
1

Object Composition: A Case Study

Dunia Ramazani , Discreet Logic (Canada)
Gregor v. Bochmann, University of Ottawa (Canada)

Abstract:
In Software engineering, experimentation is a necessary adjunct to process improvement. Objective and
meaningful case studies can help us understand particular object-oriented notations, methods, or
languages. In [Rama96b], we have presented an object-oriented method, called eXtended Object
Modelling Technique, XOMT for shorthand. In this paper, we modify the developmental approach
used in XOMT to include the specification of the behavior of composite objects based on synchronous
interactions. The new developmental process consists of describing the application structure in terms
of objects and associations between these objects. This includes the description of composite objects as
proposed in XOMT. Object associations are then further refined by describing the object interactions
that occur in the context of these associations. Object and association behaviors are specified in CSL, a
specification language based on rendezvous interaction. CSL specifications can be translated in TLA.
This adds a reasoning capability to the development process. The translation into TLA is motivated by
the existence of a wide variety of specification and verification tools for TLA.

Keywords: Case study, CSL, Formal reasoning, Object composition, OMT, TLA, XOMT.

1. Introduction
We have been involved in the specification of engineering and telecommunications applications. In
these applications, there is a predominance of composite objects, i.e. objects consisting of other
objects. We have observed that the way the structure of these objects influence their behavior can play a
key role in the process of specifying such objects [Rama95b]. To take this aspect into consideration
throughout the application development process, we have defined a conceptual framework for the
specification of composite objects. This framework proposes a new approach to the description of
composite objects based on the relation between the structure and the behavior of these objects. The
framework has been integrated within OMT [Rumb91]. Its integration within OMT leads to a new
method called eXtended OMT (XOMT). Details on these experiences can be found in [Rama96b].

Now, we believe that the proposed approach to specification of composite objects has reached the
status where it can be (1) shared with other practitioners, and (2) used in the industry. In Software
engineering, experimentation is a necessary adjunct to process improvement. Objective and meaningful
case studies can help us understand particular object-oriented notations, methods, or languages. In
[Rama96b], we have presented an object-oriented method, called eXtended Object Modelling
Technique, XOMT for shorthand. The presentation focuses on the differences and similarities between
the two methods. The paper was aimed at presenting the concepts and principles underlying XOMT
and not to be some kind of recipe and bunch of guidelines helping the specifier when he uses XOMT
for modeling systems with composite objects. We have designed a new specification language for
capturing object composition, namely CSL which stands for Composition Specification Language.
This work shows how these latter results can be combined with XOMT. A specification case study is
used for conveying our ideas, demonstrating the usability of the results in the context of XOMT.

1.1. Summary of our experience
In this paper, the integration of CSL is achieved at the expense of modifying the developmental
approach used in XOMT. We departed from the OMT based development process to a more light
process based on describing the application and object structures in terms of objects and associations
between these objects. This follows the description of composite objects as proposed in XOMT. Object
associations are then further refined by describing the object interactions that occur in the context of
these associations. Object behaviors and association behaviors are specified in CSL which is
translatable into TLA [Lamp94]. It adds a reasoning capability to the development process, i.e. we

2

may then use TLA tools for verifying the specifications. The application selected in this case study is
the specification of a lift system. According to many authors, it has many features of complex systems
while being short enough to fit into a paper.

1.2. Organization of this paper
The paper is structured as follows. In Section 2, we begin by reviewing the essential concepts and
principles of XOMT. It is followed by a summary of features provided by CSL including its formal
semantics based on its translation into TLA. We then describe the development process which uses
CSL. In Section 3, the development process is put in practice through the specification of a lift system.
This includes the description of the application requirements, the informal specification supported by
XOMT and the specifications in CSL including the translation in TLA as well as the reasoning
capability. In Section 4, we discuss about the pro and cons of our development approach. We close
the paper with the lessons learned in this experiment and we describe the future work.

2. Overview of XOMT and CSL

2.1. Concepts and Principles underlying XOMT
Roughly speaking, XOMT is OMT with a few add-ons allowing to specify composite objects such that
there is a linkage between the structure and the behavior of these objects. In XOMT, properties of
composite objects are classified into inherent, aggregate, and emergent. A composite object is an object
with an internal structure which consists of the components (type and number of instances within the
composite object), and the interconnections including the dynamic interactions between the components
of the composite object. The linkage between component properties and composite object properties is
established by distinguishing inherent properties, i.e. properties of the composite object which
semantics is provided by properties of its components, from aggregate properties, properties of the
composite object obtained by combining the properties of its components using aggregation
mechanisms, from emergent properties which are properties of the composite object which do not
depend on component properties. The presence of inherent and aggregate properties distinguishes a
composite object from a simple one.

This new classification requires notational changes to object models in order to capture visibility and
hiding of components, promotion of component properties to the status of composite object properties,
and aggregation mechanisms used to combine the component properties. Other areas of improvement
of OMT include the specification of the communication between objects, especially the communication
between the components of a given composition. A more abstract interaction mechanism based on
behavior constrainment is proposed, namely Contract specifications where behavioral interactions are
expressed in a more abstract way so that the description does not introduce implementation bias. It is
achieved by constraining, through predicates, the behavior of the interacting objects. Contracts are
related to object associations abstracting the interactions between the classes. They represent the
concurrent composition of the participant statecharts (individual behaviors) such that the behavior of the
participants conforms to the constraints explicitly stated in the contracts. Constraints are expressed
using a combination of first order predicate logic and OMT constraints.

