‘H
COMPUTER
3 NETWORKS

ISDN SYSTEMS

ELSEVIER Computer Networks and ISDN Systems 30 (1998) 777-794

A quality of service negotiation approach with future reservations
(NAFUR): a detailed study

Abdelhakim Hafid *, Gregor von Bochmann ', Rachida Dssouli *

Université de Montréal, Dept. d’IRO, Groupe de Téléinformatique, Montréal, Canada H3C 3J7

Abstract

Distributed multimedia (MM) applications such as video-on-demand and teleconferencing provide services with different
quality of service (QoS) requirements. Hence, the user should be able to negotiate the desired QoS depending on his /her
needs, the end-system characteristics and his /her financial capacity. In response to a service request with the desired QoS,
most QoS negotiation approaches return an acceptance or a simple rejection of the request. More specifically, they provide
the user only with the QoS that can be supported at the time the request is made and assume that the service is requested for
indefinite duration. This paper describes work on a new QoS negotiation approach with future reservations (NAFUR) that
decouples the starting time of the service from the time the service request is made and requires that the duration of the
requested service must be specified. NAFUR allows to compute the QoS that can be supported for the time the service
request is made, and at certain later times carefully chosen. As an example, if the requested QoS cannot be supported for the
time the service request is made, the proposed approach allows to compute the earliest time, when the user can start the
service with the desired QoS. NAFUR will help to increase (a) the flexibility of the system by providing the user with more
choices, and (b) the system resource utilization, and the availability of the system, by encouraging the sharing of the
resources, e.g. multicast for video-on-demand systems. Furthermore, it provides the flexibility to incorporate (a) a range of
resource reservation schemes and scheduling policies, and (b) a range of new system component technologies. © 1998
Elsevier Science B.V.

Keywords: Quality of service; Negotiation; Distributed multimedia applications; Future reservation

1. Introduction This implies stringent requirements for the commu-
nication systems and the end-systems to support the
requirements of MM applications. Hence, these ap-
plications need end-to-end QoS management, partic-
ularly QoS negotiation, to ensure that the require-
ments of the users are satisfied.

Most existing QoS negotiation protocols [1-8] are
only concerned with the communication quality in
terms of QoS parameters, such as throughput, delay
" Gomessendin anthie Brmit: hakim @sdauses, and jitter. Furthermore the negotiation results, in

bochimant @iro:umontreal ca. response to the user request, are restricted to an

? dssouli @iro.umontreal.ca. acceptance or rejection of the request. This implies

The new distributed multimedia (MM) applica-
tions are characterized by handling continuous media
and by managing various media at the same time.
Different types of continuous media require different
levels of quality of service (QoS), and they require
guarantees for the level of service to be maintained.

0169-7552 /98 /$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII $0169-7552(97)00109-8

778 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

that a second attempt of the user cannot take advan-
tage of information obtained through the first request
to change, if possible, the requirements to fit the
current system load. In [9] a QoS negotiation proto-
col based on the Tenet protocol suite [10] has been
proposed to improve the information given to the
users by the network when a connection request is
rejected. Such improvement is closely related to the
characteristics of the Tenet protocol suite, e.g. ad-
mission control tests. Also application-to-application
negotiation protocols [11-14] focus only on the es-
tablishment of an agreement between the parties with
respect to the application QoS parameters. More
generally, the service model of the existing negotia-
tion approaches provides the user with the QoS that
can be supported at the time the service request is
made, and assumes that the service is requested for
indefinite duration. We believe that such approaches
do not fit the needs for future MM service providers
and users. Let us present an example which moti-
vates this claim.

We consider a video-on-demand application which
supports remote access to MM databases (Fig. 1). In
the following we present two basic situations of
user—server interactions in the existing negotiation
approaches.

(a) Let us assume that a user located at client-1
asks to play a movie with a desired QoS, e.g.
(video_color = color, video_rate = TV-rate, video_
window_size = large), located at server-1. To sup-
port this service request server-1, MM transport
system and client-] must commit to reserve re-
sources to support a level of QoS, e.g. delay, in such
way that the end-to-end QoS is satisfied [15]. Unfor-
tunately, at the time the request is made there are not
enough resources to support the service requested.
Making use of the existing negotiation approaches a
rejection will be sent to the user.

A desirable QoS negotiation approach will pro-
vide the user with two proposals: (1) the requested
service can be provided immediately with a degraded

MM transport system

Fig. 1. Video-on-demand example.

QoS, e.g. (video_color = black and white, video_
rate = TV-rate, video_window_size = large), and (2)
the requested service can be provided with the de-
sired QoS at a future time 7, e.g. 30 minutes later.
Thus, the user can choose between the two proposals
depending on his /her requirements.

(b) Let us assume that the user selects the second
proposal, and at a later time 7, < T}, a second user
on client-2 asks for the same movie. Fortunately, the
system has enough resources to support the second
user request at 7, (immediately). Making use of the
current negotiation approaches an acceptance will be
sent to the user.

A desirable negotiation approach will check the
possibility of supporting the second user request
concurrently with the first user at time 7, since this
may lead to sharing of resources and possibly lower
cost. If this is the case, two proposals will be sent to
the second user: (1) an acceptance to start the movie
immediately (at 7,) with a cost cost;, and (2) an
acceptance to start the movie later at 7, with a cost
cost, where cost, < cost,. Consequently, the user
can select the proposal which corresponds to his /her
wishes and constraints. The computation of the sec-
ond proposal is motivated by the fact that servicing
users individually is inefficient, expensive and not
scalable. One of the best ways to deliver information
to more users is through the use of multicast commu-
nication which has the advantage of being scalable.
We believe that a large number of users will select
the second proposal which will optimize resources
usage, e.g. multicast communication [16], and mini-
mize cost for the users.

To increase the flexibility and the availability of
future MM systems (a) the starting time of the
requested service should be decoupled from the time
the service request is made, and (b) the duration of
the service requested should be specified by the
service user. In the present paper we propose a QoS
negotiation approach with future reservations
(NAFUR) that supports these principles. To make
use of NAFUR, the user must specify, besides the
desired QoS, only the duration of the requested
service.

There is a basic assumption in our approach: We
assume that the system is built in the framework of
QoS guarantees, that is, the components are able to
reserve resources to support certain levels of QoS.

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777794 779

Consequently, NAFUR provides the flexibility to
incorporate a range of existing resource reservation
schemes and scheduling policies, and a range of new
system component technologies, such as ATM.

The paper is organized as follows. Section 2
describes the operation of NAFUR at the user inter-
face; it also presents some performance analysis of
NAFUR by means of simulations. Section 3 de-
scribes the operation of NAFUR in a hierarchical
multi-domain environment; some ideas to optimize
the operation of NAFUR are also discussed. Section
4 discusses the case of unknown services durations.
Finally, Section 5 summarizes our results and pre-
sents some concluding remarks.

2. QoS negotiation interactions at the user inter-
face for present and future service sessions

In this section we model a distributed system as a
single module and a QoS manager (Fig. 2) which
represents the access point to the module. The ability
of the QoS manager to process a service request is
directly related to the admission criteria which the
QoS manager uses to decide whether a new request
is accepted. This criteria is that the sum of previ-
ously assigned resources plus the resources required
by the new request should not exceed the resources
of the system. In the case of acceptance, the QoS
manager reserves the required resources. When the
QoS manager receives a request to terminate the
service it simply de-allocates the reserved resources.
When a renegotiation request is received, the QoS
manager may decrease the amount of the reserved
resources if the new QoS is less restrictive than the
QoS currently provided, otherwise it checks the ad-
mission criteria with the new QoS constraint and the
current load of the system. In this section, the terms

users

ServicgIng
ServicgRes

distributed system
(resources)

Fig. 2. System model.

