
Multimedia Systems 6: 299-315 (1998) Multimedia Systems
© Springer-Verlag 1998

Quality-of-service adaptation in distributed multimedia applications
Abdelhakim Hafid, Gregor v. Bochmann

Universite de Montreal, Dept. d'Informatique et de Recherche Operationnelle, Montreal, H3C 3J7 Canada; e-mail: {hafid, bochmann}@iro.umontreal.ca

Abstract. High-speed networks and powerful end-systems
enable new types of applications, such as video-on-demand
and teleconferencing. Such applications are very demand-
ing on quality of service (QoS) because of the isochronous
nature of the media they are using. To support these applica-
tions, QoS guarantees are required. However, even with ser-
vice guarantees, violations may occur because of resources
shortage, e.g., network congestion. In this paper we propose
new adaptation approaches, which allow the system to re-
cover automatically, if possible, from QoS violations (1) by
identifying a new configuration of system components that
might support the initially agreed QoS and by performing
a user-transparent transition from the original configuration
to the new one, (2) by redistributing the levels of QoS that
should be supported, in the future, by the components, or
(3) by redistributing the levels of QoS that should be sup-
ported immediately to meet end-to-end requirements based
on the principle that (local) QoS violation at one compo-
nent may be recovered immediately by the other compo-
nents participating in the support of the requested service.
The proposed approaches, together with suitable negotiation
mechanisms, allow us (1) to reduce the probability of QoS
violations which may be noticed by the user, and thus, to
increase the user confidence in the service provider, and (2)
to improve the utilization of the system resources, and thus
to increase the system availability.

Key words: Quality of service - Adaptation - Violation -
Recovery

1 Introduction

Many distributed systems currently in use have been de-
signed around low-speed network technology, such as Eth-
ernet and Token Ring. They have been adequate and useful
for text and numerical data applications in which relatively
Srnall amounts of data have to be transmitted. For most of
these applications, performance and quality of service (QoS)

Correspondence lo: A. Hafid

have not been a major problem. This changes when more and
more distributed multimedia (DMM) applications are devel-
oped, which require transmitting and processing large amou
nts of data (in particular video and audio) in real time.

Due to increasing demands of DMM applications, ef-
ficient and effective support of QoS has become increas-
ingly important. To support QoS requirements, communi-
cation systems and end-systems must provide latency and
bandwidth characteristics that allow timely transmission of
information. DMM applications require a system that main-
tains the initially agreed QoS, regardless of the fluctuation in
system load; otherwise DMM applications will not be able
to compete against traditional systems, such as television. A
number of schemes have been proposed to provide determin-
istic and/or statistical QoS guarantees spanning end-systems
and networks. Such guarantees can be provided through re-
source reservation in the network and the end-systems for
each user request serviced and access control in order to
limit the number of serviced user request in case of tem-
porary system overload. Certain network services provide
such guarantees; however, the Internet traditionally provides
a "best effort" service without QoS guarantees. DMM appli-
cations which depend on a certain level of QoS need a mech-
anism for QoS adaptation in order to deal with temporary
changes in the available QoS parameters. Such changes may
not only occur in "best effort" environments but also, less
frequently, in networks providing resource reservation, for
instance when certain partial system failures occur (Hanko
et al. 1991).

We note that a renegotiation of the QoS qualities of a
DMM application may also be initiated by the user during
an ongoing session. The user may wish to increase the qual-
ity or reduce it in order to reduce the costs. The internal
mechanism for adapting the application to this new situation
is similar in this case to the mechanism used for adapting to
changing network and server QoS parameters.

1.1 Existing approaches to QoS-related problems

In general, resource overload is solved by application- and
user-defined policies. The system must detect (end-to-end)
QoS violations by using some monitoring mechanisms, and

300

follow the policies to solve, or react to, overload situations.
Most existing approaches (Topolcic 1990; Gilge and Gus-
sella 1991; Yin and Hluchyi 1991; Parris et al. 1994; Tobe
et al. 1992) for managing QoS violations have one or more
of the following characteristics: (1) they are restricted to
the communication sub-system; (2) they react only after the
occurrence of end-to-end QoS violations, which means that
the problem is passed on to the user or the application; or
(3) they react to QoS violation by renegotiating a degraded
QoS and are thus restricted to applications that can adapt to
varying QoS.

Steinmetz (1990) suggests a partial blocking mechanism
which allows the specification of actions to be taken in the
face of a loss of synchronization, e.g., for video, redisplay of
the previous frame to deal with lost and late frames. How-
ever, such a mechanism may be useless if the media stream
cannot be delivered for a long period of time; for instance,
for an audio stream 10 ms is a long period. Tawbi and Hor-
lait (1994) propose mechanisms to specify, at the application
level, the actions to be taken when QoS violations occur.
However, those actions consist only of degrading the ini-
tially agreed QoS. Gilge and Gussella (1991) make use of
rate and flow control, where feedback from the network is
used to adapt coding parameters and to vary the output rate.
This allows the sources to dynamically adjust their maxi-
mum transmission rates to match the available resources.

A significant contribution on QoS adaptation has come
from the Tenet Group at the University of California at
Berkeley. Parris et al. (1994) propose a network adaptation
scheme (called graceful adaptation service) to increase the
adaptivity of real-time networks. A graceful adaptation ser-
vice dynamically manages the QoS of real-time communi-
cations by changing the parameters that specify it during the
lifetime of the connection. The scheme provides the change
from the old QoS to the new one with no or limited disrup-
tion. It is implemented using routing, performance monitor-
ing, dynamic rerouting, load balancing and control mecha-
nisms. Dynamic rerouting is needed to establish the alterna-
tive route and to perform "transparent" transition from the
primary route to the alternative route. Performance monitor-
ing is required to monitor the currently provided QoS; the
load-balancing module determines whether to attempt load
balancing using an algorithm defined in Parris et al. (1994).
If load balancing is possible, the routing mechanism deter-
mines an alternative route that has the highest probability of
successful channel establishment, and the transition from the
primary route to the alternative route is accomplished using
the dynamic rerouting mechanism.

Graceful adaptation service is the exception in that it
tries to maintain, if possible, the initially agreed QoS instead
of degrading it when QoS violations occur. However, the
proposed service (1) concerns only communication systems,
that is, it reacts to network performance violation by the
establishment of an alternate route, and (2) is closely related
to the Tenet protocol suite.

1.2 Our proposals

Our work on QoS adaptation has been guided by the fol-
lowing premises: (1) QoS adaptation should be performed

automatically when possible; (2) QoS violations should be
dealt with locally at the component level; and (3) QoS adap-
tation should maintain the initially agreed QoS as long as

possible, before any QoS degradation is initiated. In this pa.
per, we consider two approaches to QoS adaptation. The
first approach involves a reconfiguration of the application
infrastructure, replacing the overloaded system components
by other alternative components. The second approach does
not change the configuration of components, but changes the
QoS characteristics allocated to the different components.

Adaptation at the configuration level. When a violation
is detected, one or more alternate components are selected
and a transparent transition from the primary components
to the alternative ones is performed. The alternative com-
ponents are selected based on several factors, such as the
functional configuration of the requested service, and the
current load of system components. The QoS characteristics
considered by this approach are delay, jitter, throughput, and
reliability (expressed in terms of loss rate); that is, the ap-
proach may be used to recover from delay, jitter, throughput,
and/or loss rate violations. This may be useful for any ap-
plication that requires certain guarantees on QoS, such as
video-on-demand and teleconferencing systems.

Adaptation at the component level. In order to provide
end-to-end QoS guarantees, each system component in-
volved in the QoS provision must contribute its share to the
requested end-to-end QoS (Bochmann and Hafid 1997) (each
component providing certain guarantees). When a compo-
nent violates its guarantees (and this is detected by the sys-
tem), some form of cooperation among the components is
started with the aim of reassigning the guarantees to the dif-
ferent components, so that the end-to-end guarantees, as ob-
served by the user, are unaffected. Thus, the non-overloaded
components may reserve additional resources, e.g., buffers
or CPU slots, in order to provide an improved QoS and thus
compensate the violations of the other components. The QoS
characteristics considered by this approach are delay, jitter
and reliability (expressed in terms of loss rate); that is, the
approach may be used to adapt from delay, jitter, and loss
rate violations. This may be useful for any application with
stringent temporal requirem ents, such as teleconferencing
systems.

When the system cannot recover from QoS violations
(using either of the approaches), users or applications should
be required to intervene. The user should be informed di-
rectly at the user interface. If a violation occurs, a special
notification is sent to the application/user, who can react ac-
cordingly. Generally, the interactions with the user lead to
the renegotiation of a degraded QoS or simply to the abor-
tion of the application (as in most existing systems).