2.2. Steps and notation in XOMT
The description of composite objects proceeds in three steps. The configuration describes the structure
of the composite in terms of components, associations and behavioral interactions among these. The
next step, juxtaposition shows how the composite is linked to its components through the aggregation
association, and inherent and aggregate properties. The last step, emergence concerns the specification
of emergent properties. Aggregation association is represented like in OMT. Visibility/hiding of
components is specified by having the component class represented respectively with doubled and
simple framed rectangles. The attributes and operations of composite are classified using three separate
rectangles. Inherent, aggregate, and emergent attributes and operations are represented using
respectively inherent, aggregate, and emergent rectangles, that is three rectangles in place of one, like
for classes in OMT. Inherent associations are of two kinds, those resulting from the visibility of
components and those involving hidden components. The former are represented by associations

3

crossing the boundary of the composite and ending at some visible component inside the composite.
The latter are represented by associations ending at the boundary of the composite and continued within
the composite by a dashed line to some hidden component. Aggregate and emergent associations are
represented using associations ending at the boundary of the composite and respectively decorated
with the annotations {A} and {E}. To describe the behavior, we use parallel composition of
statecharts. This is represented by having the parallel statecharts separated by a dashed line while being
enclosed in the composite statechart [Hare88]. Inherent behavior is represented by the statechart of
visible components and a specific statechart (annotated with "promoted") for the behavior originating
from hidden components. Aggregate and emergent behaviors are respectively specified using specific
statecharts. The overall behavior of the composite object consists of parallel composition of inherent,
aggregate, and emergent behavior.

2.3. Composition Specification Language (CSL)

Concepts and principles
CSL has its roots in the assumption that object interactions occur only over object associations. This
assumption is grounded on the fact that object interactions portray collaborations between the involved
objects. Intuitively, the terms and conditions of these collaborations must be stated and established
somewhere. The object association is the preferred place where such terms and conditions may be
layed down. In CSL, object interactions are called abstract events [Boch93b] and they correspond to
joint-actions. They are characterized by:

(a) There is no asymmetric caller/callee relationship: It is not said which object makes the decision for
the execution of an interaction.
(b) There may be more than two objects participating in a given interaction, i.e. multiparty interactions.
(c) Each participating object may impose certain conditions which must be satisfied when the
interaction occurs. Each participating object may also define some local state changes that occur during
the execution of the interaction.

It is important to note that the above concept of interaction does not include the notion of caller - callee.
This means that it is not specified how an interaction is "triggered". Only the conditions for its
occurrence are specified. This way of describing object interactions is abstract, and non deterministic,
leaving such question as triggering of actions, their scheduling and the involved actors for a later, more
detailed specification. Along with us, other authors [Cook94, DSou94, Jarv90] have also adopted a
similar mechanism for describing object interactions. In particular, the concept of joint-action [Jarv90]
is semantically equivalent to that of abstract event.

Once we are able to describe the interactions that occur in the context of object associations, we may
use the same approach for describing the interactions between components in a composition.
Composition in CSL is achieved by connecting the objects and then hiding certain abstract events
which involve these objects. Using this approach, we are able to describe structures of compositions
including the interactions that occur in the compositions.

In [Rama95a], we have shown that the structure of a given composition is linked to its behavior
because the behavior of the composition is realized in terms of the behavior of its components and how
these are interconnected. The approach proposed above can be extended to the description of the
behavior of compositions in terms of the behavior of components while taking into account the
structure of the compositions. This is achieved by hiding abstract events which occur in the
composition, i.e. in the structure of the composite object. Hiding is used as an abstraction mechanism.

Notation
The notation proposed by CSL is portrayed below. In CSL, we assume that a simple object (non-
composite) can be represented as a composite object which has no components, i.e. its structure is
empty. Based on that assumption, we use a single template for specifying objects. Only object
compositions have the "inherits" section which indicates the actions of the components which are also
actions of the composition.

4

spec name
constants name = value

 define typename : type;
 extends namei, .., namej
 contains

namek : spec namet
. .
namep: spec names

 abstract events
association name

event aei = <abstract event definition>
. .

event aek = <abstract event definition>
. .
association name

event aei = <abstract event definition>
. .

event aek = <abstract event definition>
 inherits

actioni from namei.actionk
. .
actionq from nameq.actionl

 local variables
<variable declaration>

 initial conditions
<assignment to local variables>
<conditions on the components>

 invariants
<predicates on the local variables>
<predicates on the components>

 behavior
action name (<parameter list>) = <action definition>
. .
action name (<parameter list>) = <action definition>

end spec name
Object template

The "constants" and "define" clauses are self-explanatory. They introduce constants and new types in
the specification. The "extends" clause denotes specialization. Features of the specifications listed in the
"extends" clause are augmented with new features introduced by the specification. Actions can be
redefined, invariants more constrained, etc.

The "contains" clause indicates the structure of the composition. It lists the components, while the
constraints on these components can be stated in the "invariants" clause. "abstract events" denote the
abstract events occurring between the components. These abstract events are structured according to the
associations between the objects inside the composition. "local variables" denote the states of the
object or the composition. The clause "initial conditions" defines the initial state. It assigns the initial
values to the local variables and may define the initial states of the components in the context of the
composition. "invariants" are used to record the safety properties of the object, and its components.

The "behavior" clause defines the actions which are supported by the object. Actions may have
parameters. The semantics of the behavior clause are: First the initial conditions are established, in any
state whether an action occurs, or the local variables remain unchanged. The invariants must be always
satisfied in the state before the execution of the action and in the state after the execution of the action.

5

This semantics provides a means for assessing if a specification is well-formed. At the level of an
object, we assume interleaving concurrency between the actions supported by that object. For a
composition, there is interleaving between its abstract events, and its actions.

Until now we have not said too much about actions. Actions are defined in terms of "enabling",
"defined", and "changes" predicates. More precisely, we use a combination of mathematics and
predicate logic to define the semantics of actions. Each action has the form :
action action-name(parameters) =

enabled: <predicates>
defined: <predicates>
changes: <predicates>

The meaning of an action is:
(a) when "enabled" is satisfied and "defined" is also satisfied, then the action can be executed and
"changes" will be true afterwards;
(b) when "enabled" is satisfied and "defined" is not satisfied, the action can be executed, but the result
is undefined;
(c) when "enabled" is not satisfied, the action can not be executed.

In action definitions, the "defined" predicate indicates the hypotheses about the environment for the
action.

An abstract event is the synchronization of two or more actions. It is specified by a list of actions which
are synchronized and a constraint over the parameters of the synchronized actions. It has the form:

event abstract event-name= local: <local variables>
actions: <list of actions>
constraint: <constraint between action parameters and local variables>

The abstract event is enabled in states where all its composing actions are enabled. It is disabled if at
least one of its composing actions is disabled. The defined clause of actions involved in an abstract
event are used to assess the validity of the abstract event definition. Because, the defined clause denotes
the hypotheses about the environment. The hypotheses of one action have to be consistent with the
definition of the other actio s involved in the abstract event. This is refered to as internal consistency of
the definition of an interaction.