“‘system’ or ‘‘QoS manager’” will be used inter-
changeably.

More specifically, the following operations are
provided by the QoS manager to the users (Fig. 2):
1. Servicelnq (in req: Request; resPeriod: Time;

out pro: Proposals);

2. ServiceRes (in req: Request; out s: Status);

The operation Servicelnq makes an inquiry about
the availability of a particular service characterized
by a request req. This parameter is a tuple of three
elements req = {Q, starttime, length), where Q is a
set of QoS parameters characterizing the quality of
the requested service, starttime is the desired starting
time for the service, and length is the length of the
time for which the service is requested; the period
for which the service is requested is therefore the
time interval [starttime, starttime + length). The re-
sult pro is a set of proposals where each proposal
indicates the QoS available for a period of length at
some future times. Formally, a proposal is defined as
a tuple (time, QoS) where QoS represents the QoS
that can be supported by the system over the interval
[time, time + length].

The parameter resPeriod (argument of Servi-
celnq) indicates for how long the service reserva-
tions (made to support pro) should be kept (on a
temporary basis) until a subsequent invocation of the
ServiceRes operation will make an effective reserva-
tion for a particular proposal. The operation Ser-
viceRes is used to effectively make a service reserva-
tion. Typically, it will be called after the execution
of a Servicelnq operation, and its req parameter will
correspond to one of the proposals contained in pro.
The status parameter, s, indicates the success or
failure of the operation.

To support the operation Servicelng, we assume
that the QoS manager has enough knowledge about
the available QoS, presently and in the future; this
information is called available service projection
(asp). Formally asp consists of a list of tuples (zime,
Q0S) where QoS corresponds to the QoS that can be
supported by the component at time time.

As mentioned above, the QoS manager should
provide the user with the QoS that can be provided
for the duration, length, of the service requested at
certain times. However, asp contains only the QoS
that can be supported by the system at a certain
given time(s). Thus the QoS manager must be able to

780 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

Qos A
QoS (throughput)

5

o [

I I3 |4 |5 le 17 Ig

time axis

R
reserve free free reserveg,fTee
‘\/
|
Servicelnq i

Fig. 3. An example of available service projection of the system.

transform asp to pro. This is the subject of Section
2:2.2%

2.1. Available service projection

The QoS manager contains the resource reserva-
tion state (of the system) which indicates the re-
source reservations made for all its resources at
present and in the future. One way of representing
this state is by a list, REvents, of reservation events
which are sorted by the event time (Fig. 3). These
events are of the following forms: {reserve, time, R,
purpose) and { free, time, R, purpose), where re-
serve or free indicates the type of events, time is the
event time, R is the amount of reserved resources,
and purpose is a reference to the user (or the
application) for whom the reservation was made. An
event of type reserve (resp. free) means that an
amount of resources R will be reserved (resp. de-al-
located) for the user purpose at time time.

To produce the available service projection asp,
the QoS manager makes use of some functions which
allow to compute the available QoS given the avail-
able system resources (definitions of these functions
is out of scope of the paper) and REvents (see
example below). When ServiceRes (reg, s) is in-
voked, the QoS manager generates a corresponding
reserve event with an amount of resources corre-
sponding to the QoS contained in req parameter.

2.1.1. Example

Let us consider a network with a maximum band-
width, R, of 5 Mbits /sec. For sake of simplicity and
clarity of the example, we do not specify how the
shared bandwidth is controlled. Fig. 3 shows the list,
REvents, of events that corresponds to the system,

and the corresponding available service projection
asp. Revents =[{reserve, 1, 2,), {free, 3, 1,),
{ free, 6, 1,), {reserve, 7, 3,), { free, 8, 3,)]. For
instance, {reserve, 1, 2,) means that at time 1 a
reservation of 2 Mbits /sec is made.

The QoS manager will produce the following:
asp =[{2, QoS,=3), (3, QoS,=4), {6, QoS;=
5), (7, QoS, =2), {8, QoS5 =5)].

In this example, the available QoS (throughput in
Mbits /s) corresponds to the available system re-
sources (bandwidth in Mbits /s).

2.2. Proposals

The QoS manager should provide the user with
the QoS that can be provided for the duration, length,
of the service requested starting at certain future
times. However, asp (Section 2.1) contains only the
QoS, QoS, that can be supported by the system at
certain given points in time. Thus, the QoS manager
must be able to transform asp to proposals.

2.2.1. Comparison of proposals

In response to a Servicelnq from the user, the
QoS manager produces a list of proposals. However,
not all the proposals are useful to be presented to the
user. A kind of filtering must be supported by the
QoS manager to compute only representative (‘‘use-
ful’”) proposals.

For sake of clarity, let us consider the following
example. In response to the user request to display a
specific movie with a desired QoS (25 frames /
second, color) the QoS manager produces (without
the filtering facility) three proposals: p, = (8am,
(25 frames / second, grey)), p,=<{8:20 am, (25
frames / second, black and white)), and p, = (8:30
am, (25 frames / second, color)). It is obvious that
the proposal p, will not be selected by the user;
even if the user accepts a degraded QoS, he /she will
select p, since it can be provided earlier than p, and
the corresponding QoS (grey) is higher than the one
(black and white) corresponding to p,. Conse-
quently, the QoS manager should present to the user
only p, and p;.

In general, we may say that a proposal p should
not be presented to the user if there is a “‘better’’
proposal, where the relation ‘‘better’’ between two

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794 781

proposals p, ={t,, QoS,) and p, = {t,, QoS,) is
defined as follows:

p, better p, if t; <t, and QoS > Q0S,.

Since QoS consists generally of a number of QoS
parameters, the relation > between two QoS, QoS
and QoS,, must first be defined. One way to define
the relation is by introducing weights which indicate
the relative importance of the different parameters.
We say that QoS, > QoS, if and only if the weighted
average of the QoS parameter values corresponding
to QoS, is higher than the one corresponding to
QoS,.

To compute the weighted average, we associate
(1) a numerical value to each possible instance of a
given QoS parameter, and (2) a weight to each QoS
parameter. The numerical values should correspond
to the quality of the different instances of a given
QoS parameter, while the weights must indicate the
importance of the different QoS parameters. For
example, in a video-on-demand system [12], the
parameters used to specify, at the user level, the
quality of video are: color, frame rate, and display
size; an instance of color can take the values color,
gray, or black and white, an instance of frame rate
can take TV rate, reduced rate, or frozen rate, while
an instance of display size can take large, medium,
or small; to each instance we associate a numerical
value: (color =3, gray =2, black and white = 1),
(TV rate =3, reduced rate =2, frozen rate=1),
and (large = 3, medium =2, small=1). Let us as-
sume that QoS, = (color, reduced rate, medium) and
Q0S, = (gray, TV rate, medium). If we associate to
color a weight of 0.75, to frame rate a weight of
0.125, and to display size a weight of 0.125, then
QoS, = QoS,. Indeed, the weighted average that cor-
responds to QoS, (resp. QoS,) is equal to 3 X 0.75
+2X0.125 +2X0.125=2.75 (resp. 2.125). The
determination of the weights depends on the nature
of the service considered, e.g. delay sensitive ser-
vices or reliability sensitive services.

Now that the relation better is defined, it is
interesting to mention its properties.

