
Quality of Service Management for Teleteaching
Applications Using the MPEG-4/DMIF

Gregor v. Bochmann and Zhen Yang

School of Information Technology and Engineering (SITE), University of Ottawa, Canada
Bochmann@site.uottawa.ca, zyang@site.uottawa.ca

Abstract. In the context of distributed multimedia applications involving
multicast to a large number of users, a single quality of service level may not be
appropriate for all participants. It is necessary to distribute part of the QoS
management process and allow each user process to make certain QoS decisions
based on its local context. In order to allow for different QoS options, we
assume that each source provides, for each logical multimedia stream, several
different stream variants, representing different choices of user-level QoS
parameters. The paper presents the design of a teleteaching system which uses
this paradigm for QoS negotiation, and explains how the Delivery Multimedia
Integration Framework (DMIF) of MPEG-4 can be adapted as a session
protocol for such an application. In fact, it appears that this DMIF protocol,
which is now being extended by ISO (DMIF Version 2) to the context of
multicasting, provides some general session management functions which are
quite useful for many distributed multimedia applications using broadcasting.

1. Introduction

Over the past several years, there has been a large amount of research focussed on the
issue of QoS management techniques. The topics range from end-to-end QoS
specification, adaptive QoS architecture, to QoS management agents, etc. The
research covered both architecture and implementation issues of QoS management
functions, such as QoS negotiation, QoS renegotiation, QoS adaptation, QoS mapping,
resource reservation, and QoS monitoring. For instance, [1] investigated the problems
related to providing applications with a negotiated QoS on an end to end basis. [2]
illustrated some examples of applications that adapt to a certain situation in which the
available QoS may be severely limited. In our previous CITR project, “Quality of
Service negotiation and adaptation”, solutions were developed for applications
involving access to remote multimedia database [3], [4].
The concept of multicasting arose years ago [8]. It is playing an important role in
distributed multimedia applications, such as remote-education, tele-conferencing,
computer supported collaborative work, etc. However, QoS management in the
context of multicast has only been addressed recently. Most work in this field has been
done for providing QoS-based multicast routing schemes. [9] proposed a multicast

protocol that considers QoS in the routing phase and can create a multicast tree that
better meets the needs of QoS sensitive applications. Another study was done to
provide QoS control for an existing core-based multicast routing protocol [10]. Stefan
Fischer and other researchers proposed a new scheme for cooperative QoS
management, which takes a different approach. They considered an adaptive
application that suits different QoS requirements of different users in the context of
multicast applications [5] [6] [7]. Our project has been greatly inspired by this
approach.
Quality of Service management for distributed multimedia applications becomes more
complex when a large number of users are involved. A single quality of service level
may not be appropriate for all participants, since some of the users may participate
with a very limited workstation, which cannot provide for the quality that is adopted
by the other users. It is necessary to distribute part of the QoS management process
and allow each user process to make certain QoS decisions based on its local context.
We have developed a framework for QoS management of tele-teaching applications. It
was assumed that different variants (with the identical content, but different QoS
characteristics) of mono-media streams are available to the students’ workstations
throughout the network by means of multicasting. A so-called QoS agent is installed
on each student’s workstation. The QoS agent may select the stream that is most
appropriate based on the student’s preference.

2. Providing QoS Alternatives for Multicast Applications

2.1. General Assumptions

We consider in this paper distributed multimedia applications where most data
originates in one system node, called the sender, and is multicast to a large number of
receiver nodes. A typical application would be teleteaching where the teacher’s node
is the sender and the students’ nodes are receivers. We note that in such an application,
there may also be some real-time data going from a receiver node to the sender and
the other receiver nodes. For instance, a student may ask a question which is broadcast
to all participants in the teaching session. However, we will ignore this aspect in our
discussion.
Figure 1 shows the overall system architecture which we consider for a single instance
of our multimedia application. The sender and receiver nodes are connected to one
another through a network which supports a multicast service. The video and audio
streams originating from the sender are therefore broadcast to the different receiver
nodes that participate in the application session.
We assume that the users at the different receiver workstations have different quality
of service requirements. These requirements may be due to the following reasons:

Fig. 1. Overall System Architecture

1) different hardware and/or software resources available in the workstation,
2) different user-level QoS parameters (that is, user preferences), such as requiring

low-cost network service or high reception quality (which may imply higher
costs); there may be different priorities for different aspects of quality, such as
frame rate, color, resolution, disturbances through packet losses, etc.