Formal semantics
To reason about CSL specifications, we need an underlying execution model as well as an underlying
logic for proving properties. We have favored the translation of CSL specifications into TLA
[Lamp94], an existing formal specification language. The choice of TLA (Temporal Logic of Actions)
is motivated by its computational model which is based on interaction, its built-in notion of behavior
including the temporal ordering of actions, and nonetheless the availability of a wide range of
specification and verification tools [Mest94].

The main difference between CSL and TLA is on the semantics of actions. CSL actions have explicit
parameters. In addition, each CSL action indicates what are its assumptions about the environment
since the objects are composed through their actions. This semantics introduce possible undefined
behavior for actions. The action also has an explicit enabling condition.

When translated into TLA, CSL action parameters are introduced as additional variables of the TLA
specification. In order to represent the possible undefined situations in TLA, two approaches can be
taken for translating the action semantics. They correspond to the interpretations given to undefined
situations. One approach consists to view an undefined situation as a state where the entire specification
becomes deadlocked. The other approach consists to assume that in an undefined situation, the
specification is allowed to do anything it wants.

6

With have extended TLA with two keywords, namely chaos and anything which can be used in
action definitions to represent undefined situations. Let consider LV(ai) which represents the set of
local variables appearing in the CSL action ai. V is the local variables of the CSL specification. CH(ai)
is a subset of LV(ai). It denotes the local variables which are modified by the action ai. PAR(ai) is the
set of the parameters of the action ai. It can be decomposed into two sets PARin(ai) for input
parameters and PARout(ai) for output parameters. Recall that a CSL action is defined by three
predicates, namely enabled, defined, changes which will be respectively referred to in the sequel
by ai.enabled, ai.defined, ai.changes. The translation of the CSL action ai into TLA is as follows.

Chaos semantics:
 ∀ LV(ai) : ∀ PAR(ai): 3 ai.enabled

3 ((ai.defined ⇒ (3 ai.changes
 3 unchanged((V - CH(ai)) ∪ PARin(ai))))

 ∨ (¬ai.defined ⇒ chaos))
where chaos denotes ∀ CH1(ai), ~PARout(ai): (CH'(ai) ≠ CH1(ai)) 3 (~PARout(ai) ≠ PAR'out(ai)).

Anything semantics:
 ∀ LV(ai) : ∀ PAR(ai): 3 ai.enabled

3 ((ai.defined ⇒ (3 ai.changes
 3 unchanged((LV(ai) - CH(ai)) ∪ PARin(ai))))

 ∨ (¬ai.defined ⇒ anything))
where anything denotes ¡ CH1(ai), ~PARout(ai): (CH'(ai) = CH1(ai)) 3 (~PARout(ai) =
PAR'out(ai)).

In this translation, CH'(ai) and PAR'out(ai) represent respectively the values after the execution of the
action ai of the local variables and the action parameters which are modified by that action. Notice that
explicit TLA unchanged predicates are added in order to indicate which variables remain unchanged
by the action. Let the notation TLA-action(ai) denotes the resulting TLA action when a CSL action ai
is translated into TLA. The two possible translations described above lead to two possible meanings of
the TLA action operator Enabled . In TLA, the operator Enabled, e.g. Enabled a, is used to denote the
fact that the action a is enabled, i.e. it may be executed. With the chaos interpretation, Enabled TLA-
action(ai) corresponds to the conjunction of ai.enabled and ai.defined, while with the anything
interpretation, Enabled TLA-action(ai) is equivalent to ai.enabled.

With respect to the behavior of an object, TLA and CSL have the same semantics, i.e. the initial
conditions hold first and then either an action is executed or the specification variables remain
unchanged. Therefore, the translation is one to one for the object behavior.

Once the CSL actions are translated into TLA, abstract events can be also be translated into TLA. We
take advantage of conjunction of actions in TLA to define the semantics of abstract events. Abstract
events are represented by the conjunction of the involved actions and the constraint between the
parameters of these actions. Local variables of an abstract event are introduced using TLA temporal
existential quantification ¡¡¡¡ which denotes hiding of variables in TLA. Hiding of abstract events in a
composition is translated by hiding the parameters of the actions involved in these abstract events.
Specialization in TLA is based on the existence of a refinement mapping between the specifications. It
assumes (execution) steps simulation between the specifications. Steps simulation is general enough to
cover CSL specialization. In other words, let TLA-spec(M) denotes the CSL specification M
translated into TLA, if M and N which are CSL specifications are such that N is a specialization of M,
then TLA-spec(N) ⇒ TLA-spec(M). But the converse is not necessarily true since it is not the case
that any TLA specification has a corresponding CSL specification.

The intuition behind CSL composition rule is: given a CSL composition of M1 and M2, if

7

1) we have internal consistency in that composition, i.e. each composonent behaves well in an
environment including the other components with respect to the abstract events relating the latter
components to the former;
2) and the composition is a specialization of another high-level specification M
then the composition of M1 and M2 is an implementation of M.

This means once internal consistency in a composition is shown, specialization suffices to have a
sound composition rule. Notice that internal consistency can be demonstrated by showing that none of
the abstract events lead to chaos or anything depending on the interpretation which is adopted. In
fact, internal consistency of a composition, once the CSL specifications are translated into TLA, can be
demonstrated as an invariant of the resulting TLA specification. This is achieved using the TLA rule
INV1 [Lamp94]. Specialization is proven at the level of the TLA specifications by establishing a
refinement mapping between the specifications. This has for consequence that, once translated, CSL
compositional reasoning can be achieved at the level of the resulting TLA specification using TLA
rules.