* berter is reflexive: p, better p, for any proposal

p, = <t;, QoS,) since t, <1, and QoS, > QoS,;
« better is asymmetric: (p, better p,) and (p,

better p,) = p, = p,, since t, < t,, QoS, = Q0S,,
t, <t, and QoS, = QoS, imply that ¢, =, and
QoS, = Q0S,;

- better is transitive: (p, better p,) and (p, better
p3) = (p, better p,), since t, < t,, QoS, > Q0S,,
t, <ty and QoS, > QoS, imply that ¢, <¢; and
QoS, > QoS,. Consequently, better is an order
relation. However, it is easy to find two proposals
(t,, QoS,) and {1,, QoS,) that are not related,
that is, (¢, > 1, and QoS, > Q0S,) or (1, <t, and
Q0S, < Q0S,), e.g. {2, 3) and (3, 4) in the
example of Section 2.1. Thus, “‘better’ is a
partial order relation.

2.2.2. Proposal computation

In the following we present an algorithm that the
QoS manager uses to produce the proposals to be
provided to the user, given the available service
projection of the system. We assume that the follow-
ing operations are available on the lists of events and
proposals. All lists are assumed to be ordered by
increasing time.

Add(/, x): adds x to the end of the list I.
ExtractFirst(/, x): extracts the first element of the
list /; the element extracted is x.

Merge(/,11,/2): merges the list [with the list /1.
The result is /2 which is also ordered by increas-
ing time.

GetLast(/, x): returns the last element, x, of the
list / (no side effect).

Empty(1): Boolean; returns whether the list [is
empty (no side effect).

For each tuple, {1,, QoS,), of the available service
projection, the QoS manager checks whether QosS;
holds for a period of time, equal or longer than
length, the period of the requested service. If the
response is yes, then {7, QoS;) may be considered
as a potential proposal; otherwise the QoS manager
will consider the other tuples with time values smaller
than ¢, + length and bigger than 7, in order to
compute the maximum QoS which might hold for a
period equal to length and starting from ¢,. Each
time a potential proposal is produced, it will be
presented to the user only if there is no ‘‘better’’
proposal already presented.

782 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

Algorithm

Input:
asp = [<t1’Q0S1>7 <t2’QOSz>7
(see Section 2.1);
length indicates the length of the requested
service;
Output: proposals
Variables:
m, m, are integers;
x, y are proposals;
Initialization:
m:=1;
proposals: =[] (the empty list);
(1) while m <n do
(1.1) if ¢, + length <t,, ., then

saily Kt3008,)]

x:=<t,,008,)
else
m;:=m;
while (7, <1, + length) do
mpi:=m +1;
endwhile
x:=
(t,,,minimum(QoS,,,Q0S,, . ,00S,, _,));
endif

(1.2) GetLast(proposals, y);
(1.3) if x is not comparable with y (in respect
to better) then
Add(proposals, x)
endif
(1.4) m:=(m+ 1),
endwhile
end

In response to a service request issued by the
user, the proposal computation algorithm will al-
ways return at least one proposal, p =t QoS),
which meets the user requirements in terms of QoS;
in the worst case, t corresponds to the first time
(which may be very late) when all the resources of
the system become available for a sufficiently long
period of time. We assume, however, that (1) the
user asks for a QoS that does not exceed the maxi-
mum system capacity, e.g. the user will not ask for
throughput of 20 Mbits /sec over Ethernet which has
a maximum speed of 10 Mbits /sec, and (2) there is
no upper bound for the time for which proposals
may be produced.

QoS A

QoS (throughput)

time axis

reserve free

Servicelng

Fig. 4. Three proposals produced by the PC algorithm given the
available service projection shown in Fig. 3.

Furthermore, no feasible proposal, for a given
available service projection, can be ‘‘better’’ than
any proposal returned by the algorithm. This means
that the algorithm produces only the ‘‘best’” propos-
als. A proof of this statement can be found in [17].

Example

Taking the available service projection shown in
Fig. 3, and length = 3 as input, the proposal compu-
tation algorithm returns the following proposals (see
Fig. 4): proposals =[{2, 3), (3, 4), {8, 57]. With-
out the introduction of the relation better, the QoS
manager would return two more (not-useful) propos-
als: €6, 2) and (7, 2).

2.3. Sharing of resources

In this section we show how NAFUR may be
used to obtain optimal sharing of system resources.

Generally, a large number of users are served by a
distributed system. One of the key problems induced
is the sharing of the limited system resources. This
becomes crucial when delivering the same informa-
tion to more than one user, e.g. video-on-demand. It
is argued in [16] that the use of multicast communi-
cation is the best way to serve more users in video-
on-demand systems. The use of a multicast facility
requires that the users want to receive the same
information, e.g. the same movie, at the same time.
However, the users are unlikely to ask for the same
service at the same time.

NAFUR provides a suitable mechanism to en-
courage the sharing of system resources using the
multicast facility. For this purpose we assume that
the QoS manager keeps enough information about
the users and their future resource reservations. Ex-

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777794 783

amples of this knowledge are: the location of users,
e.g. users access lines, the service requested by a
given user, e.g. to deliver the movie ‘‘Casablanca’’,
the time the service will be provided, and the QoS
requested. Upon receipt-of a new service request, the
QoS manager computes the QoS available at present
and at certain future times. Some of these times may
correspond to the starting times of the same service
requested by other users for whom the resources are
already reserved. When the QoS manager returns the
proposals, if the user selects a proposal for which the
required resources (or part) are already reserved (for
another user), only a part of the required resources
are reserved; no additional resources are reserved if
the users of interest have the same access lines. To
encourage users to select such proposals, the QoS
manager may propose reduced cost.

To illustrate the operation of the QoS manager to
support the sharing of resources, let us consider the
example shown in Fig. 5. We assume the following
scenario: (1) the resources are reserved (in the fu-
ture) to play the movie ‘‘Casablanca’ (with a de-
sired QoS) for user-1 at 20:30, and (2) user-2 (re-
spectively user-5) asks to play the movie ‘‘Casa-
blanca’ (with the same QoS) at 20:00 (respectively
20:15). The QoS manager produces the following
results:

(a) One of the proposals returned to user-2, is to
play the movie ‘‘Casablanca’ at 20:30. If user-2
selects this proposal, no additional resources will be
reserved to support this proposal; the resources re-
served for user-1 can be shared with user-2, since
they use the same access line.

(b) One of the proposals, returned to user-5, is to
play the movie ‘‘Casablanca’ at 20:30. If user-5
selects this proposal, only a part of the required
resources will be reserved to support this proposal; a
certain amount of resources reserved for user-1 (the

distributed system
2 user-1 user-2

etwork -

= user-3 luser-4
video network -1
serve user-5 user-6

‘network -

usdr-7 luser-8

Fig. 5. An example of video-on-demand environment.

resources of the video server and network-1) will be
used to serve user-3, since the system use the multi-
casting facility to deliver ‘‘Casablanca’ to user-I
and user-35.

The definition of mechanisms and policies re-
quired to implement the mechanisms of resource
sharing, e.g. multicast, are out of scope of the paper.
However, such mechanisms may be used to compute
the available service projection of the system. For
example, the information (contained in the available
service projection) which indicates that at time 3, the
available throughput is 4 Mbits /s (see Fig. 3) does
not necessarily mean that we have 4 Mbits which are
not used at time 3. For example, this may mean that
the 4 Mbits are reserved for a user, e.g. user-I,
which has the same access line, who asked the same
service with similar quality as the new request. Since
we assume that the QoS manager knows about the
available service projection, the use of these mecha-
nisms does not affect the generality of NAFUR.