In this paper we propose three schemes based on the
above approaches. The first scheme, called component re-
configuration scheme (CRS), performs adaptation at the con-
figuration level, as explained above. The second scheme-
called resource reconfiguration scheme (RRS), recovers from
QoS violations by changing the distribution of QoS levels
that each component will support in the near future. The
third scheme, called delay recovery scheme (DRS), recovers
from transit delay violations immediately, so that the failure
of one or more components to meet their commitment does
not necessarily lead to an end-to-end QoS violation.

301

The proposed schemes, together with suitable negotia-
i mechanisms (Bochmann and Hand 1997), (1) will make
;e efficient use of system resources, thus increasing the
em availability, and (2) will increase the user acceptance
DMM by decreasing the probability of QoS violations no-
:d by the users. To support our approach, the following
umptions are made:

the distributed system supports QoS guarantees, that is,
the components are able to reserve resources to support
certain levels of QoS, and
internal monitoring mechanisms are available, which can
detect local QoS violations by a given component. It is
worth noting that facilities for monitoring will likely be-
come available with certain types of equipment (Senevi-
ratne and Cho 1995).

Component reconfiguration scheme

; consider an overall system configuration consisting of
/eral (physical or software) components, which provide
3port for one or several concurrent DMM applications,
amples of such configurations are shown in Figs. 1, 4,
For many applications, especially presentational applica-
ns, where a user views information coming from a re-
Dte multimedia database, a linear configuration as shown
Fig. 1 is appropriate. Most of our discussions assume such
dmple linear system configuration; however, certain appli-
tions, such as teleconferencing, require much more com-
2x system architectures due to the large number of users
it could be involved. Most of our results can be extended
more general system configurations.
We assume a QoS management framework where each

stem component has its own QoS agent, which provides
eans for handling all the information about the perfor-
ance and the functional behavior of the given system com-
ment. The overall QoS coordination, including QoS adap-
tion, is performed by a global QoS manager which interacts
ith the QoS agents of the different system components. An
;ent collects QoS and performance-monitoring information
>out the associated component and makes this informa-
3n available, upon request, to the QoS manager. The term
Component" and "QoS agent" will be used interchangeably
i the rest of the paper.

1 Streams

he term "stream" is used to represent a flow of informa-
on with real-time properties. In DMM applications, data
reams carrying audio, video, text or image data, run from
e camera to the monitor, from the file server to the TV set,
' more generally, from the source to the sink. In video-on-
imand systems, data is read from the disk, stored in buffers
the sender side, transmitted over the network and again

ored in receiver buffers. Often, the data will have to be
icoded before it can be presented to the user (see Fig. 1).

A multimedia stream has a number of properties related
' the multimedia semantics represented by the data, such
•* the media type, the coding scheme, the resolution, and
>e throughput. A stream-processing component creates a

stream (e.g., camera), absorbs a stream (e.g., display), or
transforms input streams into output streams (e.g., decoder).
Often, linear configurations of stream-processing compo-
nents are used, such as shown in Fig. 1, to describe presen-
tational applications, such as video-on-demand. However,
multimedia applications may need several streams, e.g., one
for audio and one for video, which may lead to more com-
plex configurations, especially when inter-stream synchro-
nization is required, as in the case of a video sequence with
a separately stored voice track. Much more complex stream-
processing architectures are required for multi-party confer-
encing, which includes multi-point delivery and intermediate
processing functions, such as bridges.

2.1.1 QoS parameters

The system components, e.g., network or decoder, can be
characterized by the following QoS parameters, to be eval-
uated over a certain measurement interval:

- transit delay is the time between the moment some data
unit is received (at the input port) to the moment it is
sent (at the output port);

- transit delay jitter indicates the variation of the delays
experienced by different data units in the same stream;

- loss rate is the fraction of data units lost during transit.

We note that the throughput is a property of the stream,
which is processed by the components of interest, and not a
property of the components.

2.1.2 Concatenation properties

If several components are composed in a linear configura-
tion, as shown in Fig. 1, the end-to-end QoS characteris-
tics of such a composition can be calculated based on the
QoS characteristics of each individual component. For in-
stance, the delay of the composed system consisting of the
network and the decoder is the sum of the delay of the
network and the delay of the decoder. In general, the end-
to-end QoS parameters Pee of a linear concatenation of n
stream-processing components can be calculated from the
QoS parameters Pl of the i-th component (i = 1, • • • , n) as
follows (Bochmann and Hand 1997):

AvailableThroughputee= minimum(for all i = 1, • • • ,
n) of AvailableThroughput1

Delayee = sum(for alii = 1, • • • , n) of Delay1

Log (I - LossRateee) = sum(for all i - 1, • • - , «) of
Log (l - Loss Rate*)

Jitteree = sum(for all i = 1, • • • , n) of Jitter1 [assum-
ing that the jitter is defined as the difference between the
maximum and minimum delay]

Jitter66 = square-root of sum(for all i = 1, • • • , n) of
square of Jitter1 [assuming that the jitter is defined as the
average deviation of the delay from the average delay, and
the delay is assumed to have a normal distribution]

It is important that these formulas apply to the actual
QoS parameters that describe the performance of the system,
as observed during its operation. For system management
purposes, we are not only interested in these actual QoS

302

component 4
(e.g., video

display)

1, '!

t if

component 3
e.g., decoder)

o §&, °
^ 0

s §

1 component 2
(e.g., network) 1' ?a! I

S 1 3

component 1
(e.g., video

server)

Fig. 1. Stream: linear configuration

parameters, but also in QoS guarantees that may be obtained
from the different system components during the planning
and initialization of the multimedia application. Different
degrees of guarantees may be distinguished (Danthine 1992):

- deterministic guarantee (which means that the commu-
nication service is equal or better than the specified QoS
parameters),

- statistical guarantee (which means deterministic guaran-
tee for at least a certain fraction, e.g., 95%, of the trans-
mitted data blocks, or for a certain fraction of the con-
nections that are established over a long period),

- target objectives (which means that the component knows
the requirements and tries to satisfy them without pro-
viding any guarantee), and

- best effort (which means that the component will do as
well as it can without considering the particular QoS
requirements); past experience may provide some infor-
mation about how well the component usually performs.

It is clear that the above formulas remain valid for QoS
guarantees as long as all components provide guarantees of
the same degree. If this is not the case, the degree of guaran-
tee of the resulting end-to-end QoS parameter is the lowest
guarantee provided among the different components. For in-
stance, if one network in the configuration only provides a
best effort service, the resulting end-to-end service will only
be of the same type.

We note that we consider each stream-processing com-
ponent as a black box providing the specified processing
function. We do not consider its internal structure which, in
the case of a network, may consist of several layers of com-
munication protocols. Only the QoS of the service provided
at the black-box level is considered here.

2.2 QoS negotiation framework

When a user starts a DMM application, he/she should specify
the desired QoS, otherwise some default QoS will be used.
The QoS manager will first determine all configurations of
system components that are candidates for supporting this
particular instance of the application. Then, it will proceed
to select an optimal configuration that has enough available
resources to support the requested QoS.

The process that leads to the selection of an optimal
configuration consists of the following steps. Figure 2 shows
the state machine of the proposed negotiation procedure.

Step 1: The QoS manager identifies the components that
may get involved in providing the requested application. The
identification is based on the functional behavior of the ap-
plication, and the static characteristics of the system com-
ponents, such as the software functions they support and

QoS manager

Fig. 2. Negotiation procedure -state machine-

their maximum capacity. For example, to support a video-
on-demand application, the following components are con-
sidered: those servers that store the movie to be played, the
networks which connect these servers to the client machine,
the decoders to decode the data retrieved from these servers,
and the client machine.

Step 2: The QoS manager orders the configurations pro-
duced in Step 1 according to the optimization criteria. The
following static information may be used for this purpose:
(1) the cost to be charged to the user for using a given
configuration; (2) the availability and reliability (statistical
values) of the components of a given configuration; and (3)
the QoS that might be provided by a given configuration, f
Several algorithms may be used to classify the configura- f
tions depending on the type of applications considered; a #
detailed description of a classification algorithm for presen-
tational multimedia applications, such as video-on-demand,
can be found in Hafid et al. (1996).

Step 3: The QoS manager selects the best configuration
and inquires about the available service quality from each
of the components, via their QoS agents. On receipt of the
service request, each QoS agent makes a resource reservation
for the best possible level of QoS and sends this information
to the QoS manager. We assume that it is always possible to

303

compute the maximum level of QoS that can be supported
by a given component, given its current load.