3) different transmission-level QoS parameters (provided by the network) for the
different receivers due to the specific network architecture and interconnection
structure.

In order to accommodate these different QoS requirements, we assume that the sender
node provides for each logical multimedia stream (such as for instance “video of
teacher”, “video of demonstration”, and “audio of teacher”) different stream variants,
each representing a specific choice of user-level QoS parameters. Actually, some
stream variant may represent several user-level qualities in the case that some form of
scalable encoding is used; however, in most cases scalable encoding implies several
elementary streams which can be combined in order to obtain a specific quality.

2.2. General System Architecture

Figure 2 shows a general system architecture for multicast applications with QoS
alternatives. The figure includes a sender node and two receiver nodes. The receiver
nodes communicate with a user profile manager that contains information about the
user’s QoS preferences and may also be used for user authentification. The sender
node may also communicates with a local network QoS monitor which, in the case of
best-effort networks, provides information about the transmission quality that is
presently available.
The architecture of the sender and that of the receiver nodes are similar. They contain
the application module that performs the application-specific functions, including all
streams processing (e.g. video capture, coding in several stream variants, transmission,
reception, decoding and display, etc.). The transport layer provides an end-to-end data
transmission service with multicasting. In our prototype implementation, we assume
that this includes the protocols IP (with MBone multicasting), UDP and RTP/RTCP.
The session management layer looks after the management of the application session,

Sender

Receiver Receiver

Receiver
Receiver

including the management of the transport channels for the different multimedia
streams and the knowledge about the participating users.
The QoS manager in the sender node determines the list of potential stream variants
for each logical multimedia stream. However, not all of these variants will actually be
transmitted. A stream variant become active (and is transmitted) if the QoS manager
considers that there are enough users that receive that stream, or that have requested
that the stream be activated. For the selection of the potential stream variants and the
activation of some of these variants, the QoS manager may take into account the
information about the presently available network transmission quality that can be
obtained from the local network QoS monitor and through the monitoring of the active
transport channels. It may also take into account specific requests sent by the users
participating in the application. An example of potential stream variants is shown in
the table of Figure 3.