2.4. Performance evaluation

To evaluate the performance of NAFUR, we per-
formed a number of simulations where we consid-
ered a video-on-demand system as a single module
(as described in Section 2); the system is character-
ized by its maximum capacity R and the length of
the movie is uniformly (randomly) distributed be-
tween 60 min and 90 min.

For the sake of simplicity and clarity, we assume
that when the user requests to play a movie, the
system (when using NAFUR) returns either an im-
mediate acceptance or a single offer which repre-
sents a delayed movie presentation with the re-
quested QoS (a future proposal); whereas, without
NAFUR, it returns an acceptance or a rejection.

2.4.1. User behavior modelling

The user behavior is captured by the following
parameters:

— User request type: indicates the class of QoS
the user asks for. We assume that we have three
classes 1, 2, and 3 which correspond to Q,, Q,, and
Q; respectively. Q,, Q,, and O, can be supported if
0.0050% of R, 0.0070% of R, and 0.0030% of R is
available, respectively. The users will request the
more popular class, /, more often; the probability

784 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

that a user requests the class i is given by p,. The
following service request type pattern is assumed:
p; =08, p,=0.1, and p;=0.1.

— User request pattern in time: indicates the
distribution of user requests over a day; this distribu-
tion presents a peak during the evening when most
users ask to play a movie. A normal distribution,
characterized by its mean (A = 3.5) and its variance
(o= 60), is selected to model the evolution of this
parameter.

— Maximum delay parameter (MDP): indicates
the maximum difference (between the time the re-
quest is made and the starting time of a delayed
presentation) which is acceptable by the user; a value
of 0 for this parameter means that the user does not
accept any delayed presentation of the requested
movie.

— Movie selection pattern: indicates how users
select one of the available movies (50 different
movies). We assume that most popular movies are
most often requested; the following is a default
selection pattern: 80% of users selects the five most
popular movies (i =1, ..., 5); 15% of users selects
the 20 less popular movies (i = 6, ..., 25); 5% selects
the 25 least popular movies (i = 26, ..., 50).

2.4.2. Simulation results
The main metric we adopted for evaluation and
comparison was the rejection probability: rejection

probability = (number of rejections) /(number of
service requests); a rejection corresponds to a rejec-
tion initiated by the system or a rejection initiated by
the user who does not accept a delayed presentation
(in this case MDP is smaller than the difference
between the time of the request and the time of the
future proposal returned by NAFUR).

Because of lack of space, we only describe the
impact of two parameters on the performance of our
system: the time the requests are made and the
maximum delay parameter (MDP). A more detailed
simulation study of our system can be found in [18].
For the experiments described below we assume that
the number of users is 1000. For Fig. 6 through 8 we
use the following notations: curves denoted by U
correspond to user requests issued; curves denoted
by S correspond to NAFUR without multicast; curves
denoted by SM correspond to NAFUR with multi-
cast; and curves denoted by V correspond to a
system not using NAFUR.

In Figs. 6 and 7 the X-axis indicates the time in
minutes (e.g. if 0 represents 17:00, then the peak of
user requests is around 20:00); the Y-axis indicates
the number of requests made and accepted in the last
20 minutes. Fig. 6 shows the number of user requests
made and the number of requests accepted. The
number of accepted user requests is much higher
when using NAFUR; particularly, this holds during
the peak of the request distribution (between 120 and

Fig. 6. User requests issued and user requests accepted.

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777794 785

Fig. 7. User requests issued and users served.

280). For this experiment we assumed that the users
do not accept presentations which are delayed more
than 1 hour (60 minutes).

Fig. 7 shows the number of requests made and the
number of requests served (started in the last 20
minutes). A large number of requests rejected when
not using NAFUR are scheduled for future presenta-
tions when using NAFUR. The system using NA-
FUR is much better at handling a large number of
requests made over a relatively short period of time.

It is obvious that NAFUR with multicast facility
performs much better than NAFUR without such a
facility; the use of multicast communication is the
best way to serve more users in a video-on-demand
system. This is due to the sharing of (server and

network) resources between a number of users ask-
ing for the same movie, as explained in Section 2.3.

In Fig. 8, the X-axis indicates the maximum delay
parameter; the Y-axis indicates rejection probability
multiplied by 100. The figure shows that the block-
ing probability decreases when the value of the
maximum delay parameter (MDP) increases; this is
true when using NAFUR since a system not using
NAFUR is not affected by varying MPD. The impact
of MPD is most significant when using SVoD with
multicast facility. One may argue that it is not realis-
tic to assume that users will accept delayed presenta-
tions with a delay of 30 or 60 minutes; nevertheless,
we believe that users will prefer to get a feedback
from the system about the status of their request [18].

786 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

NAFUR provides the feedback on the time the re-
quested presentation can start and the quality of the
presentation. We think that a good number of users
will be attracted by money discounts for delayed
presentations. Last and not least, users may book in
advance in order to obtain a reservation.

3. A simple hierarchical negotiation of QoS with
present and future service sessions

In Section 2, we assumed that a distributed sys-
tem consists of a single module and a QoS manager
(Fig. 2); this assumption is not realistic since a
distributed system consists of a number of compo-
nents, e.g. networks and servers. That is, a set of
components are required to provide the QoS associ-
ated with a requested service. For example, in the
context of a news-on-demand service, data is read
from the disk, stored in buffers at the sender side,
transmitted over the network and again stored in
receiver buffers. Often, the signal will have to be
decoded before it can be presented to the user. To
provide QoS guarantees, each of these components
should commit to provide a certain level of QoS.

The main emphasis in this section is on the
definition of a framework which will support QoS
management, especially QoS negotiation, in.a dis-
tributed system. We introduce the components of the
framework, namely the QoS managers and the QoS
agents [15], and we define the interactions of these
components to support the negotiation of QoS.

3.1. A framework for QoS management

Generally, there are three steps during the lifetime
of a session, and particularly of a multimedia ses-
sion: the establishment phase, the active phase and
the clearing phase. During the three phases, QoS
management is required to ensure that the require-
ments of the users are satisfied. Therefore, proper
QoS must be negotiated during the establishment of
the session, and controlled (ideally maintained) dur-
ing the active phase. Our QoS management frame-
work consists of QoS managers and a collection of
QoS agents. A QoS manager is an entity which
supports QoS management functions by interacting
with the QoS agents, while a QoS agent is an entity

which provides means to handle all the information

about the performance and the functional behavior of

a given component. For sake of simplicity, in this

paper we consider only linear configurations of sys-

tem components, which are sufficient to describe
presentational MM applications, such as news-on-de-
mand. However, the algorithms described in this
paper can be easily adapted to be used for complex
configurations (combination of linear configurations)
which are required for other applications such as

teleconferencing systems [21].

Upon receipt of a service request from the user, a

QoS manager performs the following steps:

1. To identify the involved entities, C,, C,, ..., C,,
in the provision of the service, e.g. database
server, decoder, presentation device and network.

2. To determine the flow of data through these
components. We will use the following notation
to represent sequential data flow through the com-
ponents: C,—C,—...-C,, indicating that data
flows from C, through C, through ... and ends
in C,.

3. To determine the QoS parameters that can be
provided by each component, by interacting with
the corresponding QoS agents. We assume that
the QoS agent of a given component maintains
the available service projection and the resource
reservation state of the components (as explained
in Section 2).