To reason about specifications which include explicit assumptions about the environment, TLA
introduces the operator ±> [Abad95]. A specification E ±> M is a specification of an open system
where E denotes the assumptions about the behavior of the environment. It is given by the canonical
TLA formula InitE 3 ❑[ActionsE]. M denotes the behavior of the component, it is given by the
formula InitM 3 ❑[ActionsM] 3 FM where FM represents the fairness requirements. In CSL, the
assumptions about the environment are at the level of actions, while in TLA, E ±> M specifications are
introduced to take into account the assumptions about the environment at the level of the whole
specification. This means undefined situations are dealed at the level of the whole specification, i.e.
undefined situations have coarser granularity in TLA E ±> M specifications. Since these latter
specifications can be translated into TLA, one may suggest that the resulting specifications should be
comparable with the specifications obtained by translating CSL specifications into TLA. However, E
±> M specifications require explicit synchronization between the environment and the module actions.
This synchronization is achived by shared variables. This contrasts with the fact that CSL action
synchronization is translated into action conjunction, resulting in a more abstract specification. E ±> M
specifications because of the explicit synchronization through shared variables have an implementation
bias. CSL specifications are more intuitive than E ±> M specifications since the specifier is not requried
to know the exact semantics of the operator ±>. Finally, CSL specifications can be viewed as an
approach to write object-oriented TLA specifications.

2.4. Developmental approach and Tools
The developmental approach which is used in this case study proceeds as follows. First the structure
model is built. It describes the application objects and the associations between them including
aggregations. The notation which is used is the one proposed in [Rama96b]. In the structure model, the
different associations may have application-specific behavior and behavioral constraints as described in
[Rama97]. These allow to identify provided and required actions of the objects participating in the
associations and the interactions between these objects in terms of abstract events (synchronous
interactions). The description of these interactions is achieved in the interaction model.

Once the structure and interaction models are built, we then use CSL to describe in more detail the
objects, composite objects, actions provided and required by these objects, and the interactions in terms
of abstract events. As noted earlier, XOMT is an extension of OMT, i.e. it follows closely the OMT
rules. In OMT, the behavior of objects is described by means of statecharts. By adopting CSL as a
vehicle for specifying object behavior, interactions, and compositions, we should say how the
computational model of CSL compares to statecharts. CSL describes the behavior of an object by its
initial conditions, the invariants, and its actions. The initial conditions represent the starting state in a

8

statechart. Actions can be interpreted as a combination of OMT events and the operations performed
when the event occurs.

In OMT, events are atomic and they can be specialized. In CSL, actions are atomic and they can be
specialized. However, in OMT events may denote an elapsed time. This is not actually handled in CSL,
although it can be achieved by timing the action executions, or using the technique proposed by
Lamport which imposes a minimum and a maximum time for the action execution [Lamp94]. OMT
event trace diagram corresponds to the traces allowed by an object. The traces of an object can be
derived from its CSL specification.

In CSL, states are implicitly captured by the values allowed for the local variables. The organization of
states into disjoint substates or composite states can be achieved through predicates on the values of the
local variables. For instance, let us consider the state s ≠ P(xi) £ Q(xi, yi). If P(xi) is satisfied or Q(xi,
yi) is satisfied and ∀ xi, yi : P(xi) 3 Q(xi, yi) ⇔ false, this may represent two disjoint substates, i.e.
P(xi) and Q(xi, yi) represent two distinct substates of s. It can be demonstrated that a substate inherits
the properties of its superstate. However, composite states can only be specified in the context of
compositions. For instance, the initial conditions of a composition may imply the initial conditions of
its components. The initial state of the composition is a composite state bundling the initial states of its
components.

In CSL, concurrency is based on interleaving, i.e. at the level of a single object there is no
concurrency. When considering a composition, the internal events occurring in the composite are
interleaved with its actions. In an internal event, more than two components may simultaneously
interact. This means, there is concurrency between the interacting components.

OMT assumes that an atomic object is a finite state machine with a queue for incoming events.
Composite objects may have more queues of events corresponding to each of its components. This
contrasts with CSL where even if an object is a sequential system (or process), it has no queue. It
accepts or blocks the execution of an action. In addition, it may display an undefined behavior or
undergo non-deterministic changes by executing alone one of its internal actions.

OMT assumes that objects communicate by sending events. In addition, they can interact implicitly if
one object has a guard condition that depends on the state of another object, such as being in a given
sate. Our experience with XOMT has shown that describing synchronous interactions with such a
model is cumbersome. In CSL, interaction is based on the concept of abstract event [Boch93b].
Abstract events are only meaningful in the context of an object association. This has the consequence
that the structure of an application shapes its dynamic behavior.

Apart from events, in a statechart, there are transitions. These roughly correspond to the changes
predicates defined in the semantics of actions in CSL. The so-called λ transitions in OMT correspond
to the non-deterministic changes allowed by an object in CSL.

 In CSL, an object action is defined in three parts: the enabling condition, the defined condition and the
"changes" predicate. The enabling condition defines the states in which the action is enabled. The
defined conditions determine the states in which when the action is executed it will results in a well-
defined behavior. The changes predicate determines the changes made to the local state of the object as
well as the result of output values produced by the action. As a rule of thumb, the interaction
specification is done when we may easily determine the enabling and defined states of the objects
involved in each abstract event. If we can not determine the enabling and defined of states of objects
involved in the abstract events, we may not determine which abstract events do occur. Therefore the
specification can be seen as incomplete.

After providing the CSL specifications, they are translated into canonical TLA formulas. With the TLA
specifications which are obtained, the specifier may now use different TLA tools to verify the
specifications. Results of this process can be reflected directly into CSL specifications since the

9

translation process is a one-to-one mapping. Therefore from the canonical TLA formula using a simple
translation we obtain the corresponding CSL specification.

3. Case Study

As an application of this case study, we have selected the lift problem which is one of the problems
proposed for demonstrating the adequacy of a specification method for complex systems. We omit
certain details which do not contribute to the essential points of this paper.

3.1. Problem statement
A lift system is to be installed in a building with m floors. The lift is aimed at moving people from one
floor to another. The lift is used under the following constraints:

1. Each lift has a set of buttons, one for each floor. These illuminate when pressed and cause the lift to
visit the corresponding floor. The illumination is canceled when the corresponding floor is visited
by the lift.

2. Each floor has two buttons (except for ground and top floors), one to request an up-lift and one to
request down-lift. These buttons illuminate when pressed. The illumination is canceled when a lift
visits the floor and is either moving in the desired direction, or has no outstanding requests. In the
latter case, if both floor request buttons are pressed, only one should be canceled. The algorithm to
decide which to service first should minimize the waiting time for both requests.

3. When a lift has no requests to service, it should remain at its final destination with its doors closed
and await further requests.