Step 4: When receiving all responses, the QoS manager
determines whether the configuration meets the end-to-end
requirements using the formulas of Sect. 2.1. If the QoS the
components are committing to support does not satisfy the
requirements, another configuration is considered (go back
to Step 3). This proceeds until a configuration supporting
the requested QoS is found, or all configurations identified
in Step 1 have been checked (or a time-out occurs). If the
QoS the components are committed to support is better than
the requested QoS, the commitments of certain components
can be relaxed. Some policies for performing such relaxation
are described in Nagarajan (1993).

Step 5: The QoS manager sends a message to each of
the QoS agents in the configuration in order either to re-
quest the effective reservation of the resources or to request
the deallocation of the resources that have been temporarily
reserved.

For decentralized systems, we may consider an approach
where the system components are divided into separate do-
mains (Sloman and Moffet 1989). We associate to each do-
main a QoS manager which is responsible for the manage-
ment of the components of that domain. To interact with a
QoS agent, a QoS manager may use the services of other
QoS managers in a hierarchical way (Hand 1995).

violation detection

Fig. 3. The frequency and the interval of measurement parameters

be minimal; only the overloaded components should be re-
placed (as far as possible).

2.4 Responsiveness

The response time of the CRS is the time between the mo-
ment a QoS violation is detected and the moment the re-
configuration has been completed, either resulting in a new
configuration that reestablishes the originally agreed QoS,
or leading to the conclusion that the agreed QoS cannot be
maintained. In the case that the reconfiguration is requested
by the user, this is the resulting response time of the system.
However, in the case that the system should automatically
detect any internal QoS violation of a component and invoke
the CRS before the user will notice any end-to-end QoS vio-
lation, we also have to take into account the time required by
the QoS monitoring tool for diagnosing the QoS violation.
We therefore discuss these two aspects of responsiveness in
the following subsections.

2.3 The component reconfiguration scheme (CRS)

The basic idea of the CRS is to replace the overloaded com-
ponent^) by other components with the same functionality,
but able to support the initially agreed level of QoS. When
a QoS violation is detected for one or more components, al-
ternate components are selected and a user-transparent tran-
sition from the primary components to the alternates is per-
formed.

To support CRS, the QoS manager will make use of the
negotiation mechanisms described above. Upon receipt of
the user request for a given application and associated QoS
requirements, the QoS manager produces a set of possible
configurations of system components and selects a configu-
ration which best satisfies the user requirements.

When a QoS violation occurs during the execution of
the application, the QoS manager is notified by QoS agents
or lower QoS managers. When CRS is supported, the QoS
manager will consider another configuration, among the set
produced in Stepl and classified in Step 2, and evaluate
the capacity of the components to support the user require-
ments via interactions with the QoS agents (Step 3, Step4
and Step 5). If this activity succeeds, the QoS manager per-
forms a user-transparent transition from the existing config-
uration to the new one; otherwise, another configuration is
considered. If all the configurations are evaluated without
success, the QoS manager initiates a renegotiation with the
user. The selection of the alternate configuration depends on
several factors such as the cost and the current load of the
components. Furthermore, the following rule may be used
to minimize the interactions between the QoS managers and
the QoS agents. The changes to the configuration should

2.4. 1 Detection of QoS violations

If the QoS violation is due to the failure of a system com-
ponent, its detection is as fast as the detection of the fail-
ure, which could be immediate. However, in most cases, the
QoS violation may be due to system overload, and there is
no clear point in time when such a QoS violation should
be signalled. We assume in the following that a monitor-
ing tool is used to measure the QoS parameters during the
operation of the system, that a single measurement of a pa-
rameter requires a time interval L, and that such a mea-
surement is performed every T time units. The values of L
and T should be selected carefully. It is not recommended
to use extremely large or small values. For instance, if L
takes a value equal to the duration of the active phase of
the configuration, no adaptation is possible, since informa-
tion about a possible QoS violation will be available only
at the end of the session. If, on the contrary, we assume a
small value for L, the result of the measurement may include
strong statistical fluctuations because of the small number of
samples on which the measurement is based. More gener-
ally, long intervals provide a more consistent view of the
system, while short intervals increase the responsiveness to
QoS violations. Ideally, each measurement period should be
immediately followed by another one (T = L). However,
if the method of measurement has much overhead, less fre-
quent measurements may be desirable (T > L). On the other
hand, T should not be too long, since it represents the up-
per bound on the delay between the occurrence of a QoS
violation and its detection (Fig. 3).

Because of the dynamic fluctuations of the QoS actu-
ally provided, certain precautions should be taken to avoid

305

ce
nt

li-
re
n-
le
ti-
nt
d-

s,
e.
s,
id
1-

ie
r-
1-

it
5-

1-

I,

>r

e
.f
t,

2.6 Case study: news-on-demand application

The CITR news-on-demand prototype (Wong et al. 1997;
Hafid and Bochmann 1996) runs in a fully distributed archi-
tecture, where multimedia documents are stored at various
sites, which can be accessed from different places through-
out the network.

The database is the information provider. It can be sup-
ported by several database servers and stores multimedia
data as well as meta-data used to facilitate searching, trans-
fer and delivery. The documents stored in the database are
composed of several monomedia objects, linked together
with spatial and temporal synchronization constraints. Sev-
eral physical representations may exist for a monomedia
object; we here use the term variant, which corresponds
to a format variant (Bochmann et al. 1996). For example,
two variants of a given video sequence could offer differ-
ent color qualities. Variant 1 could be a super-color variant,
while variant 2 is black and white. A variant is stored on
a specific server machine. The server machine is a machine
located in the network, on which the objects that compose
multimedia news are stored. A server machine can be either
a database server, an image server or a continuous-media
server. The network physically links the different machines
together. Before displaying a multimedia document, the QoS
manager has to select, for each monomedia object, one of
its variants, since we assume that each monomedia object
may exist in different physical representations (variants). A
monomedia object is defined in a particular medium: a text,
a still image, an audio sequence, a graphic or a video se-
quence. Its variants are physical objects coded on the same
medium, possibly with different format representations. For
instance, a monomedia document could be a video sequence
and could exist in MPEG2 format as well as in MJPEG
format. Variants may be replicated and stored on different
servers for availability and financial purposes (Bochmann et
a!. 1996).

In the news-on-demand prototype, a system configura-
tion consists of three components: the client machine, a
server machine and the network connecting the two ma-
chines. The role of the QoS manager is to find a config-
uration which allows the system to deliver the requested
document with a presentation quality that corresponds to the
user's wishes and his/her financial constraints, as well as
within the constraints imposed by the limitations of vari-
ous system components, such as the available resources at
the client's workstation, the bandwidth limitations of the
network, and the encoding schemes of the available multi-
media documents (Hafid et al. 1996). Several configurations
may be potential candidates to support the requested service;
that is, several servers store variants of the document that
satisfy the service requirements. Before asking for resource
commitments from the components, the QoS manager starts
by sorting the set of potential configurations to produce an
ordered list; a detailed description of the sorting algorithm
can be found in Hafid et al. (1996). The sorting algorithm is
based on several factors, such as:

- cost: the cost includes the transport cost, the server cost,
and the copyright cost;

- reliability and availability: based on previous experi-
ences and some useful statistics, the QoS manager is able

— — original configuration
alternate configuration
physical link

Fig. 4. Example of system component configurations

to compute the reliability and availability of the system
components. A configuration that contains components
with high reliability and availability is preferred.

Let us assume that a configuration is selected and the cor-
responding resources are reserved. If, during the presentation
session, the network or/and the server machine of the cur-
rent configuration become congested, thus leading to lower
presentation quality, the QoS manager considers the ordered
list of configurations, except the current one, and executes
the same QoS negotiation procedure, which was used dur-
ing the establishment phase. If an alternate configuration is
found and the required resources are reserved, the QoS per-
forms a transition from the current configuration to the alter-
nate one. That is, the delivery of the document will continue
using the services of the alternate components. To perform
the transition, the QoS manager stops the presentation of
the document after having determined the current position.
It then activates the alternate configuration and restarts the
presentation from the current position. The transition pro-
cedure is a simple one, more sophisticated procedures may
have to be used for other applications.

Example. Let us assume that two variants, variant! and
variant2, of the video "San Francisco Trip" are stored on
server 1, and one variant, variants, is stored on server2
(Fig. 4), so that:

Variant1: Color = Color, Frame rate =15 frames/s, Res-
olution = 320 x 240

Variant2: Color = Grey, Frame rate =15 frames/s, Res-
olution = 320 x 240

VariantB: Color = Color, Frame rate = 15 frames/s, Res-
olution = 320 x 240

Upon receipt of the user request to play "San Francisco
Trip" with (color = color, frame rate = 1 5 frames/s, Res-
olution = 320 x 240), the QoS manager finds the configu-
ration Server 1-Networkl-Client suitable to support the user
requirements.