4. To check that these levels of QoS allow to sup-
port the requested (end-to-end) QoS (see Egs.
(1)-(3) below).

5. To confirm the reservation of the corresponding
resources in the different components by interact-
ing with the QoS agents and to start the session.

More specifically, four main performance-oriented

QoS parameters [10,1,19] have been identified for

specifying distributed MM application requirements:

delay, jitter, loss rate, and throughput. We note that
the jitter is derived from the delay parameter; jitter is
defined as the delay variation. Furthermore, it was
reported that the most suitable location to deal with
jitter guarantees is the sink component [20]. Conse-
quently, the main performance parameters to con-
sider are: throughput, delay, and loss rate.

To compute end-to-end QoS (throughput, delay,
lossrate) relative to a service request based on the

QoS characteristics (throughput'”, delay"’, loss-

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794 787

rate'"’) of the components C;, we make use of the
concatenation functions G,(), G,(), and G,():

throughput = G (throughput", ... throughput™)
= minimum (throughput”), (1)
delay = G,(delayV, ... delay™)
= i delay'?, (2)
i=1
lossrate = G,(lossrateV, ... lossrate'™)
=1- ﬁ (1 — lossrate). (3)

i=1
3.2. Hierarchical negotiation of service quality

The general hierarchical negotiation scenario (Fig.
9) is as follows: A user requests a new instance of
the application, including specific QoS parameters,
to the appropriate QoS manager. The QoS manager
will first determine a configuration of system com-
ponents that should be used for providing the end-to-
end service for this particular instance of the applica-
tion [15,21]. Each of these components may either be
a simple component, as described in Section 3.1, or a
composition of several simpler components. A sim-
ple component will be represented by its: QoS agent,
while a composition will be represented by another
QoS manager.

In the second phase of the negotiation, the QoS
manager will inquire (using Servicelnq function de-
scribed in Section 2) the available service quality
from each of the components participating in the
configuration for this instance of application. Based
on the obtained results, it will provide the user (or
the QoS manager higher up in the hierarchy) with a

Servicelnq
ServiceRes

QoS manager

Servi

component] nt2

Servit g
ServiceRe:

resources resources Resources

Fig. 9. Example of QoS manager—QoS agent interactions.

set of possible reservations that could be made for
the requested service.

During the third phase, the user (or the QoS
manager higher up in the hierarchy) makes a service
reservation based on one of the suggested possibili-
ties (using ServiceRes function described in Section
2). If the reservation starts immediately, the active
phase of the session starts; otherwise the active
session will start at the time for which the reserva-
tion is made.

We note that a QoS manager that invokes the
Servicelnq operation on its components in order to
determine what kind of service quality could be
provided in response to a request made by a user,
may possibly ask for the maximal quality of service
which would be available. In the case of additive
service qualities, such as delay, the manager may
counterbalance a bad performance of one component
by requesting a high QoS from another component
that is able to provide a larger service quality.

3.3. Hierarchical computation of available service
projection

The QoS manager receives the available service
projections from the QoS agents possibly via some
lower level QoS managers. Before producing the set
of proposals to present to the user, the QoS manager
should combine these available service projections to
produce the available (end-to-end) service projection
at the user interface. This information will then be
used by the Proposals Computation (PC) algorithm
(see Section 2.2.2) to produce proposals to be pre-
sented to the user.

3.3.1. Combination of available service projections
Given the available service projections (asp) pro-
duced by the QoS agents of interest, the QoS man-
ager should be able to compute the available end-to-
end service projection. This computation is per-
formed by the Basic Combination (BC) algorithm.
The basic idea is that the aggregated QoS is com-
puted each time there is a change (transition) in the
asp (available service projection) of one of the in-
volved components; the concatenation functions G,(),
G,(), or G, (see Section 3.1) are used for this

purpose.

788 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

Basic Combination (BC) algorithm

The initial value of the list Masp is the result of
merging the available service projections of the in-
volved components. The time (we call tlast) associ-
ated with the first tuple of Masp becomes the cur-
rent time (initially, the current time is the starting
time starttime); the algorithm extracts all the tuples
of Masp for which the associated time is equal to
the current time; then, it sets Q' (for 1 <i<n) to
the QoS provided by the component C; at the current
time (Q'" represents a QoS variable); the aggregated
QoS G(QW, ..., Q') is computed using the con-
catenation functions; {tlast, G(QW, ..., Q™)) be-
comes a tuple of the aggregated available service
projection. This is repeated until Masp becomes
empty.

Algorithm
Input:
asp'’, ..., asp'™ the available service projec-
tions of C,, ..., C,. We associate to each ele-

ment of asp'”, for 1 <i<n, an attribute i
which identifies the corresponding component.
For example, an element of asp'”’ will be writ-
ten as {1, QoS)");
starttime is the desired starting time for the
service;

Output:
endtoendasp which is a list of tuples {time,
QoS), where Qos corresponds to the (end-to-
end) aggregated QoS that can be provided at
time.

Variables:
0OV, for (1 < i < n), may assume any QoS value;

A

QoS (throughput)

Jouel® w[s B

I I I T
1 42 3 4 5 l 6 l 7 ‘ 8 time axis
reserve : free free reserve freserve

|

Servicelng

Fig. 10. An example of available service projection of C,.

A

Q05 (throughpur)

] Ll vl il

S e i

[s 3
1 ‘2 13 |4 ls |6 17 8 time axis
|

Servicelnq

Fig. 11. The available service projection (ASP) produced by the
BC algorithm given the ASPs shown in Fig. 3 and Fig. 10.

Masp is a variable representing available ser-
vice projections;
tlast is a time variable;
endtoendasp is a list representing the (end-to-
end) available service projection;
Initialization:
tlast: = starttime;
endtoendasp: = [1;
Merge(asp'”/, ..., asp'™, Masp);
(1) while not (empty(Masp)) do .
(1.1) ExtractFirst(Masp, {1, QoS)");
(1.2) if t # tlast then
Add(endroendasp, {tlast, G(QY, ..., Q"™)));
/* when t# tlast, the initialization of the
09, for (1 <i<n), was already performed
in previous executions of Step (1.3) * /
tlast:=t;
endif
(1.3) 0'": = Qos;
endwhile
end

Example, Let us assume that (a) two networks with
a maximum bandwidth of 5 Mbits/sec, called C,
and C,, are required to support the user request, and
(b) the ASP shown in Fig. 3 (resp. Fig. 10) corre-
sponds to the ASP of C, (resp. C,) at the time of the
request. Upon receipt of these ASPs from the QoS
agents of the components, the QoS manager pro-
duces, using the basic combination algorithm, the
following available service projection: endtoendasp
=[(2, GB3. 2)). (3. G(4, 2)), <4, G(4, 3)), <6, G(5,
4)), (7, G(2, 3)), (8, G(5, 2))], which is shown in
Fig. 11.

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777794 789

3.4. An optimized hierarchical negotiation of QoS
with present and future service sessions

The interactions between the QoS agents and the
QoS managers, presented in Section 3.3, are not
optimal in terms of the information exchanged and
the response time obtained (to produce the proposals
to be presented to the user). Indeed, the QoS agents
send the complete information of the available ser-
vice projections to the QoS manager without any
pre-processing; this information could be reduced if
pre-processed by the QoS agents. That is, a QoS
agent may process its available service projection in
a way to produce a reduced amount of information
(to be sent to the QoS manager) which may be easily
used by the QoS manager to produce the proposals
to be presented to the user.