4. All requests for lifts from floors must be serviced eventually, with floors given equal priority.
5. All requests for floors within lifts must be serviced eventually, with floors being serviced

sequentially in the direction of travel.
6. Each lift has an emergency button which, when pressed causes a warning signal to be sent to the

site manager. The lift is then deemed "out of service". Each lift has a mechanism to cancel its "out of
service" status.

7. The doors shall be closed when the lift moves.
8. The lift is stopped when it reaches the "out of service" state. Furthermore requests made from the lift

carriage are then cleared, and no new requests from the lift carriage are accepted.

Many requirements of a lift are not mentioned, since the designer is expected to know what a lift is.

3.2. Developing the XOMT specification

Structure model
The structure model is about modeling the associations between objects as well as the structure of these
objects in terms of other objects. We use the following rule of thumb for establishing associations
between objects. We are justified in establishing an association between two objects, A and B, if and
only if we want to express structural or behavioral constraints between the two objects. On the other
hand, the structure of objects depend on the specifier and the level of detail that is required for the
model.

We first provide an high-level structure model of a building since the user, the lift and the floors are in
the context of a building. In structure models, objects are represented by rectangles and aggregation is
shown by embedding one object into another. The structure model for the building can be interpreted
as follows. We have a building which is a composite object consisting of Floor and Lift objects. When
necessary the cardinality of the components are shown in a structure model. The object associations are
shown in a structure model. Floor objects are associated between them. Each Floor is associated to the
Lift through several associations.

10

Building

downstair

upstair

control

Floor

Lift

User
synchronized

located

use

1

N

N

Figure 2: High level structure model of the lift application

The main object associations abstract the constrainment between the floor and the lift. When a user
pushes the button at a floor, this propagates through the association "control" linking that floor to the
lift. In addition, when the lift arrives at a given floor, if it stops and opens its doors, the floor doors
must also be opened. This is captured by the association "synchronized". A user may be located at a
given floor or traveling through the building using the lift. These information are respectively captured
by the associations "located" and "use".

After providing this high-level view, we provide more details by describing the Lift object. As a rule of
thumb, we use one structure model per composition when the composition is enough complex, or we
regroup several compositions in a single structure model. In the structure model below, the Lift and its
components are detailed. Please do not confuse Floor(i) with Floor objects, the former represent
buttons inside the Lift while the latter is the real Floor.

In the structure model of the application, illustrated in Figure 2, the lift being a visible component of the
building, it follows that the visible components of the lift are also visible at the level of the building. A
lift has a ControlPanel and doors. The ControlPanel has various buttons including two buttons which
control the opening and closing of the lift doors.

control

Lift

ControlPanel

OpenDoor CloseDoor HaltFloor(i)
N

Doors

Doors

Floor

LiftControl

Up Down

N

Figure 3: Detailed structure model of the lift and the floor

This is followed by a detailed structure model of the Floor. Each Floor object consists of Doors and a
LiftControl. The LiftControl is an abstraction for the two buttons which control the Lift at each Floor.
Notice that in order to avoid too much details on this structure model, we have left out the case of the
first and the last Floors which have only one button per LiftControl. However, this can be captured by
making the components of the LiftControl optional.

The structure models describe one lift per building. In a multi-lifts building we may have considered an
additional object responsible for the coordination of the lifts. Such an object may be called a
LiftManager.

Interaction specification
An interaction specification portrays the interactions between the objects forming the application. These
interactions are described in terms of abstract events involving the objects of the applications. These

11

abstract events occur only in the context of object associations. The associations which embed abstract
events include but are not limited to the following : (1) lift doors and floor doors, (2) up button and the
lift, (3) down button and the lift, (4) floor(i) button and the lift, (5) openDoor button and the lift, (6)
closeDoor button and the lift, (7) halt button and the lift, (8) user and the lift.

The association 1 corresponds to "synchronized"; 2 and 3 correspond to "control"; 4, 5,6, and 7
correspond to the associations within the Lift composition; Finally, the association 8 corresponds to
"use". The abstract events are described based on the requirements and assumptions below:

Lift and the doors
• When the lift arrives at a given floor where the button is pressed and the lift is going toward the
direction indicated by the button, this makes the lift to stop at this floor and to open its doors.
• When the lift arrives at a given floor which was a target direction, this makes the lift to stop and to
open its doors.
• When the lift is stopped and the button open door is pressed, this makes the lift to open its doors.
• When the lift doors are opened (respectively closed), the corresponding floor doors are also opened
(respectively closed).

Up and down buttons
• When the lift arrives at a given floor which was a target direction, and the button up or down is
pressed. These buttons should be deactivated. If both are pressed, non-deterministic choice is applied
to deactivate only one button.
• When the lift arrives at a given floor which is in the direction of the target floor, and the button
leading to the target floor is pressed, this makes the button to be deactivated.

Control panel
• When floor(i) button is pressed, this causes the indicated floor to be a target destination.
• When the button open door is pressed if the lift is stopped, this makes the lift to open its doors.
• When the button close door is pressed, if the lift is stopped, this makes the lift to close its doors.
• When the button halt is pressed, this leads the lift to the nearest floor and stop the lift at that floor
canceling all the target destinations.

To make the description of the behavior of the lift tractable, we have decomposed its movement into
two specific discrete steps, namely move(i,j) and stop(k). move(i,j) models the displacement from the
floor i to the floor j. It is achieved in one complete execution step and it is atomic. stop(k) models the
action forcing the lift to stay at the floor k. For instance, if the lift moves from the floor i and k and then
stops at the floor k. If there is a floor j which is after the floor i and before the floor k, the lift
movement is represented by three steps move(i,j) , move(j,k) , and stop(k).

In the following, we describe a simplified Lift system which can be later refined to include all the
requirements. This is done for sake of brevity since the entire CSL specification of the Lift system
takes several pages. The simplified system includes a button, the lift, the user and the doors
specifications.