Let us assume that, during the presentation session, Net-
work! experiences congestion. The QoS manager will switch
automatically to the configuration Sertver2-Network2-Client,
which we assume has enough resources to support the user
requirements.

If the configuration Server2-Network2-Client is not able
to support the delivery of the requested document, the QoS
manager will evaluate the capacity of the configuration
Server!-Network!-Client to support the delivery of variant2
of the document. If there are enough resources, the QoS man-

306

ager starts playing variant! from the point where variantl
was stopped. This activity is called graceful degradation.

We conducted a number of experiments on CRS in
the context of a news-on-demand prototype (Hafid and
Bochmann 1996). To detect QoS violations, we make use of
a monitoring tool (Somalingam 1996) at the transport level.
Our experimental platform consists of a network employing
point-to-point links coupled to a high speed ATM switch
(Newbridge) to form an ATM LAN and two IBM RS/6000
workstations, running AIX. An Ethernet is also used to con-
nect the machines.

The response time of CRS in scenarios similar to the
scenario described in this example is about 2 s. We believe
that this response time can be further improved, since no
special code optimization was performed. A more detailed
description of the news-on-demand prototype (hardware and
software platform, implementation architecture, etc.) can be
found in Hafid and Bochmann (1996).

3 The RRS

RRS is an adaptation scheme that tries to maintain, if pos-
sible, the initially agreed delay, jitter, and/or loss rate when
one or more components of the configuration of interest
failed to meet their commitment. While the principle of
RRS can be used for any kind of configuration, we con-
sider only linear configurations involving a single stream
from the source to the sink.

3.1 General idea

The idea for RRS is to change, in response to a QoS vio-
lation, the amount of resources reserved by the components
in the configuration in such a way that the end-to-end re-
quirements will still be met. When a QoS violation occurs,
the QoS agent of the overloaded component (which does
not meet the initially agreed QoS) will ask the other compo-
nents to reserve additional resources to compensate for the
violation. This is done through the sending of a so-called vio-
lation signal. If the system components do not have enough
resources to recover from the violation, a renegotiation is
initiated with the applications/users.

The new resource configuration (the new distribution of
QoS levels over the components of the configuration) re-
mains in place until

(1) another QoS violation occurs, or
(2) the overloaded component recovers from the problem; if

the overloaded component recovers from the problem, it
may resume the initially agreed QoS and send a so-called
relaxation signal to the other components in order to
indicate that they may reduce their extra commitments.

The responsiveness of RRS is determined by the moni-
toring delay and the response time of the RRS algorithm, as
explained in Sect. 2.4. The response time of the algorithm
depends on whether the centralized, ring or hierarchical ar-
chitecture is used, as discussed below.

Example of the operation of RRS. A user at Client ma-
chinel asks to communicate, with a given QoS, with an-
other user at Client machine!, e.g., in audio-conferencing;

Fig. 5. An example of a distributed system

Table 1. Example of the RRS operation to deal with delay violation

Networkl Net\vork2 other components end-to-end

delay delay cumulative delay delay

agreed delay
delay after
violation
delay after the
operation of RRS
delay after
relaxation

100ms

150ms

150ms

100ms

100ms

100ms

50ms

100ms

50ms

50ms

50ms

50ms

250ms

300ms

250ms

250ms

the QoS manager makes use of the negotiation procedure
(see Sect. 2.2), and finds a system configuration that might
support the requested service. The configuration consists of
Client machine 1, Networkl, Gateway 1, Network!, and Client
machine! (Fig. 5); each of these components commits to a
certain level of QoS. During the communication session,
Networkl fails to meet the agreed delay, while Network!
has a certain amount of resources unused.

Using RRS, a possible scenario to recover from the vio-
lation caused by Networkl is that Net\vorkl asks Network!
to reserve more resources to compensate for the violation
(Table 1). At a later time, if Networkl has enough resources
to meet the initially agreed delay, then it will notify Net-
work!, which might free the resources used for the previous
compensation.

3.2 Protocols to implement the RRS

RRS allows the system to adapt to longer term load changes
than DRS, and thus to reduce the end-to-end QoS violation
over the lifetime of the application session without enormous
overhead. Only one violation signal is issued for each de-
tected problem. In order to support RRS, each participating
component must realize the following three functions.

(1) Violation detection. The QoS agent of Cj must monitor
the levels of QoS it is providing. Upon the detection of
a QoS violation over a certain period, the QoS agent
computes (estimates) a QoS level which would be sus-
tainable in the future; traffic-forecasting techniques may
be used to compute this QoS level (Somalingam 1996).
Then, a violation signal is generated. It is worth not-
ing that the violation cannot be recovered from if the
amount of violation is higher than the end-to-end QoS
(e.g., a component in the configuration failed to meet
its agreed delay by 200 ms, and the end-to-end delay is
150ms).

(!) Resource renegotiation. The QoS agent processes the
signals it receives, e.g., violation or relaxation signals.

307

This processing consists of (1) committing to a higher
level of QoS by some additional resources, if possible,
or (2) deallocating additional resources.

(3) Recovery detection (optional). The QoS agent of Cj that
initially issued a violation signal may monitor the cur-
rent load of the component to check its capability to
support the initially agreed level of QoS. Upon the de-
tection of such a capability, a relaxation signal is gen-
erated; the relaxation signal contains the amount of the
last violation that occurred at Cj.

We identified three types of protocols for implement-
ing RRS, as described below: a centralized protocol, a ring
protocol using an optimal contribution policy, and a ring
protocol using an immediate contribution policy.

3.2.1 Centralized RRS protocol

Since it is the task of the QoS managers to manage QoS, the
obvious choice would be to use the centralized QoS manager
to react to QoS violations by reorganizing the available re-
sources. The operation of the centralized protocol is based on
interactions between the QoS manager and the QoS agents;
when a QoS agent detects a QoS violation, it sends a viola-
tion signal to the QoS manager (Fig. 6). The QoS manager
then checks the available resources of the components in-
volved in the configuration; this is performed by sending
request-resource signals to the QoS agents. Based on the re-
sults of this operation, the QoS manager then decides on a
solution and informs the QoS agents (by sending confirma-
tion signals) of the fact that they have to assign more or less
resources to this particular application. If after some time
the QoS agent determines that it can again support the pre-
viously agreed QoS, it sends a relaxation signal to the QoS
manager. The QoS manager may decide to either continue
with the currently operating configuration or to resort to the
one previously agreed.

Description of the centralized protocol. For the sake of clar-
ity, the presented protocol description concerns only the de-
lay parameter; however, the same protocol applies for any
other QoS parameters, e.g., loss rate and jitter, which have
the additive concatenation property (see Sect. 2.1). The pro-
tocol described below can be extended to the general case
involving several QoS parameters by replacing the scalar
variables, such as MaximumQoS, RelaxationDegree, Viola-
tionDegree, by vector variables, where each index of the
vector corresponds to a particular QoS parameter. Similarly,
the arithmetic operations on the scalar variables should be
replaced by corresponding operations on vectors. The same
applies for the ring protocols described in Sect. 3.2.2.

The QoS manager associates an identifier, which is called
Serviceld, to each instance of service to be provided. Then,
it associates with this identifier the characteristics of the ser-
vice instance which are required for QoS management, such
as the components involved in the support of the service and
the QoS parameters initially negotiated. In a distributed sys-
tem, a globally unique identifier for a service instance can
be obtained by concatenating the identifier of the QoS man-
ager (assumed to be globally unique) with a local identifier
selected by the QoS manager.

Signals description

We define the following signals:

- violation signal (Serviceld, Id, ViolationDegree). It is
sent by the QoS agent, identified by Id, to the QoS man-
ager; it contains three parameters: (1) Serviceld, which is
the identifier of the service instance for which the target
QoS is violated, (2) Id, and (3) ViolationDegree, which
indicates the amount of the violation; ViolationDegree is
equal to the difference between the initially agreed QoS
and the currently provided QoS.

- request-resource signal (Serviceld, Id). It is sent by the
QoS manager to the QoS agent identified by Id.

- QoS-available signal (Serviceld, Id, MaximumQoS). It
is sent by the QoS agent, identified by Id, to the QoS
manager in response to a request .resource signal; it con-
tains three parameters: (1) Serviceld, (2) Id, and (3)
MaximumQoS: the maximum QoS which might be sup-
ported by the corresponding component for the configu-
ration in question.

- relaxation signal (Serviceld, Id, RelaxationDegree). It
is initially sent by the QoS agent, identified by Id, to
the QoS manager; it contains three parameters: (1) Ser-
viceld, (2) Id, and (3) RelaxationDegree, which is equal
to the difference between the initially agreed QoS and
the currently provided QoS.