Video Stream A
Ch1 … Chn

Frame Rate 10 30
Color Grey Color

Resolution 640*480 640*480
Coding Scheme h.261 jpeg

Cost 10 20
Active Flag Yes No

Audio Stream B
Ch1 … Chn

Quality CD Phone
Coding Scheme PCM PCM

Cost 2 1
Active Flag Yes No

Fig. 3. QoS Table for Logical Multimedia Streams

Fig. 2. General System Architecture

Local Network
QoS Monitor

Sender Appl. Module

QoS Manager

User Profile Manager

Real-time

Streams

Control Messages

U
ser Interface

Logical
StreamA

Session Management

Transport Protocols

Network

Session Management

Receiver Appl. Module

QoS Agent

U
se

r
In

te
rf

ac
e

Transport Protocols

Logical
StreamA QoS Agent

U
ser Interface

Session Management

Transport Protocols

Receiver Appl. Module

Logical
StreamB

Logical
StreamB

Logical
StreamA

Logical
StreamB

The QoS agent in the receiver node obtains information about the user QoS
preferences (either directly through the user interface, or by retrieving the user’s QoS
profile) and selects for each logical multimedia stream a specific stream variants
which best fits the QoS preferences of the user. In case that the most suitable stream
variant is not active, it sends an activation request to the QoS manager at the sender
node.
An example of a possible interaction scenario is shown in Figure 4. Point [1] shows
the QoS Manager of the sender that initiates the session and broadcast the information
about the available streams. When a new receiver joins the session (point [2]), its QoS
Agent sends first an Ask_QoS_Info (session_ID, user_ID) to the QoS Manager. The
QoS Manager then sends Give_QoS_Info (session_ID, qos_List) to the Agent,
providing information for all potential stream variants, as shown in Figure 3.
According to the user’s profile, the QoS Agent then selects the best stream variant
(port1 in our example).
When a QoS violation is detected by the QoS agent, it first checks whether one of the
other currently active streams is acceptable. If so, it switches to it (point [3]),
otherwise (point [4]) the QoS Agent will ask the QoS Manager to activate one of the
other potential stream by sending an Ask_Add_QoS (session_ID, user_ID, qos). If
none of the streams, whether active or not, satisfies the user’s expectations, the QoS
Agent should inform the user about this situation and check whether the user wants to
change the preferences in his/her profile.
Whenever there is a change in table of potential streams, the QoS manager should
broadcast this information to all the receivers by sending a Give_QoS_Info
(session_ID, qos_List) message.

Fig. 4. Example of an Application-Level Interaction Scenario

Stop (port1)
Play (port2)

Sender Appl. QoS Manager QoS Agent Receiver Appl.

Ask_QoS_Info (session_ID, user_ID)

Stop (port1)
Play (port4)

Give_QoS_Info (session_ID, qos_List)

Ask_Add_QoS (session_ID, user_ID, qos)

Give_QoS_Info (session_ID, qos_List)

Start (port1)

Play (port1)

1

2

3

Start (port4)

Give_QoS_Info (session_ID, qos_List)

4

Notes:
Point [1]: When the QoS manager initiates a session, it should broadcast the
information about all potential stream variants. The parameter qosList contains
the QoS table (see Figure 3) plus the IP addresses and port numbers of all active
channels.
Point [2]: Some time later, a new receiver wants to join the session. First, its
QoS agent asks the QoS manager for the QoS information (qosList) of the
session. Then it selects an appropriate stream variant, and asks the Receiver
Application Module to start the application with the selected stream.
Point [3]: After some time, QoS violation occurs. If there is another currently
active stream that is acceptable, the QoS agent simply asks the Receiver
Application Module to switch to that stream.
Point [4]: If no currently active stream is acceptable, the QoS agent asks the
QoS manager to activate one of the other potential streams. The scenario above
assumes that the QoS manager activates the requested stream; when the
receiver’s QoS agent is informed, it switches to the new stream. -- If none of the
variants that the QoS Manager offers, whether active or not, satisfies the user’s
expectations, the QoS agent should inform the user about this situation and
check whether the user wants to change the preferences in his/her profile.

3. The MPEG-4 / DMIF

MPEG-4 [11] is a new ISO standard on multimedia stream coding which goes beyond
the previous MPEG-1 and MPEG-2 standards by providing adaptation to for low-data-
rate transmission and support for multiple video and audio streams which can be
useful for teleconferencing applications and applications involving virtual
environments. In contrast to traditional coding standards, MPEG-4 allows the
definition of video streams which represents objects with arbitrary contours, not only
the rectangular screens of TV or film presentations.
The suite of MPEG-4 standards include a so-called Delivery Multimedia Integration
Framework (DMIF) which is functionally located between the MPEG-4 application
and the transport service. The main purposes of DMIF are to define a session level
protocol for the management of real time, QoS sensitive streams, to hide the delivery
technology details from the DMIF user, and to ensure interoperability between end-
systems in the control plane.
DMIF defines an interface called DMIF application interface (DAI), in order to hide
the delivery technology details from applications. Also, by using media related QoS
metrics at the DAI interface, applications are able to express their needs for QoS
without the knowledge of the delivery technology. It satisfies the requirements of
broadcast, local storage and remote interactive scenarios. In addition, in case of
interactive operation across a network, it ensures interoperability between end systems
through a common DMIF protocol and network interface (DNI), which is mapped into
the corresponding native network signaling messages. The basic DMIF concepts are
defined in MPEG-4 version 1 [12]. Version 2, now being developed, specifies
extensions for multicast scenarios [13]. Our project is based on these extensions.
The DAI provides primitives for an application to attach itself to a given session (or
create a new session), called DA_ServiceAttach, primitives for adding or deleting a
transport channel for the session (DA_ChannelAdd and DA_ChannelDelete
primitives). It also includes a DA_UserCommand primitive that provides a means for
transmitting, between the applications. Similar primitives exist at the network
interface (DNI), which includes in addition so-called SyncSource and SyncState
primitives which allow the distribution of the information about the multimedia
streams provided by the different senders in the application session. The AddChannel
primitives at the DNI also include a parameter for requesting different options of QoS
monitoring for the transmission service provided by the channel.
In a multicast session, a DMIF terminal can be either a Data Producer DMIF Terminal
(DPDT) that is a information source, or/and a Data Consumer DMIF Terminal
(DCDT) that is a information receiver. A DMIF multicast session consists of a DMIF
multicast signaling channel (C-plane) to distribute the state information of the session,
and one or more multicast transport channels (U-plane) to deliver the multimedia data.
We will use the DMIF C-plane in our project since it meets our need for message
exchange between QoS manager and QoS agents.
The following are some details on the establishment of a multicast session between
data produces and consumer DMIF terminals:

• A DMIF multicast session is identified by an DMIF-URL. DMIF-URL is a URL
string, whose basic format was defined in DMIF version 1. It is used to identify
the location of a remote DMIF instance. In the multicast scenario, this URL is
extended with the role of the DMIF terminal in the multicast session (DPDT /
DCDT). So that the local DMIF layer is capable of recognizing the role of the
application (sender or receiver) in the multicast session.

• The session’s signaling channel address (IP address and port number) is available
to the interested DMIF terminals by mean of a session directory or through e-
mail, etc.

• Each DPDT must explicitly join and leave the DMIF multicast session by sending
messages over the signaling channel.

• When a DCDT joins a session, in order to reduce the number of signaling
messages, it should listen on the signaling channel to collect the state information
from all DPDTs participating in the session. If the DCDT does not acquire the
information within a given time period, it should ask the DPDTs for their state
information.

4. Using DMIF for Session Management in Tele-teaching
Applications

Although the DMIF of MPEG-4 has been designed for use with MPEG-4 applications,
it appears that its functionality can be used in a much wider context. It appears to be a
quite general session protocol that can be useful for any application using a number of
concurrent multimedia streams in a distributed environment. Looking at it from this
perspective, we asked ourselves whether it could be used for the teleteaching
application described in Section 2. The answer is Yes, and the modalities are
explained below.
We consider our teleteaching application in the context of the Internet. Therefore we
assume that the underlying transport is provided by the IP/UDP protocols
complemented with some multicasting facility. For our prototype implementation, we
plan to use the multicasting facility provided by MBone. Each multicast channel,
including the signaling channel, is identified by a broadcast IP address plus a port
number.
We assume that RTP (and an associated RTCP) is used for each multimedia stream for
the purpose of synchronization and for monitoring of the network-level QoS
parameters. The DMIF network interface is therefore mapped onto the multicast
transport service provided by RTP/RTCP. General guidelines are given in the DMIF
specifications.
Over the DMIF layer lies the application. The abstract interactions shown in Figure 4
can be mapped to the DMIF primitives provided to the application through the DAI.
A typical example is shown in Figure 5, which corresponds to the abstract scenario
given in Figure 4. Specifically, the figure shows the following interactions:
Point [1]: The QoS manager initiates a session. The information on the potential
stream variants (see Figure 3) is encoded in the user data field uuData of the