A button is described by the following CSL specification :

 spec Button(d:Direction, f:FloorNumber)
 define ButtonState = {idle,on}
 define Direction = {none, up, down}
 local variables

state : ButtonState; serviced : Boolean; floor : FloorNumber; direction : Direction
 initial conditions

state = idle 3 serviced = false 3 direction = d 3 floor = f
 behavior

action push(f) = ¡ f: FloorNumber

12

enabled: state = idle
defined: true
changes: (state' = on) 3 (f = floor)

action call(f,d) = ¡ f: FloorNumber, d:Direction
enabled: state = on
defined: true
changes: ((d = direction) 3 (f = floor))

action serviced(f,d) = ¡ f: FloorNumber, d:Direction
enabled: state = on
defined: (serviced=false)
changes:(d = direction) 3 (f = floor) 3 (serviced'= true)

action release = enabled: (state = on) 3 (serviced = true)
 defined: true

changes: (state' = idle) 3(serviced'= false)
 end spec Button

The specification is parameterized to allow the generic specification of buttons according to the
direction and the floor which are serviced by the button. Based on the semantics of CSL actions
introduced in Section 2, there are many specification variants for an action. For instance consider the
push(f) action. It can be specified as:

 action push(f) = ¡ f: FloorNumber
enabled: true
defined: true
changes: (state' = on) 3 (f = floor)

The action is always enabled (i.e. never blocks) and it is always well-defined (i.e. never results in an
undefined behavior). In other words, you may call the action anytime.

 action push(f) = ¡ f: FloorNumber
enabled: state = idle
defined: true
changes: (state' = on) 3 (f = floor)

The action is enabled in states where the button is idle (i.e. it blocks in states where the button is on)
and it is always well-defined. In other words, you may call the action only when the button is idle.

 action push(f) = ¡ f: FloorNumber
enabled: true
defined: state = idle
changes: (state' = on) 3 (f = floor)

The action is always enabled. It results in undefined behavior in states where the button is on. In other
words, you may call the action anytime, but if the button is not idle, the behavior is undefined.

 action push(f) = ¡ f: FloorNumber
enabled: state = idle
defined: state = idle
changes: (state' = on) 3 (f = floor)

The action blocks in states where the button is on and it never results in undefined behavior.

It is up to the specifier to select the intended behavior. The actions of the button can be described
informally as follows. The push action consists to press the button. call(f,d) is an action by which the

13

button communicates with the lift. serviced(f,d) is an action by which the lift notifies the button that it
has stopped at the corresponding floor.

In the requirements, we have stated that buttons are illuminated. This is specified by having a light in
each button. The light object is described below.

 spec Light
 local variables

bulb : Boolean
 initial conditions

bulb = false
 behavior

action illuminate =
enabled: bulb = false
defined: true
changes: bulb' = true

action deilluminate =
enabled: bulb = true
defined: true
changes: bulb' = false

 end spec Light

The specification of a button which has a light is as follows :

 spec ButtonWithLight
 extends Button
 contains

visible light : Light
 abstract events

association is-part-of
event enlighten = actions: illuminate

light.illuminate
event darken = actions: deilluminate

light.deilluminate
 initial conditions

light.bulb = false
 behavior

action illuminate =
enabled: state = on
defined: true
changes: true

action deilluminate =
enabled: state = idle
defined: true
changes: true

 end spec ButtonWithLight

The abstract event enlighten is the synchronization of the actions illuminate of ButtonWithLight and the
action illuminate of the component light of ButtonWithLight. Both actions do not have parameters. In
the remaining of this paper, for sake of brevety, we no longer describe the inner-workings of actions in
terms of enabled, defined and changes predicates.

In a Floor there are no specific interactions between the components. We assume the operators :
first_floor() returning the first floor of the building, last_floor() returning the last floor of the building,

14

and next_floor(direction, f, n) returning the floor following a given floor based on the direction.
Direction can be none, up, and down.

 spec Floor(id:FloorNumber)
 contains

up : ButtonWithLight(up, id)
down : ButtonWithLight(down, id)
doors : Doors

 end spec Floor

 spec Doors
 define DoorState = {closed, open}
 local variables

state : DoorState
 initial conditions

state = closed
 behavior

action open
action close

 end spec Doors

 spec Lift
 contains

doors : Doors
 local variables

closeDoor, openDoor : Boolean; state : LiftState; location : FloorNumber; direction : Direction
up_req : Requests; down_req : Requests

 initial conditions
closeDoor = false 3 openDoor = false 3 state = stopped
location = first_floor()
direction = up 3 up_req = ∅ 3 down_req = ∅

 behavior
action open_door
action close_door
action select_destination(f)
action out_of_service
action called(f,d)
action service(f,d)
action move
action atfloor

 end spec Lift

 spec SimplifiedLift
 contains

lift : Lift
user : User
floors : n : i..j Floor(n)

 abstract events
association control

event callup = local: f : FloorNumber, d : Direction
actions: floors[n].up.call(f, d)

lift.called(f, d)
event calldown = local: f : FloorNumber, d : Direction

floors[n].down.call(f, d)

15

lift.called(f, d)
 ... the other abstract events are defined similarly
 end spec SimplifiedLift

3.3. Developing the formal specification
Now, we translate the CSL specifications into Lamport's TLA so that TLA tools can be used. For the
lift system, the state where the button interacts with the lift acts as a synchronization state allowing the
proof of the property: when we press the button up at a given floor, then the lift will eventually service
that floor. Notice that we have selected a progress property because it also illustrates how to prove
invariance properties. In the following, we only portrays the translation of Button, Light and
ButtonWithLight specifications.

TLA Specifications
In the TLA specifications below, each CSL specification is mapped into a module. A extends clause
corresponds to the TLA extends clause. A contains clause is mapped into instantiation of the modules
corresponding to the components. Local variables are introduced as parameters of the module. At this
point, the translation become one to one since the initial conditions clause is translated into an Init
predicate, and the actions aretranslated based on the approach sketched in Section 2. They are included
in the temporal section of the module. The temporal logic is only used to describe the behavior of the
module in terms of Init predicate and actions. For the CSL specification Light, V = {bulb},
LV(illuminate) = {bulb}, LV(deilluminate) = {bulb}, PAR(illuminate) = ∅ , and PAR(deilluminate) =
∅ . This leads to the following translation if we use the chaos semantics:

Module Light
parameters

bulb : Variable
predicates

Init ≠ bulb = false
actions

illuminate ≠ 3 (bulb = false) 3 ((true ⇒ bulb' = true) £ (false ⇒ chaos))
deilluminate ≠ 3 (bulb = false) 3 ((true ⇒ bulb' = true) £ (false ⇒ chaos))

temporal
Actions ≠ illuminate £ deilluminate
Behavior ≠ Init 3 ❏[Actions]<bulb>

TLA Specification of the object Light

The translation of the CSL specification Button is more complicate. We have taken the care of adding
extra predicates state ∈ ButtonState and floor ∈ FloorNumber in order to reflect the typing of the
local variables in the TLA specification.