- confirmation signal (Serviceld, Id, QoSToSupport). It is
sent by the QoS manager to the QoS agent identified by
Id; it contains three parameters: (1) Serviceld, (2) Id,
and (3) QoSToSupport, which is the effective QoS which
the corresponding component should support.

Description of the operation of a QoS agent

Variables description

We define the following variables:

- QoS is a QoS variable which indicates the level of QoS
(target) to which a component c (in the configuration)
has committed during the establishment phase.

- qos is a QoS variable which indicates, at a given time,
the level of QoS which would be sustainable in the future
by the component c.

— self contains the identifier of the component in question.

Operation

- When a QoS violation is detected:
the QoS agent sends a violation signal (Serviceld, Self,
ViolationDegree) to the QoS manager, where Violation-
Degree=<jos — QoS;

— When a recovery is detected:
the QoS agent performs the following operations:
- reserves an extra amount of resources to support QoS

instead of qos;
- sends a relaxation signal (Serviceld, Self, Relax-

ationDegree) to the QoS manager, where Relaxation-
Degree=gos - QoS;

- When a request-resource signal (Serviceld, Id) is re-
ceived:
the QoS agent, identified by Id, performs the following
operations:

308

^- -^

CgoS

violation signal/
relaxation signal/' /
QoS_available signal

confirytation signal/
reqnest_resource signal

>L_

T
Resources

joS manage
violatifo signal/
relaxaflbn signal/

oSjtva'ifcble signal
confirmation signal/
request resource signal

"^.violation signal/
reiaxation signal/
QoS^n\>ailable signal

confirmation signal/
request_resoifrce signal

Resources Resources
Fig. 6. RRS centralized protocol

- computes MaximumQoS, the maximum QoS that
could be supported, assuming that all remaining re-
sources could be used to support the requested ser-
vice; this operation depends on the nature of the com-
ponent, e.g., gateway or LAN, the management soft-
ware, e.g., scheduling mechanisms, and the charac-
teristics of the service (stream) in question. An ex-
ample of the computation of MaximumQoS can be
found in Ferrari and Verma (1990);

- sends a QoS-available signal (Serviceld, Id, Maxi-
mumQoS) to the QoS manager;

- waits for receipt of the corresponding confirmation
signal;

— When a confirmation signal (Serviceld, Id, QoSToSup-
port) is received:
the QoS agent, identified by Id, reserves the neces-
sary component resources, such as buffer. CPU slots and
bandwidth, in order to support the QoS QoSToSupport
for the remainder of the session.

- When a relaxation signal (Serviceld, Id. RelaxationDe-
gree) is received:
the QoS agent, identified by Id, deallocates a certain
amount of resources to relax the currently provided QoS,
qos, by RelaxationDegree.

Description of the operation of the QoS manager

Variables description

We define the following variables:

- endtoendQoS is a QoS variable which indicates the
agreed (target) end-to-end QoS to be supported by the
configuration.

- New endtoendQoS is a QoS variable;

Operation

- When a violation signal (Serviceld, Id) is received:
- the QoS manager sends a re quest.re source signal

(Serviceld, 1$) to each QoS agent (except the QoS
agent identified by Id), identified by Id**, in the con-
figuration identified by Serviceld;

- When all QoS^available signals (Serviceld, Id, Maxi-
mumQoS) have been received from the QoS agents:
the QoS manager performs the following operations:

- computes the "sum", NewendtoendQoS, of Maxi-
mumQoS using the formulae described in Sect. 2.1;
(NewendtoendQoS=^n MaximumQoS).

- if NewendtoendQoS is "better" or equal to endto-
endQoS, then, for each component (except the over-
loaded component), identified by Id, in the configu-
ration identified by Serviceld, the QoS manager per-
forms the following operations:

• computes the QoS QoSToSupport that the com-
ponent should support; this operation depends
on the contribution policies used by the QoS
manager (see below for more details);

• sends a confirmation signal (Serviceld, Id, QoS-
ToSupport) to the component;

- if endtoendQoS is "better" than NewendtocndQoS,
then the QoS violation cannot be recovered and the
QoS manager notifies the user/application who may
initiate a renegotiation to degrade the initially agreed
QoS, abort the current service session, or ignore the
violation.

uxation signal n, i\eu.\unon>c-
gree) is received:
the QoS manager sends relaxation signals (Serviceld,
Id, RelaxationDegree') to the QoS agents that partici-
pated to compensate for the previous violation or sim-
ply to certain QoS agents that may be in difficulty
to meet their commitments; the sum of the values of
RelaxationDegree' is equal to RelaxationDegree.

Contributions policies used by the QoS manager

When the QoS manager has received the available ^resource
signals (Serviceld, Id, MaximumQoS) from all the QoS
agents in the configuration, it computes for each agent the
value of QoSToSupport (smaller than MaximumQoS) which
the component should support in order to meet the end-to-
end requirements. This means that the end-to-end QoS re-
quirements are allocated to individual components. For ex-
ample, given the fact that the end-to-end delay is the sum of
the component delays (see Sect. 2.1), Table 1 shows one pos-
sible QoS allocation in which Networkl (respectively Net-
work2) is required to support a delay of 100ms (respectively
of 100ms), and the other components are required to support
a delay of 50ms; however, to support an end-to-end delay of
250 ms, several QoS allocations are possible. The QoS man-
ager may use a certain number of policies, which we call

309

r-
i-

contribution policies, to select a particular QoS allocation
for the different components; these policies may be used to
maximize the system-supportable load, to minimize the cost
to the user, to minimize the time required to compensate for a
violation, to favor certain components (with high reliability),
and so on. A detailed study of policies which maximize the
system-supportable load can be found in Nagarajan (1993).

3.2.2 RRS ring protocol using
an optimal contribution policy

The operation of the RRS ring protocol using an optimal
contribution policy is similar (to some extent) to the opera-
tion of the centralized RRS protocol. They differ mainly in
two aspects: (1) the RRS ring protocol is based on direct in-
teractions between the QoS agents of the components of the
linear configuration (Fig. 7), in opposition to the centralized
protocol, which is based on interactions between the QoS
manager and the QoS agents (Fig. 6); and (2) the functions
performed by the QoS manager in the c ase of the centralized
protocol are performed by the QoS agent of the overloaded
component in the case of the RRS ring protocol.

In the following, we present a more detailed descrip-
tion of this RRS ring protocol. When a QoS agent detects
a QoS violation, it sends a violation signal along with the
violation degree to the neighboring component (Fig. 7); the
latter computes the maximum-level QoS, MaximumQoS, it
is able to provide for the service in question, and sends
a violation signal along with this information to its neigh-
boring component. When the QoS agent of the overloaded
component finally receives the violation signal, which has
passed around the ring and includes the maximum level of
QoS each component is able to support, it checks whether
the "sum" of these levels of QoS is equal or "better" than
the initially agreed (end-to-end) QoS. If the response is yes,
the QoS agent decides on the level of QoS each component
should support, based on some optimization factors (Nagara-
jan 1993), puts this information in a confirmation signal,
and sends the signal over the ring to the other QoS agents;
upon receipt of the signal, the QoS agent should reserve
the resources to satisfy the levels of QoS specified in the
signal. If the "sum" is worse than the initially agreed QoS,
the QoS agent (of the overloaded component) notifies the
user/application who may initiate a renegotiation to degrade
the agreed QoS, abort the current service session, or ignore
the violation. If some time after the adaptation the over-
loaded QoS agent determines that it can again support the
previously agreed QoS, it sends a relaxation signal to the
other components on the ring. Upon receipt of this signal,
the QoS agents (who participated in solving the previous
violation) may deallocate the resources which were used to
solve the previous violation.

Description of the ring protocol using an optimal contribu-
tion policy

Signals description

We define the following signals:

- violation signal (Serviceld, Id, ListOfMaximumQoS): it
is initially generated by the QoS agent, identified by Id,

who detects a QoS violation; ListOfMaximumQoS is a
list of tuplets each containing the identifier of a compo-
nent and the maximum QoS the component is able to
support for the service in question.

- confirmation signal (Serviceld, Id, ListOfQoSToSup-
port): it is initially sent by the QoS agent, identified by
Id, who detects a QoS violation; ListofQoSToSupport is
a list of tuplets each containing the identifier of a com-
ponent and the QoS the component should support for
the service in question.

- relaxation signal (Serviceld, Id, RelaxationDegree): it is
initially sent by the QoS agent, identified by Id, who pre-
viously failed to meet its initially agreed commitments.

Description of the operation of a QoS agent

Variables description

In addition to the variables defined for the centralized pro-
tocol we define the following variable:

- Next contains the identifier of the component next in
the linear configuration (or of the first component, in the
case of the last component in the configuration).

