approach. The current prototype considers two classes of users as well as two
different optimization goals. In the future, we will consider other QoS dimensions to
be specified by the user, such as data quality or freshness and will work on rewriting
rules to transform specifications on these dimensions into optimization goals and
corresponding cost models. To test the feasibility of our method, we designed a very
simple scenario. To test our algorithm in a more general case, further experiments
should be conducted on a larger and real database system.

9. References

Aurrecoechea C., Campbell A., Hauw L, "A Survey of QoS Architectures", ACM Multimedia
Journal, 6, May 1998, p. 138-151.

Bodorik P., Riordon J. S., "Distributed query processing optimization objectives", in
Proceedings of the Fourth International Conference on Data Engineering, Los Angeles,
CA, IEEE Computer Society, February 1988, p. 320-329.

Braumandl R., Kemper A., Kossmann D., "Quality of Service In an Information Economy",
ACM Transactions on Internet Technology (TOIT), Vol. 3, No. 4, November 2003,
p. 291-333

Cocchi R., Estrin D., Shenker S., Zhang L., "Pricing in Computer Networks: Motivation,
Formulation, and Example", IEEE/ACM Transactions on Networking, Vol. 1, No. 6,
December 1993, p. 614-627.

Cole R., Graefe G., "Optimization of Dynamic Query Evaluation Plans", SIGMOD
Conference, 1994, p. 150-160.

Cornell D. W., Yu P. S., "On Optimal Site Assignment for Relations in the Distributed
Database Environment", IEEE Transactions on Software Engineering, Vol. 15, No. 8,
August 1989, p. 1004-1009.

Dayal U., "Query Processing in Multidatabase System", in W. Kim, D. Reiner, and D. Batory,
editors, Query Processing in Database Systems, Springer Verlag, 1985.

DB2 UDB Administration Guide V7.2,
http://www-4.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/v7pubs.d2w/en_main.

QoS-based Distributed Query Processing 233

Du W., Shan M.-C., Dayal U., "Reducing Multidatabase Query Response Time by Tree
Balancing", SIGMOD Conference, 1995, p. 293-303.

Dunkel B., Zhu Q., Lau W., Chen S., "Multiple-Granularity Interleaving for Piggyback Query
Processing", in Proceedings of GASCON, 1999, p. 24-39.

Evrendilek C., Dogac A., Nural S., Ozcan P., "Multidatabase Query Optimization",
Distributed and Parallel Databases, Vol. 5, 1997, p. 77-114.

Gardarin G., Sha P., Tang Z., "Calibrating the Query Optimizer Cost Model of IRO-DB, an
Object-Oriented Federated Database System", Proceedings of the 22nd VLDB, Mumbai,
India, 1996, p. 378-389.

Hasan W., Florescu D., Valduriez P., "Open Issues in Parallel Query Optimization",
SIGMOD Record, Vol. 25, No. 3, September 1996, p. 28-33.

Hass L., Kossmann D., Wimmers E., Yang J., "Optimizing queries across diverse data
sources", in proceedings of the Conference on Very Large Data Bases (VLDB), Greece,
Aug. 1997, p. 276-285.

Hellerstein J., Franklin M., Chandrasekaran S., Deshpande A., Hildrum K., Madden S.,
Raman V., Shah M, "Adaptive Query Processing: Technology in Evolution", in IEEE
Bulletin on Data Engineering, Vol. 23, No. 2, 2000, p. 7-18.

IPERF, http://dast.nlanr.net/Projects/Iperf/

Ives Z., Florescu D., Friedman M., Levy A., Weld D., An Adaptive Query Execution Engine
for Data Integration, Proc. of ACM SIGMOD Conf. on Management of Data, 1999.

Kossmann D., "The state of the an in distributed query processing", ACM Computing
Surveys (CSUR), Vol. 32, Issue 4, December 2000, p. 422-469.

Meng W., Yu C., "Query Processing in Multidatabase Systems", Modern Database Systems:
The Object Model, Interoperability, and Beyond, edited by W. Kim, Addison-
Wesley/ACM Press, 1995, p. 551-572.

Moore D. S., McCabe G. P., Introduction to the Practice of Statistics, 2nd edition, WH
Freeman and Company, 1996.

Odlyzko A.M., "Internet pricing and the history of communications", Computer Networks,
Vol. 36, 2001, p. 493-517.

Ozsu M. T., Valduriez P., Principles of Distributed Database System, 2nd edition, Prentice
Hall, 1999.

Saaty T., Multicriteria Decision Making-The Analytic Hierarchy Process, Technical report,
University of Pittsburgh, RWS Publications, 1992.

Selinger, P. G., Adiba M., "Access path selection in distributed data base management
systems", in proceedings of the International Conference on Data Bases, 1980, p. 204-215.

Silberschatz, H.F. Korth, S. Sudarshan, Database System Concepts, Third Edition, McGraw-
Hill, 1997.

234 RSTI - ISI - 9/2004. Qualite" des systemes d' information

Spiliopoulou M., Identifying the Optimization Principles of a DBMS Participating in a
Multidatabase, Technical Report ISS-23, Institut fur Wirtschaftsinformatik, Humboldt-
Universitat zu Berlin, January 1996.

Stonebraker M. et al, "Mariposa: A Wide-Area Distributed Database System", VLDB
Journal, 5, 1, January 1996, p. 48-63.

Urban T., Franklin M.J., Amsaleg L., "Cost-based Query Scrambling for Initial Delays",
SIGMOD'98, Vol. 27, No. 2, Seattle, June 1998, p. 130-141.

Ye H., Kerherv6 B., Bochmann G. V., "QoS-aware distributed query processing", DEXA
Workshop on Query Processing in Multimedia Information Systems (QPMIDS), Florence,
Italy, September 1-3, 1999, p. 923-927.

Ye H., Kerherve B., Bochmann G. V., Oria V., "Pushing Quality of Service Information and
Requirements into Global Query Optimization", the Seventh International Database
Engineering and Applications Symposium (IDEAS 2003), Hong Kong, China, July 16-18,
2003, p. 170-179.

Ye H., Kerherve B., Bochmann G. V., "Revisiting Join Site Selection in Distributed database
Systems", International Conference on Parallel and Distributed Computing, EURO-PAR
2003, August 26th-29th, 2003, Klagenfurt, Austria, p. 342-347.

Ye H., Kerherve B., Bochmann G. V., (2003c) "Integrating Quality of Service into Database
Systems", 14th IEEE International Conference and Workshop on Database and Expert
Systems Applications (DEXA03), September 1-5 2003c, Prague, Czech Republic, p. 803-
812.

Ye H., Integrating Quality of Service Requirements into a Distributed Query Processing
Environment, Ph.D. Thesis, University of Montreal, 2003.

Zhu Q., Larson P., "Solving local cost estimation problem for global query optimization in
Multidatabase systems", Distributed and parallel Database, Vol. 6, No. 4,1998, p. 373-420.