Module Button
parameters

direction : Variable
floor : Variable
state : Variable
serviced : Variable
calling: Variable

predicates
state ∈ ButtonState 3 floor ∈ FloorNumber
Init ≠ state = "idle" 3 serviced = false 3 calling = false

actions
push(f) ≠ 3 (state = "idle")

16

 3 ((true ⇒ ((state' = "on") 3 (f = floor)3 (calling' = true)
3 Unchanged(serviced, floor, direction))

£ (false ⇒ chaos))
call(f,d) ≠ 3 (state = "on") 3 (calling = true)

 3 ((true ⇒ ((d = direction) 3 (f = floor)3 (calling' = false)
3 Unchanged(serviced, floor, direction))

£ (false ⇒ chaos))
serviced(f,d) ≠ 3 (state = "on")

3 ((serviced = false) ⇒ (3 (d = direction) 3 (f = floor)
 3 (serviced'= true)

3 Unchanged(state, floor, direction))
£ (¬(serviced = false)⇒ chaos))

release ≠ 3 (state = "on" 3 serviced = true))
 3 ((true ⇒ (3 (state' = "idle") 3(serviced'= false)))

£ (false ⇒ chaos))
temporal

Actions ≠ ¡ f1, f2 , f3 : FloorNumber, d2, d3 : Direction
push(f1) £ call(f2, d2) £ serviced(f3,d3) £ release

Behavior ≠ Init 3 ❏[Actions]<state,serviced, calling>
TLA Specification of the object Button

Module ButtonWithLight
extends Button
Local light ≠ instance Light
predicates

Init ≠ light.Init 3 Button.Init
actions

illuminate ≠ (state = "on") 3 ((true => true) £ (false ⇒ chaos))
deilluminate ≠ (state = "idle") 3 ((true => true) £ (false ⇒ chaos))
enlighten ≠ illuminate 3 light.illuminate
darken ≠ deilluminate 3 light.deilluminate

temporal
Actions ≠ enlighten £ darken
Behavior ≠ Init 3 ❏[Actions]

TLA Specification of the object Button with Light

Based on the TLA specifications, various properties of the lift system may be verified. For instance,
deadlock freedom is a safety property. It means that the program can never reach a state where all
processes are blocked. In our case study, it is modeled by invariant(E) where E denotes the disjunction
of the enabling conditions of all the abstract events. The property that all the requests will eventually be
serviced is the conjunction of:
1) deadlock freedom;
2) if the button up (or down) of a given floor is pressed then eventually the lift will stop at this floor.
This latter property can be expressed as the conjunction of:
• pressing the button causes the lift to be aware of the request;
• if there is a request for a floor then the lift will go to that floor.

The proof of the property if the button up (or down) of a given floor is pressed then eventually the lift
will stop at this floor implies considering the three following cases :

17

a) the lift is already at the floor;
b) the request is made in the direction towards which the lift is going;
c) the request is made in the opposite direction towards which the lift is actually going.

In the following, we show the TLA rules applied for proving these properties.

Proving various properties
For the lift system, deadlock freedom can be interpreted as the conjunction of two safety properties:
a) In the initial state at least one abstract event (represented by a TLA action) is enabled.
b) Each abstract event leads the objects into states where at least one abstract event is enabled.

The fairness requirements will make the enabled action to occur. In order to prove this property, we
use TLA INV1 rule shown below and described in [Lamp94].
 I 3 [N]ƒ ⇒ I'

I 3 ❏[N]ƒ ⇒ ❏I
This rule is used to prove that a program satisfies an invariance property ❏I. The hypothesis asserts
that a [N]ƒ step cannot falsify I. The conclusion asserts the if I is true initially and every step is a [N]ƒ
step, then I is always true. I represents the disjunction of the actions provided by the program. It
suffices to choose the invariant property I as at least one abstract event is enabled to prove the deadlock
freedom property using the above rule. For the ButtonWithLight, this can be expressed as the
following TLA formula

Enabled illuminate £ Enabled deilluminate
which can be reduced to (state = "on" £ state = "idle") by predicate logic since an abstract event is
enabled when all its constituant actions are enabled.

Liveness properties such as when the button of a floor is pressed the lift will eventually stop at this
floor are proved using TLA WF1 or SF1 rules described in [Lamp94]. To ease the proof of this
property, we decompose the property into two other properties. The WF1 rule is more complicated
than INV1. It is used to prove properties of form Pleads-toQ from a weak fairness condition WFƒ(A).
Here A denotes a specific action. An A step is understood as the execution of the action A. It can be
applied when an A step that starts with P true makes Q true, the reader is referred to [Lamp94] for more
details. WF1 rule is as follows:

P 3 [N]ƒ ⇒ (P' £ Q')
P 3 ª N 3 A ºƒ ⇒ Q'
P ⇒ Enabled ªA ºƒ

❏[N]ƒ 3 WFƒ(A) ⇒ Pleads-toQ

a) When we press the button of a floor then the floor number will eventually be listed in the request list
of the lift. This property is proven with TLA WF1 by taking
 P as ¡ f : Floor : (floors[n].up.state = "on" 3 f = floors[n].up.floor)

 £ (floors[n].down.state = "on" 3 f = floors[n].down.floor)
Q as ¡ f : Floor : f ∈ lift.up_req £ f ∈ lift.down_req
A as the abstract events:
call = ¡ f1, f2 : FloorNumber, d1, d2 : Direction : floors[n].up.call(f1, d1)

lift.called(f2, d2)
(d1 = d2 3 f1 = f2)

respectively,
call = ¡ f1, f2 : FloorNumber, d1, d2 : Direction : floors[n].down.call(f1, d1)

lift.called(f2, d2)

18

(d1 = d2 3 f1 = f2)
WFƒ(A) is deduced from the fairness of floors[n].up.call, floors[n].down.call, and lift.call actions.

b) If the floor number is listed in one of the request lists of the lift then the lift will stop at the
corresponding floor. This is internal to the lift and it can be deduced from the sequence of states of the
lift module, i.e. its behavior. It can be also broken down into smaller properties.