Upon receipt of the available service projection of
the involved components the QoS manager uses the
BC algorithm to produce the (end-to-end) available
service projection. This allows the QoS manager to
know about the end-to-end QoS that can be provided
at a given time; however, it cannot, directly, know
whether this QoS is available for the duration of the
requested service; for this reason it uses the propos-
als computation algorithm to build the proposals to
be presented to the user. However, if QoS agents
send an information about the duration of the (local)
availability of a QoS starting from a given time, the
QoS manager can directly produce the combined
QoS for the user. This means that a QoS agent
should process its available service projection to
produce and send ‘‘internal proposals’’, p, defined
as follows: p: =<1, QoS, tmax) where tmax repre-
sents the maximum period over which the compo-
nent can support QoS starting from 7.

For sake of clarity let us consider the following
example. We assume that a user issues a service
request with a desired QoS to start at a certain time
t, for a period of length. Upon receipt of the user
request, the QoS manager sends service requests to
two QoS agents of interest (the service requested
might require these two components: C, and C,). In
response, two available service projections (ASP),
asp" and asp®, are received by the QoS manager.
Using the approach described in Section 3.3, the
QoS manager starts by considering the first tuples
p* = (start-time, QoS*) € asp'V and p’ = (start-

time, QoS'y € asp'® to produce the first tuple,
{starttime, G (QoS™, QoS")), of the (end-to-end)
available service projection. If the QoS manager has
the information that QoS* and QoS™ might be sup-
ported over [starttime,starttime + length], then it will
produce directly the proposal (starttime, G (QoS ",
Qos")) to be presented to the user; without this
information, the QoS manager should use the pro-
posals computation algorithm. This scenario is appli-
cable not only for starttime but also for any later
time value. Consequently, if the QoS agents provide
the QoS manager with this (added-value) informa-
tion concerning the length of time over which a
given QoS can be supported, then the complexity of
the operation of the QoS manager will be decreased
and the quantity of information to be sent by the
QoS agents will be reduced (since the tuples (7,
QoS) of the available service projections for which
the QoS does not hold for a period of at least length
will not be sent to the QoS manager).

In [17] we presented two algorithms, namely the
so-called Internal Proposal Computation (IPC) al-
gorithm and the Proposal ComBination (PCB) al-
gorithm which realize these ideas. The IPC algo-
rithm is used by the QoS agents to produce ‘internal
proposals”” ([{t, QoS, tmax), ...]) from the avail-
able service projections. Upon receipt of the ‘‘inter-
nal proposals’’ built by the QoS agents, the QoS
manager uses the PCB algorithm to produce propos=
als to be presented to the user. It is worth noting that
the PCB algorithm and the IPC algorithm, together,
produce the same proposals as the BC algorithm (see
Section 3.2) together with the proposals computa-
tion algorithm (see Section 2.2).

3.5. Constraining the number of proposals produced
by a QoS agent

In response to the QoS manager, a QoS agent
produces a set of proposals; the number of proposals
depends only on its available service projection.
Even with the optimized approach described in Sec-
tion 3.4, a QoS agent may produce a huge number of
internal proposals which may not all be “‘useful’’ to
produce the proposals to be presented to the user.
One may think that, if we bound the number of
proposals to be produced by the QoS agents, the
operation of NAFUR will be further optimized. In-

790 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777794

deed, the information sent by the QoS agents will be
reduced, and the complexity of the operation of the
QoS manager will also be reduced since it will
process a smaller quantity of information. However,
with a bounded number of proposals there is no
guarantee of producing all relevant proposals; in
particular, in certain situations, no proposal may be
produced even though some proposal would be pos-
sible.

For example, let us assume that, after executing
the algorithms described in Section 3.4, the compo-
nents C, and C, return proposals” =[{(1{" =
13:00), QoS{V, (tmax{" = 25 min)), {(1§" = 13:20),
QoSsY, (tmax$” = 30 min)), {(#{"” = 14:00), QoS}",
tmax{”)] and proposals® = [{(+*) = 14:00), QoS\®,
tmax(?), (1 = 14:15), Qo0S?, tmaxP)], respec-
tively; then, a possible proposal to be presented to
the user is (14:00, G(QoSS", Q0S™)). However, if
we limit the number of proposals to be returned by
the QoS agents to two (the first two tuples in each
list), then we note that at 14:00 the QoS manager
does not know the QoS that can be provided by C,
since #{" + tmax{"’ = 13:25 < ¥ =14:00 and £"
+ tmax§) = 13:50 < #{¥ = 14:00; consequently, the
QoS manager produces no proposal to be returned to
the user.

If the limited number of proposals to be sent by
the QoS agents are carefully selected then the proba-
bility that the QoS manager produces one or more
proposals will increase. In [17] we presented a pro-
posal selection (PS) procedure which allows the
QoS agents to select ‘‘suitable’’ proposals to be sent
to the QoS manager. The main idea of the PS
procedure is that QoS agents communicate some
information about their QoS availabilities to the QoS
manager, either periodically or when significant
changes occur to their current load. When the QoS
manager receives a user request, it uses this informa-
tion to specify the bounds of the starting time (and
other parameters) of the proposals to be sent by the
QoS agents. Obviously, only a limited number of
proposals will satisfy such requirements.

3.6. Support of multiple simultaneous service re-
quests

As described in Section 3, the proposed algo-
rithms support the processing of only one service

request at a given time. That is, we did not describe
the behavior of a QoS agent when it receives a new
Servicelnq while it is waiting to receive a reservation
(ServiceRes) for a previous Servicelnq. The problem
with the support of multiple simultaneous service
requests is that each QoS agent reserves a certain
amount of its resources to support the proposals
produced in response to a Servicelnq. Then, when
the QoS agent receives a new Servicelng, it has not
enough information to process it, because it does not
know the proposal which may be selected by the
user in respect to the previous Servicelng.

Three approaches can be considered to deal with
this issue: (1) the pessimistic approach: to use a
locking protocol to keep the resources reserved until
the corresponding ServiceRes is received by the QoS
agent (the upcoming Servicelnq are ignored or
queued); (2) the optimistic approach: to process the
upcoming Servicelnq hoping that all the service re-
quests can be supported; or (3) a hybrid approach: to
make some assumptions on the previous Servicelnq
in order to process the upcoming Servicelnq hoping
that these assumptions become true. A detailed de-
scription of these three approaches and a discussion
how they can be used by NAFUR is given in [17]

4. The case of unknown service durations

For a range of multimedia applications, it is diffi-
cult to predict the duration of a session. For example,
collaborative systems assume that discussions are
somewhat unstructured and therefore it is almost
impossible to know, in advance, the (accurate) dura-
tion of a collaborative session. In such a situation,
the reservation algorithms described above cannot be
used directly, since they assume that the service
duration is known when the service request is made.
We discuss in the following how these algorithms
can still be used, assuming that the effective service
durations can be approximately estimated when the
request is made. We assume that for each requested
service we know its estimated duration. Its value,
estimatedlength, may be (a) set by the user, or (b)
computed based on statistics gathered while running
the applications (note on known length for video-
on-demand). We use estimatedlength instead of

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777794 791

length in the algorithms described earlier. Three
cases are identified: (1) the effective duration, noted
by effectivelength, is equal to the estimated duration
(exact termination); (2) the effective duration of the
application is longer than the estimated duration
(delayed termination); and (3) the effective duration
of the application is shorter than the estimated dura-
tion (premature termination). Premature termination
and delayed termination raise some issues related to
QoS guarantees and resource utilization, discussed
below, while exact termination corresponds to the
situation discussed in Sections 2 and 3.