DA_ServiceAttach primitive and forwarded by the DMIF through the SyncSource and
SyncState messages which are broadcast over the network through the signaling
channel.
Point [2]: The QoS agent sends a DA_ServieAttach primitive to inform the local DMIF
protocol entity that a receiver wants to join the session. To avoid requesting the
information that other receivers just requested, the DMIF entity listens on the
signaling channel for a reasonable time period, and collects the SyncSource and
SyncState messages from the sender side. If these messages are not gotten during a
given time period, the DMIF entity should request them. The received information is
passed to the QoS agent in the uuData parameter of the Attach confirmation.
Point [2’]: The QoS agent selects an appropriate stream variant, and sends a
DA_ChannelAddRsp primitive. This primitive is originally used to respond to the
DA_ChannelAdd primitive, but it can also be used at any time during a session when
the application wants to connect to a channel. The DMIF will perform a group join
operation at the DNI in order to join the MBone multicast group for the selected
multimedia stream. The primitive DA_ChannelMonitor is invoked in order to inform
the DMIF to start monitoring the selected channel.
Point [3]: The DMIF entity indicates a QoS violation, with detailed QoS information
in qosReport paramter. If one of the other currently active streams is acceptable, the
QoS agent simply decides to switch to that stream.
Point [4]: If none of the currently active streams is acceptable, but an inactive streams
is acceptable, the QoS agent sends a DA_UserCommand primitive to ask for the
activation of that stream, as specified in the uuData parameter. If neither active nor
inactive streams are acceptable, the QoS agent should ask the user whether he/she
wants to change his/her QoS profile or abandon the session.
We found that the DMIF specifications fit well with the session and QoS management
functions that were required by our teleteaching application. However, there are
certain points where the extensions for multicast applications described in ISO
Working Draft of DMIF Version 2 do not fit completely our requirements. We
mention in particular the following points:
• SyncState message parameters: The information about the potential stream

variants (see Figure 3) is encoded in the user data field uudata of the
DA_ServiceAttach primitive invoked by the QoS and session manager in the
sender node. When a receiver node joins the application session, this information
is passed along in the SyncState message from the sender to the receiver DMIF
protocol entity. This requires certain changes to the SyncState message
parameters, as specified in the Working Draft. More specifically, the SyncState
message, as defined, contains information about the active channels, however, the
QoS information included provides only information about the transmission-level
QoS parameters of the channels, but not the user-level parameters contained in
the table of Figure 3. These parameters must be added to the SyncState message.
In addition, the information for the inactive channels must be added.

Fig. 5. Multicast Session Interaction Scenario including DMIF

• Requesting new stream variants: Another issue is the question how a QoS agent
in a receiver node could request that an inactive stream variant be activated. We

DA_ChannelAdd
OUT:chID,rsp,uuData

OUT: resp, uuData
Stop(port1)
Play(port4)

DA_ChannelAddCallback

(chID, dir, qosDescriptor,
uuData)

DA_ChannelAdd
(ssID, dir, qosDescriptor,

uuData)

OUT: ssID,
response, uuData

DA_ChannelEvent
(chID, qosReport)

Sender Appl QoS Manager DMIF Network DMIF QoS Agent Receiver Appl.

DA_UserCommand
Callback(ssID, uuData)

DA_UserCommand
(ssID, uuData)

DA_ServiceAttach
(URL,uuData)

OUT: ssID,
response, uuData

DA_ServiceAttach
(URL,uuData)

Start(IP, Port1)

Play(port1)

Stop(port1)

Play(port2)

1

2’

3

DA_ChannelAdd
OUT:chID,rsp,uuData

OUT: chID, resp,
uuData

Start(IP,

port4)

4

2

DA_ChannelMonitor
(chID,qosMode)

have adopted the use of the DA_UserCommand primitives for this purpose. This
primitive allows the transfer of user information from application to application,
in our case from the QoS agent to the QoS manager in the sender node. If the QoS
manager decides to activate a new stream variant, it will invoke a
DA_ChannelAdd that leads to a multicast control message to all participating
receiver nodes and a DA_ChannelAdd indication to all QoS agents.

5. Prototype Implementation

Our implementation environment is based on MBone. A single sender (teacher) node
and several receiver (student) nodes communicate over the Internet via RTP/RTCP,
UDP/IP and MBone protocols. At each side, there are two major parts: real-time video
transmission and session control message transmission. For the first part, we did not
develop a completely new multimedia application, but used an existed MBone video
conferencing tool ‘vic’ at the teacher side, and a Java application ‘RTP player’ at the
student side. ‘RTP player’ is part of the Java Media Framework (JMF), which
specifies a programming interface for time-based media playback. It enables
multimedia content in Java applets and applications, and allows for Web-based
multimedia solutions that run in any Java compatible environment. However, these
tools have to be modified in order to be suitable for multicast application and QoS
management. The Java interfaces representing the abstract DAI primitives are
specified in the DMIF (version 2) specification. We implemented these interfaces in
the sender and receiver applications with the necessary modifications (mentioned
above) for realizing the session and QoS management functions. The overall system is
described in [14].