Operation

- When a QoS violation is detected:
the QoS agent who detects the violation sends a violation
signal (serviceld, S e l f , []) to Next', ([] means an empty
list).

- When a recovery is detected:
the QoS agent performs the following operations:
- reserves an extra amount of resources to support QoS

instead of qos;
- sends a relaxation signal (Serviceld, Self, Relax-

ationDegree) to its neighboring component, where
RelaxationDegree=cyos — QoS',

— When a violation signal (Serviceld, Id,, ListOfMaximum-
QoS) is received:
if Id = Self (which means that the QoS agent receives
the violation signal it initially sent), then the QoS agent
performs the following operations:
- computes the "sum", NewendtoendQoS, of the

MaximumQoS values contained in ListOfMaximum-
QoS, using the formulae described in Sect. 2.1;

- if NewendtoendQoS is "better" or equal to QoS,
then the QoS agent performs the following opera-
tions:

• for each component, the QoS agent computes the
QoS QoSToSupport that the component should
support, and puts the tuplet (identifier of the
component, QoSTosupporf) into ListOfQoSTo-
Support (which is initially empty); this opera-
tion is based on some contribution policy, as
described at the end of Sect. 3.2.1;

• sends a confirmation signal (Serviceld, Self,
ListOfMaximumQoS) to its neighboring compo-
nent, Next;

- if QoS is "better" than NewendtoendQoS, then the
QoS violation cannot be recovered and the QoS agent

310

^vioiatioTi signaVrelaxation signalf~ —
confirmation signal

1
'5 J2-2

r s.o a

cl
Resources

-S S'S*
•S"SS

1 r

C2
Resources

vi
ol

at
io

n
si

g
re

la
xa

tio
n

s
co

nf
ir

m
at

io
l

Resources
Fig. 7. RRS ring protocol

notifies the user/application who may initiate a rene-
gotiation to degrade the initially agreed QoS, abort
the current service session, or ignore the violation;

Else (Id ^ Self)
the QoS agent performs the following operations:
- computes the maximum QoS, MaximumQoS, assum-

ing that all remaining resources could be used to sup-
port the requested service;

- puts the tuplet (MaximumQoS, Self) at the end of
ListOjMaximumQoS;

- sends violation signal (Serviceld, Id, ListOfMaxi-
mumQoS) to its neighboring component, Next;

- waits for receipt of the corresponding confirmation
signal;

Endif
When a confirmation signal (Serviceld, Id, ListOfQoSTo-
Support) is received:
if Id = Self, then the QoS agent discards the confir-
mation signal; otherwise, it reads the tuplet (QoSToSup-
port, Self) from ListOfQoSToSupport, reserves a certain
amount of its resources to support QoSToSupport for the
remainder of the session, and sends a confirmation signal
(Serviceld, Self, ListOfQoSToSupport) to its neighbor-
ing component, Next;
When a relaxation signal (Serviceld, Id, RelaxationDe-
gree) is received:
if Id = Self, then the QoS agent discards the relaxation
signal; otherwise, it deallocates a certain amount of its
resources to relax the currently provided QoS by (a frac-
tion of) RelaxationDegree, and sends a relaxation signal
(Serviceld, Self, remaining of RelaxationDegree) to its
neighboring component, Next;

3.23 RRS ring protocol using
an immediate contribution policy

The RRS ring protocol using an immediate contribution pol-
icy is also based on interactions between the QoS agents
of the components of the linear configuration in question;
when a QoS agent detects a QoS violation, it sends a vio-
lation signal to the neighboring component (Fig. 7); its QoS
agent reserves resources, if available, to completely com-
pensate the violation. The result of this operation may be
(1) a success: the violation problem is solved, (2) a failure:
the component cannot reserve any additional resources, that
is, the component is at its maximum utilization, or (3) a
failure with an offer: the component can reserve resources
to compensate only a fraction of the violation. In any case,
the component should send a violation signal that contains

the violation degree (e.g., equal to zero in case (1) above)
that remains to be absorbed to its neighboring component.
When the QoS agent of the overloaded component receives
the violation signal it initially sent, it checks the violation
degree the signal contains. If it is different from zero, the
QoS agent notifies the user/application; otherwise, it sends
a confirmation signal towards the components to make the
reservation of the extra-allocated resources effective.

Description of ring protocol using an immediate contribution
policy

Signals description

We define the following signals:

- violation signal (Serviceld, Id, ViolationDegree): it is
initially sent by the QoS agent, identified by Id, who
detects a QoS violation;

- confirmation signal (Serviceld, Id): it is initially sent
by the QoS agent, identified by Id, who detects a QoS
violation;

- relaxation signal (Serviceld, Id, RelaxationDegree): it is
initially sent by the QoS agent, identified by Id, who pre-
viously failed to meet its initially agreed commitments;

Description of the operation of a QoS agent

Variables description

Same as for the RRS ring protocol using optimal contribution
policy.

Operation

- When a QoS violation is detected:
the QoS agent (who detects the violation) sends a vio-
lation signal (Serviceld, Self, ViolationDegree), where
ViolationDegree=qos — QoS, to its neighboring compo-
nent, Next;

— When a recovery is detected:
the operation of the QoS agent is similar to the corre-
sponding operation described in RRS ring protocol using
an optimal contribution policy.

- When a violation signal (Serviceld, Id, ViolationDegree)
is received:
if Id = Self, then the QoS agent checks whether Vio-
lationDegree is equal to zero; if this is the case, then it
will send a confirmation signal (Serviceld, Self) to its
neighboring component, Next; otherwise the QoS agent
notifies the user/application;

Else (Id ^ Self)
if (ViolationDegree=0) then

the QoS sends a violation signal (Serviceld, Id,

311

0) to its neighboring component, Next;
else (ViolationDegree^ 0)

the QoS agent performs the following operations:
- computes the maximum QoS, MaximumQoS, assum-

ing that all remaining resources could be used to sup-
port the requested service;

- VwlationDegree=ViolationDegree- (Q0s-Maximum-
QoS);

- if (ViolationDegreejO) then
• ViolationDegree:=0;
• reserves temporarily the resources required to

support gos-ViolationDegree;
else

• reserves temporarily the resources required to
support MaximumQoS;

endif
• sends a violation signal (Serviceld, Id, Vwla-

tionDegree) to Next;
• waits for receipt of the corresponding confirma-

tion signal;
Endif

- When a confirmation signal (Serviceld, Id) is received:
if Id - Self, then the QoS agent discards the confirma-
tion signal; otherwise it makes effective reservation of the
resources (reserved temporarily to compensate for the corre-
sponding violation) for the remaining duration of the service
session, and sends a confirmation signal (Serviceld, Id) to
Next;
- When a relaxation signal (Serviceld, Id, RelaxationDe-
gree) is received:
the operation of the QoS agent is similar to the correspond-
ing operation described in the RRS ring protocol using an
optimal contribution policy.

It is worth noting that the RRS ring protocol using an imme-
diate contribution policy may be realized without the con-
firmation signal. In this case, when a QoS agent receives a
violation signal, it reserves the resources immediately and
uses them for the service in question without waiting for the
confirmation signal.

We note that, to each violation signal, there corresponds
exactly one confirmation signal (for all protocols described

j in this section); the two signals are identified by the iden-
tifier of the QoS agent which generates the violation signal
and by the identifier of the service instance in question. The
operation of the RRS protocol can therefore be executed in-
dependently for each violation signal that may be generated
within the system. The only interference that may occur is
the following. When a given agent receives a second vi-
olation signal when an earlier violation signal has not yet
been confirmed, it may have allocated most of its free re-
sources to the first violation signal and have no additional
resources available for the second signal. In this case, it will
pass the second violation signal on to the next neighbour
without any additional contribution, although most of the
temporarily allocated resources will probably be freed when
the confirmation for the first violation signal arrives, indi-
cating how many resources should actually be reserved. In
order to improve the adaptation performance of the system,
it may be advantageous to limit the amount of resources

temporarily allocated for a single violation signal. Also, the
performance of the algorithm could be optimized in order to
reduce the chance that a second violation signal is received
during the processing of an earlier one.

3.3 Operation of the RRS in a hierarchical environment

RRS can easily operate in a hierarchical multi-domain envi-
ronment as shown in Fig. 8; a combination of the protocols
described above may be used to recover from QoS violations
in such an environment. Examples of these combinations are:
ring protocols (or the centralized protocol) at lower levels of
the hierarchy and a centralized protocol (or ring protocols) at
higher levels, ring protocols at all levels, and the centralized
protocol at all levels.