In the case of delayed termination, there are no
guarantees to support the requested QoS after the
estimated period, i.e. over [starttime + estimated-
length, starttime + effectivelength], in the case of
premature termination, resource utilization will be
not optimal since the resources (reserved for the
requested service) are not used up to the end of the
reservation period, i.e. they remain idle during the
period [starttime + effectivelength, starttime +
estimatedlength]. We discuss in the following how
one could deal with these issues.

4.1. Delayed termination

At the end of the reserved period, i.e. at the time
starttime + estimatedlength, the QoS manager will
perform a new negotiation to determine the QoS
which might be supported for the service in question
over the time period between the estimated termina-
tion and the effective termination. If there are enough
resources to support the requested QoS over this
time period, then the QoS agents have only to update
their available service to reflect the new situation;
otherwise, the user is notified that his /her requested
QoS cannot be supported any more. Then, the user
has the choice to abandon or initiate a renegotiation.

If we want to maintain QoS guarantees for ser-
vices with delayed termination, a priority-based ap-
proach may be used. That is, to each service request
is associated a priority parameter; the user specifies
the desired priority for his/her request during the
negotiation phase. Thus, if a high priority is associ-
ated with a service with delayed termination, the
QoS manager may abort some low priority services
which are currently provided (or may delay the

starting time for low priority services which are
scheduled to start in the future) if not enough re-
sources are available to maintain QoS guarantees
(for the high priority service) until the effective
termination; this means that a higher priority service
request is satisfied before low priority service re-
quests (e.g. the priority parameter assumes two val-
ues: high and low). The time duration over which the
resources are reserved at the time starttime +
estimatedlength for the request with delayed termina-
tion is determined either by the system (based on
statistical information), or by the user by means of
renegotiation.

The cost is a key concept in such an approach.
Without cost constraints, the users will always ask
for high priority for their requests; the cost will limit
the greediness of the users. The cost for high priority
service requests should be significantly higher than
the cost for low service requests. More specifically,
the cost to be paid by a user is defined as a function
of the amount of resources used, the time period the
resources are held, and the priority of the service
request. For the users who under-estimated estimat-
edlength the situation depends on the priority:

(a) When a high priority service request is ac-
cepted, the QoS manager should provide QoS guar-
antees even after the originally estimated period. A
simple way to meet such stringent requirements is to
abort some low priority services; however, more
sophisticated solutions may be used. As an example,
for a given high priority service request, the QoS
manager could reserve the resources over [starttime,
starttime + estimatedlength + delinquenttime], where
delinquentime is a time value which is maintained by
the QoS manager. The computation of delinquentime
depends on several factors such as, the service nature
and the general behavior of the users, e.g. a user
never uses the requested service more than 10 min-
utes, and is based on past experience. If the delin-
quentime used by the QoS manager is too small
(estimatedlength + delinquenttime < effectivelength)
the abortion of low priority services may be required.

(b) For low priority service requests, by starttime
+ estimatedlength — reactiontime the QoS manager
sends a warning to the user indicating that the re-
quested service will still be provided for a duration
equal to reactiontime, where reactiontime is a small
time value determined by the QoS manager. reac-

792 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

tiontime can be computed as the average of the
response times to perform a negotiation. Upon re-
ceipt of this warning, the user may ignore it, e.g. if
he /she knows that he /she will end the session soon,
or initiate a new service request. If the new request
cannot be supported, the QoS manager asks the user
whether he/she wants to increase the priority of
his /her service request. If the response is yes, the
QoS manager will process the request as described
under (1) above; in this case, the user has to pay an
extra-charge for (dynamic) priority increase.

4.2. Premature termination

To avoid the under-utilization of resources due to
premature termination of certain service requests, we
have only, for a component C, to update immedi-
ately its available service projection each time a
service, using C’s resources, ends (instead of wait-
ing until starttime + estimatedlength). Thus, when
new service requests are received by the QoS agents,
the updated available service projections are used to
produce more realistic proposals to be returned to the
QoS manager.

This behavior of the QoS agents is simple; how-
ever, more sophisticated actions may be considered.
For instance, the QoS agents may send notifications
informing the QoS manager about the new situation
(the new ‘‘internal proposals’’ or the new available
service projection). The QoS manager applies the
algorithms, as described above, with the updated
“‘internal proposals’’ to reschedule some services:
upon the receipt of the QoS agent(s) notification(s),
the QoS manager initiates a new negotiation for
some scheduled, e.g. active or ahead scheduled, ser-
vices. Then, the user is informed about the new
situation (by means of proposals); the user has the
choice to accept or ignore the new proposal(s). If the
QoS manager does not receive a response from the
user within a certain period of time (reactiontime),
then it will assume that the new proposal(s) is re-
jected.

In order to discourage users from making unnec-
essarily long service requests, the following charging
policy may be adopted. The users who over-esti-
mated estimatedlength will be charged at the regular
rate for the effective usage of resources (over the

effective length of the service) and at a *‘reservation
rate’” (which is lower than the regular rate) for the
reserved resources not used (over the time period
between the effective termination and the estimated
termination of the service). We believe that this
policy is essential if we want to improve the avail-
ability of the system.

5. Conclusion

This paper describes work on a new QoS negotia-
tion approach with future reservations (NAFUR) that
decouples the starting time of the requested service
from the time the service request is made. It is
assumed that the duration of the requested service
requested is known. NAFUR allows to compute the
QoS that can be supported at the time the service
request is made, and at certain later times carefully
chosen. For example, if the requested QoS cannot be
supported at the time the service request is made, the
proposed approach allows to compute the earliest
time, when the user can start the service with the
desired QoS. We also defined some rules and poli-
cies which could be used with the proposed algo-
rithms in situations where the service duration is not
know when the request is made.

To the best of our knowledge, negotiation with
future reservations is not available within any of the
existing schemes and protocols for QoS negotiation.
However, there is some similarity with the approach
of Nussbaumer et al. [22] in the context of Commu-
nity Access TV (CATV) for on-demand MM distri-
bution, which allows the users to wait a bounded
time period if the resources are not available at the
time of the request. But, this approach has the fol-
lowing characteristics: (1) it does not consider the
concept of QoS; (2) it does not provide the user with
the expected starting time (the user has to wait); (3)
it does not provide any algorithms to produce pro-
posals in response to the user’s request; and (4) it
considers a particular system (CATV).

We believe that NAFUR will help to increase (a)
the flexibility of the system by providing the user
with more choices; and (b) the system resource
utilization and the availability of the system, by
encouraging the sharing of resources, especially

A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794 793

through multicasting. Furthermore, it can be easily
used to support service requests made in advance,
which is especially useful for scheduled multi-party
communications, such as tele-conferencing and tele-
teaching systems.

Last but not least, NAFUR provides the flexibility
to incorporate (a) a range of resource reservation
schemes and scheduling policies, and (b) a range of
new system component technologies.

We are planning to implement NAFUR in the
context of the CITR (Canadian Institute for
Telecommunication Research) news-on-demand pro-
totype [23] and to quantitatively evaluate the gain
obtained by using NAFUR in the context of the
news-on-demand application.

Acknowledgements

This work was supported by a grant from the
Canadian Institute for Telecommunication Research
(CITR), under the Networks of Centres of Excel-
lence Program of the Canadian Government.

References

[1] D. Anderson, R. Herrtwich, C. Schaefer, SRP: a resource
reservation protocol for guaranteed-performance communica-
tions in the Internet, The International Computer Science
Institute, Berkeley, 1991.