Nonetheless, proofs are tedious and complicate. A great deal of these proofs can be mechanical and
take advantage of the structure of the formulas to decompose the proofs. There are many tools which
can assist in proving the properties of TLA specifications. At the University of Dortmund, a certain
number of tools for developing, preparing, building, testing and verifying TLA specifications have
been prototyped [Mest94]. Among these tools, we selected eTLA+ which is an interpreter allowing the
interpretation of specifications combined with graphical visualization of their execution.

Once the CSL specifications are translated into TLA, TLA specifications can then be translated into
eTLA+ which is used as input for eTLA+ interpreter. The eTLA+ interpreter allows symbolic
debugging including stepwise or continuous execution and tracing. Non-determinism is handled by
allowing the user to select the action to execute or if he may prefer a scheduling strategy.

Also CSL specifications can be translated in TLALight another variant of TLA. TLALight
specifications are implemented using a C++ translator which derives a distributed implementation
prototype as a set of communicating processes in a workstation network.

4. Discussion and conclusions

There is a practical requirement to convert the specifications written in CSL into C++ for prototyping.
The converted code is also a useful starting point for implementation. Code generation can also
commence from the structure model. C++ declarations and some of the procedural code for a program
can be directly generated from the structure and the interaction models. The problem of automating the
translation is not covered in the paper.

There is implicit relation between the formal specifications and the informal ones. The characteristics of
component associations are such that their presence simplifies proofs of behavioral properties, as
compared to general associations. In addition, we can derive useful properties of the composition based
on that of its components. For instance, specification invariants of the composition implies that of its
components. This is due to the encapsulation of the local variables in the components. Deadlock
freedom of components once proved individually, there is no need to prove these again when the
components are incorporated in a composition and we would like to prove deadlock freedom of the
composition. The reasoning is achieved only at the level of the composition. Based on the
interconnections between components, we may prove progress properties for the composition where P
and Q are predicates over distinct components.

Nonetheless, we need tools which support the approach. Such tools will increase usability and easier
the practice with the approach. In addition, they will help to accumulate experience with the approach
and pave the way for its maturation and large usage. The existence of such tools will allow the
integration of the approach in the context of industrial application development. In this paper, we
sketched how different tools can be combined for supporting the XOMT developmental approach. In
order to support this development process, the adaptation of a case tool, namely MetaEdit tool
[Meta95a] is underway. MetaEdit tool supports various object notations and methods, in addition it is
parameterizable in the sense that you may define your own notation and method by defining a meta
model of the notation. MetaEdit tool views an object-oriented method as a set of notations and
specifications constructed using these notations. We use this latter feature for defining a meta model for
XOMT.

19

In this paper, we have modified the developmental approach used in XOMT in order to integrate a new
approach to the description of composite object behaviors. XOMT has now two distinct views which
portray the structure and the dynamic behavior of applications. The developmental approach is
compositional since we can connect different pieces of the design by establishing associations between
objects of these pieces. It also supports refinement. In addition, the approach can be used for the
description of component based-systems since any object can be refined into a composite object and
composite objects can be components of other objects.

Throughout this case study, we show how to use the conceptual framework in the context of a light
version of an object-oriented method. The structure of composite objects serves (in extenso of the
application) for describing the dynamic behavior of these objects. The approach is based on the linkage
between the structure and the behavior of composite objects. Such an approach has shown to be
adequate when dealing with complex systems since the complexity of systems is concentrated on the
interactions between components of such a system. CSL specifications allow to reason about the
properties of the application in terms of traces. They can be translated in TLA, from which tools can be
used for verification purposes as well as checking the composition of different pieces of the design.

Future development of this work includes the design and the implementation of a tool supporting CSL
with an integrated environment for verifying the specifications. This may require the design and
implementation of an automatic translator of CSL specifications to TLA specifications as well as the
automatic reasoning with trace specifications.

References

[Abad95] Abadi, M., Lamport, L., Conjoining Specifications, ACM Transactions on
Programming Languages and Systems, November 1995.

[Boch93b] Bochmann, G.v., Abstract dynamic modelling of complex systems, Publication
départementale No 863, Dépt. IRO, Université de Montréal, Janvier 1993.

[Cook94] Cook, S. and Daniels, J. Designing Object Systems: Software isn’t the real world.
JOOP May 1994, 22-8.

[DSou94] D'Souza, D., Graff, P., Object Communication, JOOP, September 1994, p.14-23.
[Hare88] Harel, D., Statecharts: a Visual Formalism for Complex Systems, Science of Computer

Programming, Vol. 8, No. 3, pp.231-274, 1988.
[Jarv90] Järvinen et al., Object-Oriented Specification of Reactive Systems, Proc. of 12 th ICSE,

March 1990, IEEE Computer Society Press, p. 63-71.
[Lamp94] Lamport, L., The Temporal logic of actions, ACM TOPLAS 16(3):872-923, May 1994.
[Mest94] Mester, A., Herrmann, P., Tools for TLA-based specifications, RvS-TLA-94-35,

February 1994, University of Dortmund.
[Meta95a] MetaEdit Personal 1.2, Customisable Case Tool to meet your requirements, MetaCase

Consulting, Finland, 1995.
[Rama95a] Ramazani, D., Bochmann, G.v., A Conceptual Framework For Object Composition

and Dynamic Behavior Description, Publication départementale #949, DIRO, Université
de Montréal, Canada, 1995.

[Rama95b] Ramazani, D., Contribution of Object-Oriented Methodologies to the Specification of
Complex Systems, Proceedings of Fifth Complex Systems Engineering Synthesis and
Assessment Technology Workshop (CSESAW'95).

[Rama96b] Ramazani, D., Bochmann, G.v., Extending Object Modelling Technique for the
Specification of Composite Objects, In Proceedings of TOOLS-USA96, July 1996.

[Rama97] Ramazani, D., Bochmann, G.v., Approaches to the Specification of Object
Associations, In Proceedings of FMOODS97, July 1997.

[Rumb91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