As an example, we describe in the following the opera-
tion of RRS in a three-level hierarchical environment which
consists of four domains; we use the centralized protocol at
the lower levels and the ring protocol using the immediate
contribution policy at the higher level (Fig. 8). Let us assume
that (1) the components involved in the provision for the re-
quested service are c\ c-<_, 03, €4, c$, c&, CT, eg, eg, and c\$
(Fig. 8), and (2) during the lifetime of the session, c2 detects
a local QoS violation. Using the RRS, the following oper-
ations are executed: (1) CT sends a violation signal to QoS
manager-1, (2) QoS manager-1 uses the centralized protocol
to ask for the help of c\o compensate for the violation (a
fraction or the whole violation may be compensated by c\),
(3) if the violation cannot be solved, instead of notifying the
user/application, QoS manager-1 sends a violation signal,
with the remaining violation degree, to QoS manager-2. The
latter uses the centralized protocol to recover, if possible,
from the violation (the violation degree is included in the
violation signal), and then sends a violation signal, with the
remaining violation degree, to QoS manager-3. When QoS
manager-1 receives the corresponding violation signal, it no-
tifies the user/application if the violation degree (contained
in the signal) is different from zero (Fig. 8).

More generally, a domain is seen by our scheme as a
single component, and its QoS manager as a QoS agent.
At the higher level, the operation of the RRS is as shown
in Fig. 9. When a QoS manager receives a violation signal,
it must compute the maximum contribution it can support,
puts this information in the violation signal and sends it
to its neighboring QoS manager. The computation of the
maximum contribution is delegated to the QoS agents of
the domain's components of interest using the centralized
protocol.

Since RRS is a high-level scheme (Fig. 9), it may also
integrate existing adaptation schemes, such as the GAS (Par-
ris et al. 1994). In fact, different domains may implement
different adaptation schemes, and RRS may still be useful
for inter-domain coordination. For example, upon receipt of
a violation signal, QoS manager-2 may use the GAS to es-
tablish a better route within its domain, in order to recover
from the violation.

312

J6)_
-~~ " -

5)

domain- 1

J3) ,
c

C3

P)
1
i

*a

C7

/^Q^P^V^irianager-fjx
domaifl^ — rX^.

r«r<*, bv

d

»

omain-4

N

\

\5

N

d

s

X5) (?) — 4 — ,
c.

omain-

-As

1

r C10

C9

Fig. 8. An exampl
environment

Fig. 9. An example illustrating the operation, at a higher level, of the RRS
ring protocol in a hierarchical system

4DRS

The basic idea of RRS, as explained above, is to request
increased QoS commitments from the other system compo-
nents when a given component has some difficulty and can-
not meet its agreed commitments. RRS is initiated by the
component in difficulty. Usually, the difficulty will be de-
tected only after a certain measurement period (see Sect. 3),
during which the actually provided QoS was found to be
inadequate. During this period, before RRS has been acti-
vated, there is therefore a good chance that the end-to-end
QoS, as seen by the user, could be below the agreed value.

If the inadequacy of the QoS provided by a component
could be detected immediately, it would be possible to avoid
any QoS degradation as seen by the user. This is the case
for delay. The purpose of the DRS, discussed in this section,
is to compensate for a delay violation for each transmitted
data unit. If the measured delay value of a given data unit
is above the commitment, a violation signal is sent together
with the data unit in question, and the next component in
the chain may apply a higher QoS, if available, to the same
data unit, in order to compensate the problem encountered
earlier. A similar approach involving only three components
(the source, the sink, and the transport system) was proposed
in Khoumsi et al. (1995) in the context of protocol synthesis
for real-time applications.

DRS can be used to react only to delay violations; it if
suitable for real-time and multimedia applications with strin-
gent temporal requirements. An example is the telerobotic;-
application described in Nahrstedt (1995), where the sensor}
data has strict constraints on end-to-end delay, but relativel}
low throughput demands.

4.1 Example of operation

Let us consider an established configuration CF=ct — c2 -
03 — 04 to support a requested service (Fig. 10). The end-
to-end delay required-to support the requested service is-
QoS. The component c\ 03, and €4) committed dur-
ing the establishment phase to support QoS\ QoSi
and QoS^). Let us assume that C[did not meet its commit-
ment for a given data unit by violating its agreed level ol
delay by RC=VDl. This information is sent to r2, togethei
with the data unit, in order to try to compensate for the
violation. Unfortunately, c^_ has not enough resources to re-
cover from the violation. However, it reduces the violatior
by contribution=VDl-VD2 using its available resources
RC — contribution=VD2 is sent to €3. Fortunately, c->, has
enough resources and recovers from the delay violation. c/>
meets its commitment, and hence the end-to-end delay guar-
antee is provided, even though ci failed to support its agreec
level of delay.

4.2 A DRS protocol

The protocol defined below for DRS is similar, to some
extent, to the RRS ring protocol using the immediate contri
bution policy. More specifically, the DRS protocol has the
following characteristics: (1) the exchanges of messages be-
tween the components are more frequent; more precisely
information is exchanged between the components for each
service data unit; (2) only "downstream" components ma)

313

i Q°s\d |

1
1

1

QdS i

QoS-, QoS-,^r * * '— £ _ ,
*T"

ii
i *
i

Q°S^
"* *"

VD1 VD?

end-to-end delay: QoS

Fig. 10. An example of the operation of the DRS

contribute to solve the violation, (cn does not send violation
or relaxation signals to c\; and (3) the existence of syn-
chronized clocks is assumed for easily determining, through
time stamps, the delay of each data unit.

Description of the operation of the protocol

Signals description

We extend the data unit, e.g., Network Protocol Data Unit
(NPDU), to include the following field:

- ViolationDegree: indicates the difference between the de-
lay encountered by the data unit and the agreed delay for
a given component;

- InputTimeStamp: indicates the time when a given com-
ponent receives the data unit;

Description of the behavior of a component

Variables description

We define the following variables:

- AgreedDelay corresponds to the (target) delay the com-
ponent committed to provide, during the establishment
phase.

- Next contains the identifier of the neighboring compo-
nent in the configuration in question.

Operation

Each time the component, receives a data unit, it performs
the following operations:

(1) reads the current time, CurrentTime, from its clock;
(2) sets InputTimeStamp to CurrentTime;
(3) if ViolationDegree > 0 then

- The QoS agent processes the data unit, e.g., a de-
coder decodes the data unit and a network trans-
ports the data unit, while doing its best (depend-
ing on its available resources) to satisfy a delay of
AgreedDelay = AgrreedDelay - ViolationDegree;

else (ViolationDegree < 0)
- The QoS agent processes the data unit; in this case,

the QoS agent may relax its commitment by Vio-
lationDegree (or fraction of ViolationDegree), that
is, it has only to satisfy a delay of AgreedDelay =
AgrreedDelay -ViolationDegree; (this operation is
recommended when the QoS agent has difficulties to
meet its initially agreed delay)

endif
(4) reads the current time, CurrentTime, from its clock;

(5) ViolationDegree=(CurrentTime-InputTimeStamp)-
AgreedDelay;

(6) sends the (processed) data unit, along with the updated
ViolationDegree, to its neighboring component, Next;

If we assume that each component in the configura-
tion knows the allocated partial delay, the operation of the
protocol will be considerably simplified. The partial de-
lay, called PartialDelay, of a component relative to a given
stream is defined as the elapsed time from the moment
a data unit of the stream is generated (at the source) to
the moment the data unit leaves the component. In this
case, the protocol can be changed as follows: for each
data unit the time stamp, TimeStamp, is set only once at
the source; thus, the operations (1) and (2) of the pro-
tocol are not needed, and the operation (5) will be re-
placed by (5') ViolationDegree=CurrentTime-TimeStamp-
PartialDelay. In the example presented in Sect. 4.1, the allo-
cated partial delays for c\ c2, 03 and 04 are QoSi, QoS\
QoS2, QoSi+QoS2+QoS3, and QoSi+QoS2+QoS3+QoS4

(which is equal to the end-to-end delay), respectively.
Concerning the performance of DRS, it is related to the

performance of reading the real-time clock twice for each
data unit. We assume that the system components provide
an efficient clock-reading operation.

5 Conclusion

The issues of QoS adaptation have only been partially ad-
dressed in the literature. Most of the existing approaches
have one or several of the following characteristics: (1) they
are restricted to the communication sub-system; (2) they re-
act only after the occurrence of an end-to-end QoS violation;
and (3) they react to a QoS violation by renegotiating a de-
graded QoS, and thus they are restricted to applications that
can accept a varying QoS. In this paper, we presented an
approach which allows to recover automatically from QoS
violations, and only require user I application intervention (as
existing approaches) when the system has not enough re-
sources to support the current load. The proposed approach
consists of high-level interactions between management en-
tities, and thus may be applied to an arbitrary system (several
domains) with different adaptation and reservation schemes.
A number of instantiations of the proposed schemes may be
developed based on the characteristics of the environment
(systems and applications).