[2] C. Chou. K. Shin, Statistical real-time video channels over a
multi-access network, Proc. High SPIE, 1994.

[3] A. Danthine, OSI95: high performance protocol with multi-
media support on HSLANs and B-ISDN, 3rd Joint European
Networking Conf., Innsbruck, 1992.

[4] D. Ferrari, D. Verma, A scheme for real-time channel estab-
lishment in wide-area networks, IEEE JSAC 8 (3) (1990).

[5] D. Kandlur, K. Shin, D. Ferrari, Real-time communication in
multi-hop networks, Proc. 11th Int. Conf. on Distributed
Computing Systems, 1991.

[6] B. Metzler, I. Miloucheva, K. Rebensburg, Multimedia com-
munication platform: specification of the broadband transport
protocol XTPX, CIO, RACE Project 2060,
60/TUB/CIO/DS /A /002 /b2, 1992.

[7] C. Topolcic, Experimental Internet stream protocol: version 2
(ST-1D), Internet RFC 1190, 1990.

[8] D. Hehmann, R. Herrtwich, W. Schulz, T. Schett, R. Stein-
metz, Implementing HeiTS: architecture and implementation
strategy of the Heidelberg high speed transport system, 2nd

Int. Workshop on Network and Operating System Support
for Digital Audio and Video, IBM ENC, Heidelberg, Ger-
many, 1991.

[9] J. Ramaekers, G. Ventre, Quality of service negotiation in a
real-time communication network, Technical Report TR-92-
023, ICSI, Berkeley, CA, 1992.

[10] D. Ferrari, A. Banerjea, H. Zhang, Network support for
multimedia, Technical Report 92-072, International Com-
puter Science Institute, Berkeley, CA, November 1992.

[11] G. Kalkbrenner, T. Pirkmayer. V. Dornik, P. Hofmann,
Quality of service in distributed hypermedia-systems, 2nd
Int. Workshop on Principles of Document Processing, Darm-
stadt, April 1994.

[12] B. Kerherve, A. Vogel, G. Bochmann, R. Dssouli, J. Gecsei,
A. Hafid, On distributed multimedia presentational applica-
tions: functional and computational architecture and QoS
negotiation, Proc. High Speed Networks Conf., 1994, pp.
1-19.

[13] K. Nahrstedt, An architecture for end-to-end quality of ser-
vice provision and its experimental validation, Ph.D. Thesis,
University of Pennsylvania, 1995.

[14] W. Tawbi, E. Horlait, Expression and management of QoS in
multimedia communication systems, Ann. Telecommun.
(June 1994).

[15] A. Hafid, G.V. Bochmann, Quality of service adaptation in
distributed multimedia applications, ACM /Springer Multi-
media Systems J. (1997) (to appear).

[16] K. Almeroth, M. Ammar, Providing a scalable interactive
video-on-demand service using multicast communication,
Proc. ICCCN 94, San Francisco, CA, 1994.

[17] A. Hafid, QoS management in distributed multimedia appli-
cations, Ph.D. Thesis, University of Montreal, Montreal,
Canada, 1996, pp. 96—133.

[18] A. Hafid, A scalable video-on-demand system using future
reservation of resources and multicast communications: de-
sign and implementation, Comput. Comm. (1997) (to appear);
a version is in Proc. Fifth IFIP Int. Workshop on QoS
(IWQoS). New York, 1997.

[19] 1. Miloucheva, QoS management for high speed transport
architecture, Workshop on Distributed Multimedia Applica-
tions and QoS Verification, Montreal, Canada, June 1994.

[20] C.J. Sreenan, Synchronization services for digital continuous
media, Ph.D. Dissertation, University of Cambridge, UK,
1992.

[21] G.V. Bochmann, A. Hafid, Some principles for quality of
service management, IEE Distributed Syst. Eng. J. 4 (1)
(1997) 16-27.

[22] J. Nussbaumer, F. Schaffa, Capacity analysis of CATV for
on-demand multimedia distribution, Proc. IASTED /ISMM
Int. Conf. on Distributed Multimedia Systems and Applica-
tions, Honolulu, Hawaii, 1994.

[23] J. Wong, K. Lyons, R. Velthuys, G. Bochmann, E. Dubois,
N. Georganas, G. Neufeld. T. Ozsu, J. Brinskelle, D. Evans,
A. Hafid, N. Hutchinson, P. Inglinski, B. Kerherve, L.
Lamont, D. Makaroff, D. Szafron, Enabling technology for
distributed multimedia applications, IBM Syst. J. 36 (4)
(1997) 489-507.

794 A. Hafid et al. / Computer Networks and ISDN Systems 30 (1998) 777-794

Abdelhakim Hafid is Assistant Profes-
sor at the Electrical & Computer Enggi-
neering /Compter Science Departments
(a joint appointment), University of
Western Ontario, and a Research Direc-
tor of the Advanced Communication En-
gineering Centre (venture established by
UWO, Bay Networks, Bell Canada); he
is also an Adjunct Professor at the Uni-
versity of Montreal, Department of
Computer Science. He received his Mas-
ters and Ph.D. degrees in computer sci-
ence from the University of Montreal on quality of service
management for distributed multimedia applications in 1993 and
1996, respectively. From 1996 to 1997 he was a Researcher Staff
Member at the Computer Research Institute of Montreal (CRIM),
Telecommunications and Distributed Systems Division, working
in the area of distributed multimedia applications. From 1993 to
1994 he was visiting scientist at GMD-FOKUS, Systems Engi-
neering and Methods group, Berlin, Germany working in the area
of high speed protocols testing. His current research interests are
in Internet and multimedia networking.

Gregor von Bochmann is a professor
at the University of Montreal since 1972
and holds the Hewlett-Packard-
NSERC-CITI chair of industrial re-
search on communication protocols. He
is also one of the scientific directors of
the Centre de Recherche Informatique
de Montréal (CRIM), and a Fellow of
the IEEE and ACM. Professor von
Bochmann has worked in the areas of
programming languages, compiler de-
sign, communication protoéols, and
software engineering and has published many papers and some
books in these areas. He has also been actively involved in the
standardization of formal description techniques for OSI commu-
nication protocols and services. From 1977 to 1978 he was a
visiting professor at the Ecole Polytechnique Fédérale, Lausanne,
Switzerland. From 1979 to 1980 he was a visiting professor in the
Computer Systems Laboratory, Stanford University, California.
From 1986 to 1987 he was a visiting researcher at Siemens,
Munich, Germany. His present work is aimed at methodologies
for the design, implementation and testing of communication
protocols and distributed systems. Ongoing projects include appli-
cations to high-speed protocols, distributed systems management
and quality of service negotiation for distributed multimedia appli-
cations.

Rachida Dssouli is professor in the
Département d’Informatique et de
Recherche Opérationnelle (DIRO), Uni-
versité de Montréal. She received the
Doctorat d’Université degree in com-
puter science from the Université Paul-
Sabatier of Toulouse, France, in 1981,
and a Ph.D. degree in computer science
in 1987, from the University of Mon-
treal. Professor Dssouli has been profes-
sor at the Université Mohamed ler, Ou-
jda, Morocco, from 1981 to 1989, and
assistant professor at the Université de Sherbrooke, from 1989 to
1991. She is currently on Sabbatical at NORTEL, Ile des Soeurs.
Her research area is protocol engineering and requirements engi-
neering. Ongoing projects include incremental specification and
analysis of reactive systems based on scenario language, multime-
dia applications and tests of timed communicating systems.