6. Conclusions

Session management for multimedia applications with multicasting is a complex task,
especially when a large number of users are involved. It appears that the Delivery
Multimedia Integration Framework (DMIF) for MPEG-4, which is presently extended
for multicast applications, provides interesting session management functions for
distributed multimedia applications in general, independently of the question whether
MPEG-4 encoding is used.
We have shown how these DMIF functions can be used for session management of a
teleteaching application including different QoS alternatives for the participating
users. In such an application, the sender node of the teacher provides different stream
variants (with different QoS attributes) for each logical multimedia stream. Each user
participating as a student may then select one of these variants according to its QoS
preferences.
The detailed analysis of the DMIF protocol in the multicasting context has identified
certain generalizations that would be useful in order to make it more generally usable

for various distributed multimedia applications. This includes general means for
distributing user information from the stream producers to the stream consumers, and
some means for sending general user requests from a consumer to a particular
producer.
A prototype implementation of a teleteaching application with QoS alternatives is in
progress and includes a variant of the MPEG-4/DMIF for the management of the
application session and associated QoS management. A demonstration should be
available in October 1999.

Acknowledgements

The authors would like to thank Khalil El-Khatib and Qing Zhu for some interesting
discussions. This work is supported by research grants from Communications and
Information Technology Ontario (CITO) and Nortel-Networks.

References

[1] D. Hutchinson, G. Coulson, A. Campbell, G. Blair. “Quality of Service Management in
Distributed Systems”, Network and Distributed Systems Management, page 273-303, 1994.

[2] J. Gecsei, “Adaptation in Distributed Multimedia Systems”. IEEE Multimedia, 1997.
[3] G. v. Bochmann, A. Hafid, “Some Principles for Quality of Service Management”,

Distributed Systems Engineering Journal, 4:16-27, 1997.
[4] A. Hafid, G. v. Bochmann, “Quality of Service Adaptation in Distributed Multimedia

Applications”, ACM Multimedia Multimedia Systems Journal, volume 6, issue 5, 1998.
[5] S. Fischer, A. Hafid, G. v. Bochmann, H. d. Meer, “Cooperative Quality of Service

Manaement for Multimedia Applications”, proceedings of the 4th IEEE Internatinal
Conference on Multimedia Computing and Systems, Ottawa, Canada, june 1997, pp. 303-
310.

[6] S. Fischer, M. v. Salem, G. v. Bochmann, “Application Design for Cooperative QoS
Management”, proceedings of the IFIP 5th International Workshop on QoS (IWQoS’97),
New York, May 1997, pp 191-194.

[7] A. Hafid, S. Fischer, “A Multi-Agent Architecture for Cooperative Quality of Service
Management”, Proceedings of IFIP/IEEE International Conference on Management of
Multimedia Networks and Services (MMNS’97), Montreal, Canada.

[8] S. Deering, “Host Extensions for IP Multicasting”, IETF RFC 1112.
[9] A. Banerjea, M. Faloutsos, R. Pankaj, “ Designing QoSMIC: A Quality of Service sensitive

Multicast Internet protoCol”, IETF Internet Draft: draft-ietf-idmr-qosmic-00.txt.
[10] J. Hou, H. Y. Tyan, B. Wang, “QoS Extension to CBT”, IETF Internet Draft: draft-hou-

cbt-qos-00.txt.
[11] “Overview of MPEG-4 Standard”, (N2725), http://drogo.cselt.stet.it/mpeg/standards/mpeg-

4/mpeg-4.htm
[12] “Information technology – very-low bit-rate audio-visual coding – Part 6: Delivery

Multimedia Integration Framework (DMIF)”, (N2506), http://drogo.cselt.stet.it/mpeg

[13] “Information technology – very-low bit-rate audio-visual coding – Part 6: Delivery
Multimedia Integration Framework (DMIF)”, (N2720), http://drogo.cselt.stet.it/mpeg

[14] Z. Yang, “A tele-teaching application with quality of service management”, MSc thesis,
University of Ottawa, expected 1999.