We have presented three schemes for QoS adaptation: the
component resource reconfiguration (CRS), the resource re-
configuration scheme (RRS), and the delay recovery scheme
(DRS). CRS tries to recover from any QoS violation by se-
lecting one or more alternate components and by performing
a user-transparent transition from the primary components
to the alternative ones. RRS tries to recover from QoS vio-
lations, specifically delay, jitter, and loss rate violations, by
changing the distribution of QoS levels that each component
will support. It integrates, in a suitable way, the two possi-
ble approaches that can be used to deal with QoS violation:
to maintain, if possible, the initially agreed QoS, and oth-
erwise to initiate a renegotiation with the user/application.
DRS tries to recover from delay violations of specific com-
ponents for each individual data unit that is transmitted. The

314

role of DRS is to avoid, if possible, end-to-end delay viola-
tion, but it introduces substantial overhead.

The proposed schemes, especially CRS, are able to sup-
port a graceful degradation. Indeed, when the QoS manager
fails to find an alternate configuration that supports the ini-
tially agreed QoS, it may select a configuration that sup-
ports a lower QoS in a graceful way, e.g., continue playing
black/white video instead of the initial color video.

A scheme that supports the characteristics of all three
schemes RDS, RRS and CRS may be more efficient. As
an example, for the delay parameter, the following scenario
may be used:

(1) DRS is used to maintain end-to-end delay of each data
unit.

(2) If a component is in difficulty to supports its delay re-
quirements, RRS is used to reconfigure the resource dis-
tribution of the components in a way to satisfy end-
to-end delay requirements. The delay considered is the
delay averaged over some measurement interval. This
operation is executed in parallel with operation (1).

(3) If operation (2) does not succeed, CRS may be used to
find an alternate configuration able to support end-to-
end requirements. Then, the QoS manager performs a
transition from the current configuration to the new one.

Acknowledgements. We would like to thank R. Velthuys from IBM Toronto,
and A. Khoumsi from University of Montreal for fruitful discussions on a
draft of this paper. This work was supported by a grant from the Canadian
Institute for Telecommunication Research (CITR), under the Networks of
Centres of Excellence Program of the Canadian Government.

References

Bochmann G von, Kerherve B, Hafid A, Dini, Pons A (1996) Architectural
Design of Adaptive Distributed Multimedia Systems. In: Proceedings
of the IEEE International Workshop in Distributed Multimedia Systems
Design, Berlin, Germany

Bochmann G von, Hafid A (1997) Some Principles for QoS Management.
Distributed Syst Eng J 4(1): 16-27

Danthine A (1992) OSI95: High-Performance Protocol with Multimedia
Support on HSLANs and B-ISDN. In: Proceedings of the 3rd Joint
European Networking Conference, Innsbruck. Austria

Ferrari D, Verma D (1990) A scheme for Real-Time Channel Establishment
in Wide-Area Networks. IEEE J 8 (3)

Ferrari D, Banerjea A, Zhang H (1992) Network Support for Multime-
dia. Technical report 92-072, International Computer Science Institute,
Berkeley, Calif.

Gilge M, Gussella R (1991) Motion Video Coding for Packet Switching
Networks — An Integrated Approach. Proc SPIE Visual Commun Image
Process

Hafid A (1995) A Hierarchical Negotiation for Distributed Multimedia
Applications in a Multi-Domain Environment. In: Proceedings of the
Second International Workshop on Protocols for Multimedia Systems,
Salzburg, Austria, pp 325-337

Hafid A, Bochmann G von (1996) Quality-of-Service Negotiation in News-
on-Demand Systems: An Implementation. In: Proceedings of the Third
International Workshop on Protocols for Multimedia Systems, Madrid,
Spain, pp 221-240

Hafid A, Bochmann G von, Kerherve B (1996) A QoS Negotiation Proce-
dure for Distributed multimedia Presentational Applications. In: Pro-
ceedings of the Fifth IEEE International High-Speed Distributed Com-
puting (HPDC-5), Syracuse, New York

Hanko J, Kuerner E, Northcut D, Wall G (1991) Workstation Support for
Time-Critical Applications. In: Proceedings of the Second International
Workshop Heidelberg, Germany

Khoumsi A, Bochmann G von, Dssouli R (1994) On Specifying Sen ices
and Synthesizing Protocols for Real-Time Applications. In: Proceed-
ings of the Conference on Protocol Specification, Testing and Verifi-
cation (PSTV), Vancouver, Canada, pp 185-200

Nagarajan R (1993) Quality-of-Service Issues in High-Speed Networks.
Ph.D. Thesis, University of Massachusetts, Cambridge, Mass.

Nahrstedt K (1995) An Architecture for End-to-End Quality-of-Service Pro-
vision and its Experimental Validation. Ph.D. Thesis, University of
Pennsylvania

Parris C, Ventre G, Zhang H (1994) Dynamic Management of Guaranteed-
Performance Multimedia Connections. Multimedia Syst

Seneviratne A, Cho H (1995) Quality of Service in Distributed Multimedia
Systems. In: Proceedings of International Conference on Mul t imedia
Networking (IEEE Computer Society), Aizu-Wakamatsu, Fukushima.
Japan

Sloman S, Moffet J (1989) Domain Management for Distributed Systems.
IFIP TC 6/WQ 6.6 (Integrated Network Management I. IFIP 19S9)

Somalingam R (1996) Network Performance Monitoring for Multimedia
Networks. Masters Thesis, School of Computer Science, McGil l Uni-
versity, Montreal, Canada

Steinmetz R (1990) Synchronization properties on Multimedia S\.
IEEE J

Tawbi W, Horlait E (1994) Expression and Management of QoS in Multi-
media Communication Systems. Ann Telecommun

Tobe Y, Tokuda H, Chou S, Moura J (1992) QoS control in ARTS FDDI
continuous Media Communications. In: Proceedings of ACM SIG-
COMM 92

Topolcic C (1990) Experimental Internet Stream Protocol: Version 2 (ST-
II), Internet RFC 1190

Wong J, Lyons K, Velthuys R, Bochmann G von, Dubois E, Georganas
N, Neufeld G, Ozsu T, Brinskelle J, Evans D, Hafid A, Hutchinson
N, Inglinski P, Kerherve B, Lament L, Makaroff D, Szafron D (1997)
Enabling Technology for Distributed Multimedia Applications. IBM
Syst J 36(4): 489-507

Yin N, Hluchyi M (1991) A Dynamic Rate Control Mechanism for Inte-
grated Networks. In: Proceedings of INFOCOM'91

315

DR. ABDELHAKIM HAFID is Assistant
professor at the Electrical & Computer
engineering/Computer science Depts.
(a joint appointment), University of
western Ontario, and Research Director
of the Advanced Communication Engi-
neering Centre (venture established by
UWO, Bay Networks, Bell Canada); he
is also an Adjunct Professor at Univer-
sity of Montreal, Department of com-
puter Science. He received his Mas-
ters and Ph.D. degrees in computer sci-
ence from University of Montreal on
quality of service management for dis-
tributed multimedia applications in 1993
and 1996, respectively. From 1996 to

1997 he was a Researcher Staff Member at the Computer Research In-
stitute of Montreal (CRIM), Telecommunications and Distributed Systems
Division, working in the area of distributed multimedia applications. From
1993 to 1994 he was visiting scientist at GMD-FOKUS, Systems Engi-
neering and Methods group, Berlin, Germany working in the area of high
speed protocols testing. His current research interests are in Internet and
multimedia networking.

GREGOR v. BOCHMANN has been a
professor at the University of Mon-
treal since 1972 and holds the Hewlett-
Packard-NSERC-CITI chair of industrial
research on communication protocols.
He is also one of the scientific directors
of the Centre de Recherche Informatique
de Montreal (CRIM). He is a Fellow
of the IEEE and ACM. He has worked
in the areas of programming languages,
compiler design, communication proto-
cols, and software engineering, and has
published many papers and some books
in these areas. He has also been ac lively
involved in the standardization of formal
description techniques for OSI commu-

nication protocols and services. From 1977 to 1978 he was a visiting pro-
fessor at the Ecole Polytechnique Federate, Lausanne, Switzerland. From
1979 to 1980 he was a visiting professor in the Computer Systems Labora-
tory, Stanford University, California. From 1986 to 1987 he was a visiting
researcher at Siemens, Munich. His present work is aimed at methodologies
for the design, implementation and testing of communication protocols and
distributed systems. Ongoing projects include applications to high-speed
protocols, distributed systems management and quality-of-service negotia-
tion for distributed multimedia applications.

